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Abstract

Understanding human activity and being able to explain

it in detail surpasses mere action classification by far in

both complexity and value. The challenge is thus to de-

scribe an activity on the basis of its most fundamental con-

stituents, the individual postures and their distinctive transi-

tions. Supervised learning of such a fine-grained represen-

tation based on elementary poses is very tedious and does

not scale. Therefore, we propose a completely unsupervised

deep learning procedure based solely on video sequences,

which starts from scratch without requiring pre-trained net-

works, predefined body models, or keypoints. A combina-

torial sequence matching algorithm proposes relations be-

tween frames from subsets of the training data, while a CNN

is reconciling the transitivity conflicts of the different sub-

sets to learn a single concerted pose embedding despite

changes in appearance across sequences. Without any man-

ual annotation, the model learns a structured representation

of postures and their temporal development. The model not

only enables retrieval of similar postures but also temporal

super-resolution. Additionally, based on a recurrent formu-

lation, next frames can be synthesized.

1. Introduction

The ability to understand human actions is of cardinal

importance for our interaction with another. Explaining the

activity of another person by observing only individual pos-

tures and their temporal transitions in a sequence of video

frames has been a long-standing challenge in Computer Vi-

sion. There are numerous applications in problems like ac-

tivity indexing and search [42, 38, 27], action prediction

[22, 45], behavior understanding and transfer [35, 33, 7],

abnormality detection [3], and action synthesis and video

generation [12, 46, 4, 37]. Our goal is to learn human ac-

tivity on the finest accessible level, i.e., individual poses,

by capturing characteristic postures and the distinctive tran-

sitions between them solely based on videos without re-

quiring any manual supervision or pre-defined body mod-

els. The underlying deep learning approach is unsupervised

Figure 1. Visualizing all frames of all long-jump sequences using

the learnt posture representation φ. Similar frames across different

sequences and repetitions across time are mapped nearby, yielding

a concise rendering of the overall activity with its characteristic

gait cycles. Moreover, intermediate frames can be synthesized (top

right) as well as future frames of a sequence (visualized by nearest

neighbors from training set (right)).

and starts from scratch with only the video data and without

requiring tedious user input or pre-trained networks. Our

approach to activity understanding, summarized in Fig. 1

(cf. Supplementary1),exhibits the following characteristics:

Unsupervised: The most prominent paradigm to video

understanding has been supervised action classification

[22], since labeling finer entities such as individual poses

[1] is tedious. Action classification typically utilizes

wholistic models and a discriminative approach is trained

to classify actions into discrete classes. As a result, such

approaches model actions globally in terms of their over-

all most salient differences, rather than capturing the sub-

tle changes of human posture over time (the clothing of a

person may suffcice to discriminate running from diving).

Model-free: Multiple works have modeled activity and pos-

1Video material demonstrating the different applications can be found

under https://hciweb.iwr.uni-heidelberg.de/compvis/

research/tmilbich_iccv17
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ture using a predefined model for joint locations (i.e. Mo-

Cap [40, 21, 54], Depth [36], etc.). However, obtaining this

meta information is costly and prevents scaling these ap-

proaches to use large unlabeled collections of video data.

Continuous in time: Several approaches have tackled the

problem of understanding activity by decomposing it into

discrete sub-actions [26, 53, 47] or into a hierarchy [54, 43].

Consequently, the detailed, continuous evolution between

consecutive postures is neglected. Multi-granular: A lot

of work has focussed separately either on pose matching

[29, 5, 44], action classification [22, 48, 13, 2], or mid-level

entities (e.g. clusters of postures) [53, 43, 26]. Explain-

ing activities, however, demands to describe overall activ-

ity based on fine-granular postures and the transitions in

between, thus linking coarse with fine granularities. Fine-

grained activity parsing: Explaining activity on the tempo-

ral scale of single postures with all their diverse changes is

far more detailed and complex than mere action classifica-

tion [48, 13]. Previous efforts [17] have approximated pos-

ture and its transitions using discrete states in an AND-OR

graph and relied on tedious supervision information.

With no supervision information, no predefined model

for human posture, and training from scratch, we need to

compensate for there being no labels for individual pos-

tures. Since we are lacking the labels to directly train a rep-

resentation for posture we can only utilize a large number

of video frames and reason about pairwise relationships be-

tween postures. This is aggravated by the fact that the visual

representation of posture in different videos can be signifi-

cantly different due to changes in lighting, background, or

the clothing and skin color of different persons. Therefore,

we utilize a large number of training video frames and have

a deep learning algorithm alternate between proposing pair-

wise similarities/dissimilarities between postures, and then

resolving transitivity conflicts to bring the relationships into

mutual agreement. To propose similarities, a combinato-

rial sequence matching algorithm is presented, which can

find exact solutions, but only for small sets of frames. A

CNN then resolves the transitivity conflicts between these

different subsets of the training data by learning a posture

embedding that reconciles the pairwise constraints from the

different subsets. While the sequence matching is already

incorporating information about posture changes, a Recur-

rent Neural Network (RNN) is trained to capture the overall

activity and to predict future frames of an activity sequence

by synthesizing transitions.

Experimental results show that our approach is able to

successfully explain an activity by understanding how pos-

ture continuously changes over time and to model the tem-

poral relationships between postures. Furthermore, our pos-

ture representation obtains state-of-the-art results on the

problem of zero-shot human pose estimation and has also

proven worth as a powerful initialization for other super-

vised human pose estimation methods. In addition, our

approach captures the temporal progression of an activity,

it can predict future frames, and it also enables a Genera-

tive Adversarial Network (GAN) to provide temporal super-

resolution.

2. Representation Learning for Parsing Activi-

ties

2.1. Learning a Posture Embedding

We are interested in detailed understanding of human

activity without requiring manual interaction or predefined

models. Therefore, we can explain overall activity in a

video only using the most basic entity that we can directly

access: the human posture observed in bounding box de-

tections I of individual frames. Activity, which emerges at

the temporal scale of an entire video sequence, is then rep-

resented by individual poses and their characteristic transi-

tions and repetitions on a fine temporal scale. To model an

activity, we need a posture representation φ(I; θ) which: (i)

is invariant to changes in environmental conditions such as

lighting and background. (ii) is invariant to the appearance

of persons (clothing and skin color). (iii) is continuous in

time (consecutive frames are near in feature space). Only

then we can understand the essential characteristics of an

activity and spot all repetitions of the same pose over time

and in different sequences, despite changes in person ap-

pearance or environment.

A natural choice to incarnate φ(I; θ) are CNNs. They

exhibit great expressive power to learn highly non-linear

representations at the cost of requiring millions of manually

labeled samples for training. A popular alternative is then to

only fine-tune a representation that has been pre-trained for

discrete classification on large datasets [8]. Unfortunately,

the performance of pre-trained models for transfer learn-

ing is heavily task dependent. In our scenario, the discrete

classification objective contradicts our requirements for φ,

i.e., a discrete classification loss neglects smoothness within

the representation space φ. In addition, since datasets like

[8] are composed of single images, pre-trained models fail

to encode temporal relationships between frames. This ex-

plains the inferior performance of these pre-trained models

in Sect. 3.

Instead of using a pre-trained representation we seek to

learn a representation φ(I; θ) that maps similar postures

close in feature space while retaining temporal structure of

an activity. Ideally, manual supervision of human postures,

such as joint annotations, and/or positive links of similar

postures within and across sequences together with negative

links of dissimilar postures could be used to learn φ(I; θ)
employing, for example, triplets of similar and dissimilar

poses. However, we are lacking these labels, altogether. To

overcome this lack of labels we exploit the relationships in-
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Figure 2. Correspondences for two query sequences obtained us-

ing nearest neighbors (first row) and our sequence matching with

temporal constraints (second row). Note how the temporal con-

straints provide much more accurate correspondences.

herent in large collections of video sequences. We infer the

supervision information, which is required to learn a CNN

representation φ(I; θ), by solving a combinatorial sequence

matching problem. The solution of this matching problem

then provides us with correspondences of similar and dis-

similar postures, which we then impose onto the CNN rep-

resentation φ(I; θ) to learn it.

2.2. Sequence Matching for Selfsupervision

We aim to learn a CNN representation φ(I; θ) which en-

codes posture similarity, without being provided with any

labels. In order to learn such a representation, we employ

a self-supervision strategy, leveraging the temporal infor-

mation in videos to solve a sequence matching problem

and find pair-wise correspondences between frames on a se-

quence level. Let S = {Ij}
n
j=1 and S ′ = {I ′j′}

n′

j′=1 denote

two sequences of n and n′ frames respectively, we want to

find a correspondence π : {1, ..., n} 7→ {0, 1, ..., n′} that

matches frames of S to frames of S ′, where the index 0
is used to match outliers. Furthermore, in order to suc-

cessfully learn φ(I; θ) using self-supervision, we want to

enforce the following constraints on π: (i) Corresponding

frames should be similar in appearance. (ii) To avoid tem-

poral cross-over and to reduce false positives matches, con-

secutive correspondences must be chronologically ordered.

(iii) To avoid only part of a sequence being used and to ex-

plore the full span of possible postures therein, one-to-many

correspondences should be penalized. (iv) Correspondences

should be invariant to the sequence frame rate. Figure 2

demonstrates the need for our temporal constraints. These

constraints prevent, by definition, to utilize classical se-

quence matching approaches like the computational costly

String Matching [24] or Dynamic Time Warping [6, 23].

Thus, we define the following optimization problem which

combines all these constraints,

minimize
π:{1,...,n}7→{0,1,...,n′}

n
∑

j=1

∥

∥

∥
φ(Ij ; θ)− φ(I ′π(j); θ)

∥

∥

∥

2

2

+ λ1

n−1
∑

j=1

1π(j)>π(j+1) + λ2

n−1
∑

j=1

1π(j)=π(j+1)

+ λ3

n−1
∑

j=1

1π(j)+1<π(j+1) [π(j + 1)− π(j)]

, (1)

where 1(·) denotes the indicator function and λ1, λ2, λ3

penalize the violations of the different temporal constraints.

The use of inequalities ensures constraint (iv). To solve the

optimization problem in Eq. (1) we convert it into an Integer

Linear Program (ILP). In order to do so, we define a matrix

Z ∈ {0, 1}n×n
′×n′

, where zj,j′
1
,j′

2
:= 1π(j)=j′

1
∧π(j+1)=j′

2
.

A non-zero z indicates matches for two consecutive frames

starting at position j. The ILP is then

maximize
Z∈{0,1}n×n′×n′

n−1
∑

j=1

n′
∑

j′
1
,j′

2
=0

zj,j′
1
,j′

2
pj,j′

1
,j′

2

subject to

n′
∑

j′
1
,j′

2
=0

zj,j′
1
,j′

2
= 1

∧

n′
∑

j′
1
=0

zj,j′
1
,j′

2
=

n′
∑

j′
3
=0

zj+1,j′
2
,j′

3

(2)

where pj,j′
1
,j′

2
is the sum of all terms in Eq. (1) with

zj,j′
1
,j′

2
= 1. To obtain reliable self-supervision infor-

mation, we obtain an exact solution of this ILP using a

branch-and-cut algorithm [34]. However, exactly solving

this problem for pairs of long sequences (e.g. n > 500) is a

costly operation with exponential worst case complexity in

n, making it computationally infeasible.

To circumvent this high cost when matching S onto S ′,
we break the target sequence S ′ into k equal length sub-

sequences of length n′ ≈ 40 and find an exact solution

for Eq. (2) on each local sub-sequence in parallel. Thus,

the overall computational cost is reduced by a factor of k,

making it a feasible to tackle long sequences. However

we obtain only local correspondences at sub-sequence level

and thus, discarding important relationships between dif-

ferent sub-sequences that compose the overall activity. To

compensate for this shortcoming, we train a CNN with the

different, local sub-sequence solutions in subsequent mini-

batches as discussed in Sect. 2.3. The CNN then reconciles
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the local sub-sequence correspondences. Thus, we benefit

from combining the computational feasibility of exact local

sub-sequence matching with the power of stochastic CNN

training, which aggregates lots of local observations in one

concerted representation.

2.3. From Local Correspondences to a Globally
Consistent Posture Representation

Our training procedure combines multiple exact solu-

tions to local ILPs to obtain self-supervision for training

a joint CNN representation φ(I; θ) that reconciles all the

sub-problems. Since our goal is to learn a CNN repre-

sentation for encoding human activity in a fully unsuper-

vised manner, the mini-batches for training are composed

just by pairs of sequences {S,S ′}. We find these pairs

by first randomly choosing S and sampling S ′ from a set

of nearest neighbour sequences Snn to S , thus sorting out

totally unrelated sequences. Snn is constructed using sim-

ple sequence descriptors by temporally pooling similarities

over all frames of a video. After breaking S ′ into equal-

length sub-sequences, the ILP in Eq. (2) yields a solution

Z
∗. These are exact pair-wise correspondences between S

and a particular sub-sequence of S ′. We then use these cor-

respondences Z∗ to generate triplets Tt using a triplet sam-

pling {S,S ′,Z∗} 7→ {Tt, }
T
t=1. Here Tt = {Ia, I+, I−}

consists of a randomly sampled anchor image Ia ∈ S and

its positive correspondence I+ = π(Ia) ∈ S ′, together

with a randomly chosen negative I− ∈ S ′. We randomly

sample negatives based on the p-th percentile of the simi-

larity distribution of sequence S ′ to I+. That is, we com-

pute the similarity of I+ to each frame of S ′, and sample

negatives from frames with a lower similarity than the p-th

percentile. We thus include hard negatives by decreasing p

over epochs. Note that by sampling positives and negatives

from the same sequence and by comparing the same se-

quence with different other sequences, relationships within

sequences are also implicitly established. Using this triplet

self-supervision we update the CNN parameters θ via back-

propagation and the triplet ranking loss [50, 49].

L({Tt}
T
t=1; θ) =

1

T

T
∑

t=1

L′(Tt; θ) (3)

L′(Tt; θ) =
[

‖φ(Ia; θ)− φ(I+; θ)‖
2
2

−‖φ(Ia; θ)− φ(I−; θ)‖
2
2 + δ

]

+

(4)

with δ controlling the margin between I+ and I− with

respect to Ia. The matching algorithm from Eq. (2) pro-

vides the self-supervision information needed to train the

CNN representation φ, whereas the CNN training using Eq.

(3) yields the posture embedding required to compute the

similarities in Eq. (2). Alg. 1 outlines this iterative pro-

cedure. We found that using HOG-LDA [18] to initialize

Figure 3. Similarity matrices for a long jump sequence of Olympic

Sports dataset computed using (a) VGG-S pre-trained on Ima-

genet, (b) CliqueCNN [5], (c) Ours. The diagonal structures cor-

respond to repetitions of gait cycles during running.

φ for the first epoch provides a decent initialization leading

to a speed-up compared to a random φ. Learning a single

posture representation that captures characteristic similari-

ties across and within sequences is thus decomposed into

a series of mini-batch optimizations. For each, Eq. (2)

provides a matching that is locally, within the respective

sub-sequences, optimal. The stochastic optimization of the

CNN then consolidates, over a number of mini-batches, the

transitivity conflicts between the local solutions to arrive at

a single posture representation. That way, both approaches

combine their strengths and weaknesses in an ideal man-

ner. Fig.3(a-c) show an excerpt of similarity matrices from

different models. Note the significantly improved signal-to-

noise ratio in (c).

2.4. RNN for Learning Temporal Transitions

We now have an algorithm which effectively learns an

overall posture representation φ(I; θ) for an activity based

on relationships within and across sequences. This detailed

posture encoding is an ideal basis to also deal with coarser

temporal scales, enabling to learn the complete temporal

structure of an activity without requiring any prior model

and to synthesize future frames of a sequence. We em-

ploy an RNN to explain or synthesize overall activity based

on the transitions between individual postures. As we are

living in a continuous state space with our representation

φ, also the transitions will be continuous. RNNs natu-

rally lend themselves to encode temporally encoded enti-

ties, but significant modeling effort can be required to obtain

Algorithm 1: Unsupervised learning of a consistent

posture representation using local correspondences.

Data: {Si}
S
i=1, θs=0

// Unlabeled video sequences and randomly

initialized θs=0

Result: {φ, θ}
while ‖θs+1 − θs‖2 > ǫ do

(S,S′)← {Si}
S
i=1 // Training batch

Z
∗ ← argmin

Z∈{0,1}n×n′×n′
Eq. (2) (S,S′, θ)

{Tt}
T
t=1 ← {S,S

′,Z∗} // Sample triplets

θs+1 ← θs + α∇θsL({Tt}
T
t=1; θs) // Update θ
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Figure 4. Top 5 LSTM predictions (red) for the next frame t + 1,

given four previous frames (green). Actual successor in blue.

a meaningful representation. Thus intensive pre-training of

the static entities (such as words or objects) is used before

learning transitions between them (sentences, videos) [28].

However, the already structured posture space that we

have learned in Sect. 2.3 simplifies this and we can incar-

nate our RNN as a standard LSTM [16], which takes as

input φ(I; θ). In order for the LSTM to be able to model an

activity as the temporal transition between individual pos-

tures, we formulate a regression task for future pose pre-

diction under representation φ(I; θ). By training the LSTM

to predict the representation of future frames based on the

observation of a small preceding sub-sequence, the network

learns to model the evolution of the complete activity. Let

Ct,l = {It−l, . . . , It} ⊂ S be an l frame sub-sequence of

S . The LSTM hidden state vector ht ∈ R
m has m ≫ d so

as to effectively learn the variability of temporal transitions

(cf. Sect. 3). We then stack one fully connected layer on top

of h to revert to the original dimensionality d, thus generat-

ing a representation φ′(φ(It, θ); θ
′) ∈ R

d (a stacking of an

LSTM layer and a fully-connected layer). By formulating

next frame prediction as a regression problem, we train this

network using the euclidean loss function

LRNN(C
t,l, It+1, φ, θ; θ

′) = ‖φ′(φ(It, θ); θ
′)−φ(It+1; θ)‖

2
2

(5)

The trained LSTM is then able to hypothesize transitions

to future frames based on a small subsequence of an activity

as demonstrated in Fig. 4.

3. Experimental Evaluation

To evaluate our approach at all granularity levels of an

activity, we report quantitative results for posture retrieval

in Sect. 3.1 and human pose estimation (HPE) in Sects.

3.2-3.3. In addition, we provide qualitative results for ac-

tivity understanding in Sect. 3.4, and for temporal super-

HOG-LDA [18] Ex-CNN [11] VGG-S Imagenet [41] Doersch et. al [9]

0.62 0.56 0.64 0.58

Shuffle&Learn [31] CliqueCNN [5] Ours Scratch Ours Imagenet

0.63 0.79 0.83 0.83

Table 1. Avg. AUC for each method on Olympic Sports dataset.

resolution, and action synthesis in Sects. 3.5 to 3.7.

3.1. Posture Retrieval: Olympic Sports dataset

The Olympic Sports (OS) dataset [32] is a compilation

of video sequences of 16 different sports, containing more

than 170000 frames overall in 300 video sequences. During

training, each training mini-batch is generated by sampling

two random sequences S,S ′ and solving the ILP in Eq. (2)

to obtain correspondences Z
∗. Solving the ILP takes ∼

0.1sec (IBM CPLEX Optimization framework) compared

to ∼ 0.5sec to process a minibatch Tt on a NVIDIA Titan

X (Pascal). We then use these correspondences to sample

{Tt, }
T=300
t=0 triplets, where the initial percentile p = 100 is

decreased by 10 every epoch. In each frame the approach of

[14] yields person bounding boxes. During training we uti-

lize VGG-S up to the fc6 layer and stack a 128-dimensional

fc7 layer on top together with an l2-normalization layer,

which is our representation φ(I; θ). We use Caffe [19] for

our implementation.

To evaluate our representation on fine-grained posture

retrieval we utilize the annotations provided by [5] and fol-

low their evaluation protocol, using their annotations only

for testing. We compare our method with CliqueCNN [5],

the triplet formulation of Shuffle&Learn [31], the tuple ap-

proach of Doersch et. al [9], VGG-S [41], and HOG-

LDA [18]. For completeness we also include a version of

our model that was initialized with Imagenet pre-trained

weights [41]. (i) For CliqueCNN, Shuffle& Learn, and

Doersch et. al methods we use the models downloaded

from their respective project websites. (ii) Exemplar-CNN

is trained using the best performing parameters reported in

[11] and the 64c5-128c5-256c5-512f architecture. Then we

use the output of fc4 and compute 4-quadrant max pooling.

During training of our approach, each image in the training

set is augmented by performing random translation, scaling

and rotation to improve invariance.

In Tab. 1 we show the average AuC over all categories

for the different methods. When compared with the best

method so far [5], the proposed approach improves the per-

formance by 4%, although the method in [5] was even pre-

trained on Imagenet. This improvement is due to the cross

sequence relationships enforced by our sequence matching,

which enforce a representation which is invariant to back-

ground and environmental factors, encoding only posture.

In addition, when compared to the state-of-the-art methods

that leverage tuples [9] or triplets [31] for training a CNN

from scratch, our approach shows 20% higher performance.

This is explained by the more detailed similarity relation-

ships encoded in the cross-sequence correspondences ob-
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tained by the sequence matching approach, which uses tem-

poral constraints to obtain high quality relationships of sim-

ilarity and dissimilarity. It is noteworthy, that our randomly

initialized VGG-S trained with our self-supervision strategy

yields equivalent performance to a version with pre-trained

Imagenet weights as initialization. Thus, the proposed self-

supervision circumvents the use of the 1.2M labelled Ima-

genet samples. To the best of our knowledge, this is the first

time that a self-supervised method performs equivalently

without the widely adopted Imagenet pre-training strategy.

3.2. ZeroShot HPE

After evaluating the proposed method for fine-grained

posture retrieval, we tackle the problem of zero-shot pose

estimation on the LSP dataset. That is, we transfer the pose

representation learnt on Olympic Sports to the LSP dataset

without any further training and retrieve similar poses based

on their similarity. The LSP [20] dataset is one of the most

widely used benchmarks for pose estimation. For evalua-

tion we use the representation to compute visual similari-

ties and find nearest neighbours to a query frame. Since the

evaluation is zero-shot, joint labels are not available. At test

time we therefore estimate the joint coordinates of a query

person by finding the most similar frame from the train-

ing set and taking its joint coordinates. We then compare

our method with VGG-S [41] pre-trained on Imagenet, the

triplet approach of Misra et. al (Shuffle&Learn) [31] and

CliqueCNN [5]. In addition, we also report an upper bound

on the performance that can be achieved by zero-shot eval-

uation using ground-truth similarities. Here the most simi-

lar pose for a query is given by the frame which is closest

in average distance of ground-truth pose annotations. This

is the best one can achieve without a parametric model for

pose (the performance gap to 100% shows the discrepancy

between poses in test and train set). For completeness, we

compare with a fully supervised state-of-the-art approach

for pose estimation [51]. For computing similarities we now

use the the intermediate pool5 layer of VGG-S as our rep-

resentation φ(I; θ), provided that our model is transferred

from another dataset [52].

In Tab. 2 we show the PCP@0.5 obtained by the dif-

ferent methods. For a fair comparison with CliqueCNN

[5] (which was pre-trained on Imagenet), we include a ver-

sion of our method trained using Imagenet initialization.

Since in this experiment we are transferring our model from

another dataset, we expect that Imagenet pre-training in-

creases performance. Our approach significantly improves

the visual similarities learned using both Imagenet pre-

trained VGG-S and CliqueCNN [5], obtaining a perfor-

mance boost of at least 3% in PCP score. In addition, when

trained from scratch without any pre-training on Imagenet

our model outperforms the model of [31] by 13%, due to the

fact that the cross-sequence correspondences obtained by

Method T UL LL UA LA H Total

Ours Imagenet 81.3 54.6 48.8 36.1 19.1 56.9 50.0

CliqueCNN [5] 80.1 50.1 45.7 27.2 12.6 45.5 43.5

VGG-S [41] 82.0 48.2 41.8 32.4 15.8 53.6 47.0

Ours Scratch 73.0 45.1 41.6 26.2 12.2 44.4 43.0

Shuffle&Learn [31] 60.4 33.2 28.9 16.8 7.1 33.8 30.0

Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2

Chu et al. [51] 98.4 95.0 92.8 88.5 81.2 95.7 90.9

Table 2. PCP measure for each method on Leeds Sports dataset for

zero-shot pose estimation.

our sequence matching approach encode finer relationships

between samples. Finally, it is notable that even though our

pose representation is transferred from a different dataset

without fine-tuning on LSP, it obtains state-of-the-art per-

formance in the realm of unsupervised methods.

3.3. Selfsupervision as Pretraining for HPE

In addition to the zero-shot learning experiment we also

evaluate our approach on the challenging MPII Pose dataset

[1] which is a state of the art benchmark for evaluation of

articulated human pose estimation. The dataset includes

around 25K images containing over 40K people with an-

notated body joints. MPII Pose is a particularly challenging

dataset because of the clutter, occlusion and number of per-

sons appearing in images. We are interested in evaluating

how far our self-supervised approach can still boost a para-

metric approach that is trained with extensive supervision.

Thus, we report the performance obtained by DeepPose

[44], when trained using as initialization each of the fol-

lowing models: Random initialization, Shuffle&Learn [31],

Imagenet and our approach trained on OS (scratch and Ima-

genet pretraining). For this experiment the Alexnet [25] ar-

chitecture is used like in [44]. Following the standard evalu-

ation metric on MPII dataset, Tab. 3 shows the PCKh@0.5
obtained by training DeepPose (stg-1) using their best re-

ported parameters with the different initializations.

The performance obtained on MPII Pose benchmark

shows that our unsupervised feature representation success-

fully scales to challenging datasets, successfully dealing

with clutter, occlusions and multiple persons. In particu-

lar, when comparing our unsupervised initialization with a

random initialization we obtain a 5.1% performance boost,

which indicates that our features encode a robust notion of

pose that is robust to the clutter present in MPII dataset.

Furthermore, we obtain a 1.2% improvement over the Shuf-

fle&Learn [31] approach.

3.4. Visualizing the Activity Representation

Whereas previous experiments have evaluated our repre-

sentation on the level of individual poses, we now analyze

the ability of φ(I; θ) to also capture transitions between

successive postures. Our model is trained using tempo-

rally aligned correspondences across sequences, thus repre-

senting not only relationships between different sequences
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Figure 5. Visualizing the learned posture representation φ and

the progression of an activity (indicated by color). All frames of

all vault sequences are shown (a) Our representation successfully

learns the inherent structure of an action, e.g. repetitive gait and

spinning cycles (blue, orange loops). Also, on a coarser temporal

scale, repeated postures are brought near (outstretched arms be-

fore/after jump; cyan and red). Vector quantization of φ yields

mutually dissimilar, characteristic poses shown in frames. (b)

Representation obtained using [31]. As this model discards cross-

sequence interactions, it misses the regularity of related postures

across time and sequences.

but also encoding temporal transitions of pose within a se-

quence. Therefore, φ captures all the regularity of posture.

It maps similar postures of different persons and repetitions

of the same posture in a sequence, e.g., repeated gait cy-

cles, to the same spot in feature space. Moreover, suc-

cessive poses are also mapped to similar representations,

so an activity has a smooth trajectory over φ. To visu-

ally demonstrate the ability of φ(I; θ) to capture the fine-

grained pose interactions over time and between sequences

Ours

scratch

S&L

[31]

Rand.

Init.

Imagenet Ours + Im-

agenet

Head 80.6 75.8 79.5 87.2 90.2

Neck 88.4 86.3 87.1 93.2 93.8

LR Shoulder 74.8 75.0 71.6 85.2 86.3

LR Elbow. 56.9 59.2 52.1 69.6 70.4

LR Wrist 41.6 42.2 34.6 52.0 58.6

LR Hip 73.3 73.3 64.1 81.3 82.4

LR Knee 63.6 63.1 58.3 69.7 73.2

LR Ankle 56.9 51.7 51.2 62.0 67.4

Thorax 88.6 87.1 85.5 93.4 93.7

Pelvis 79.9 79.5 70.1 86.6 88.4

Total 70.5 69.3 65.4 78.0 80.4

Table 3. PCKh@0.5 measure on MPII Pose benchmark dataset

using different initializations for the DeepPose approach [44].

we project the high dimensional representation φ to a 2D

plot using the t-SNE procedure [30]. Fig. 5(a) shows a

mapping of all instances of vault activity. Successive pos-

tures within each video are connected by straight lines and

color encodes the time within the sequence. The learned

representation captures the repetitive structure of running

and spinning (blue and orange loops) and the characteris-

tic transitions between. Additionally, the regularity of φ al-

lows to group repetitive postures and to provide a condensed

overview of an activity. Therefore, we employ standard ag-

glomerative clustering [15] to extract prominent mutually

dissimilar posture that span an activity. We show the rep-

resentative of each cluster on its corresponding location in

Fig. 5(a). Moreover, we compare our representation with

the state-of-the-art approach of Misra et al. [31] which in-

troduces a temporal verification problem and learns to find

the correct temporal order of triplets of postures within a

sequence, Fig. 5(b). This shows that modeling only posture

interactions within a sequence [31] and excluding cross-

sequences correspondences as proposed in Sect. 2 fails to

capture the temporal evolution of an activity and degrades

temporal structure.

3.5. Inferring Temporal SuperResolution

The previous section has demonstrated that our repre-

sentation φ(I; θ) successfully encodes posture and provides

a basis for modeling the characteristic progression of an

activity on the finest accessible level—individual frames.

To further demonstrate the fine granularity at which activ-

ity is captured, we now unfold transitions between postures

in consecutive frames, that is, we obtain super-resolution

between two consecutive frames. Whereas [39] aggregates

frames from within the same sequence, we bring all the dif-

ferent sequences with all their variability together. Since

our representation maps related poses close to another, we

can employ a local linear interpolation between successive

postures to infer intermediate frames. Then the Genera-

tive Adversarial Network (GAN) of [10] is used to invert

the feature back to an image. We use the implementation

Figure 6. Inferring intermediate frames between consecutive pos-

tures. For each transition we interpolate representations φ at regu-

lar intervals in between and invert interpolated features with [10].
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of [10] for both the generator and discriminator networks,

where our learned activity representation φ(I; θ) acts as

the encoder network. To jointly train the three networks

we use the DeePSiM-loss [10] considering adversarial and

euclidean terms on both the image and feature domain.

This inversion of our representation φ(I; θ) creates images

for the synthesized intermediate frames, allowing us to go

past the limited temporal scale of given video sequences.

Fig. 6 shows temporal super-resolution results for two dif-

ferent activities. The continous progression of activity is

preserved due to the continuity of our pose representation

φ(I; θ). It has finer temporal granularity than an individ-

ual video, since it interleaves a large number of related se-

quences, providing a truly continuous activity representa-

tion.

3.6. Activity Understanding using LSTMs

So far we have provided a comprehensive analysis of our

activity representation, demonstrating its ability to under-

stand actions on the fine-grained scale of single postures

and beyond. Now, we evaluate the capability of our method

to understand activity at the sequence level. Therefore, we

train a recurrent network on top of the posture representa-

tion φ to yield a sequence-level encoding φ′, as discussed in

Sect. 2.4. We employ an LSTM, trained on sub-sequences

Ct,l of length l = 4, sampled densely from all video se-

quences to predict the next succeeding frame It+1. During

training, we sample mini-batches to cover the overall diver-

sity of activity, so that all constituent postures are equally

represented for learning the LSTM. Fig. 4 shows exemplary

predictions from different activities.

Let us quantify the quality of predicted next frames.

Given the true successor frame It+1, we identify its nearest

neighbor in all the videos. We then compute the distance be-

tween these two frames and average it over all videos. The

same is then done for the second, third, etc. nearest neigh-

bor. Similarly, we compute the distance of our prediction

and the true It+1 and also average it. Fig. 7 (b) compares

(a) (b)
Figure 7. (a) Setup of quantitative evaluation. Blue is the actual

next frame, red the prediction, purple the nearest neighbours. (b)

LSTM evaluation: Comparing our average prediction error (red)

against the average distance of It+1 to each of its 10 nearest neigh-

bours (blue). The error bars indicate the standard deviation of the

measurements.

Figure 8. Synthesizing an activity by recursively predicting the

next posture. Green: initial image . Every 5th frame is shown.

the resulting error of our prediction against that of the k

nearearest neighbor from the dataset. Our prediction is bet-

ter than actually observing the next frame and picking its

second nearest neighbor. Despite the large variability of an

activity this shows that the temporal progression of an ac-

tivity has been well captured to yield favorable predictions

of a successive frame.

3.7. Video Understanding by Action synthesis

We have just seen predictions of the next frame It+1 of

a sequence. By recursively adding this predicted frame and

then predicting a next successive frame we can iteratively

synthesize an overall activity frame by frame. For visual-

ization of the predicted next posture, we choose the nearest

neighbor from the training set. Fig. 8 summarizes the syn-

thesis of a snatch activity initialized at the green posture.

One can see that our model successfully infers the temporal

ordering of the activity from its beginning until the end.

4. Conclusions

In this paper we have presented an unsupervised ap-

proach for understanding activity by means of its most

fine-grained temporal constituents, individual human

postures. A combinatorial sequence matching algorithm

proposes relations between frames from subsets of the

training set, which a CNN uses to learn a single concerted

pose embedding that reconciles transitivity conflicts. With-

out any manual annotation, the model learns a structured

representation of postures and their temporal development.

The model not only enables retrieval of similar postures

but also temporal super-resolution. Additionally, based on

a recurrent formulation, future frames and activities can be

synthesized.
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