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Abstract

In this work we show how sublabel-accurate multilabel-

ing approaches [15, 18] can be derived by approximating a

classical label-continuous convex relaxation of nonconvex

free-discontinuity problems. This insight allows to extend

these sublabel-accurate approaches from total variation to

general convex and nonconvex regularizations. Further-

more, it leads to a systematic approach to the discretization

of continuous convex relaxations. We study the relation-

ship to existing discretizations and to discrete-continuous

MRFs. Finally, we apply the proposed approach to obtain

a sublabel-accurate and convex solution to the vectorial

Mumford-Shah functional and show in several experiments

that it leads to more precise solutions using fewer labels.

1. Introduction

1.1. A class of continuous optimization problems

Many tasks particularly in low-level computer vision

can be formulated as optimization problems over mappings

u : Ω → Γ between sets Ω and Γ. The energy functional

is usually designed in such a way that the minimizing ar-

gument corresponds to a mapping with the desired solu-

tion properties. In classical discrete Markov random field

(MRF) approaches, which we refer to as fully discrete opti-

mization, Ω is typically a set of nodes (e.g., pixels or super-

pixels) and Γ a set of labels {1, . . . , ℓ}.

However, in many problems such as image denoising,

stereo matching or optical flow where Γ ⊂ R
d is naturally

modeled as a continuum, this discretization into labels can

entail unreasonably high demands in memory when using a

fine sampling, or it leads to a strong label bias when using

a coarser sampling, see Figure 1. Furthermore, as jump dis-

continuities are ubiquitous in low-level vision (e.g., caused

by object edges, occlusion boundaries, changes in albedo,

shadows, etc.), it is important to model them in a meaning-

ful manner. By restricting either Ω or Γ to a discrete set,

one loses the ability to mathematically distinguish between

continuous and discontinuous mappings.

(a) (b)

Figure 1: The classical way to discretize continuous convex

relaxations such as the vectorial Mumford-Shah functional

[26] leads to solutions (b), top-left) with a strong bias to-

wards the chosen labels (here an equidistant 5× 5× 5 sam-

pling of the RGB space). This can be seen in the bottom

left part of the image, where the green color is truncated

to the nearest label which is gray. The proposed sublabel-

accurate approximation of the continuous relaxation leads

to bias-free solutions (b), bottom-right).

Motivated by these two points we consider fully-

continuous optimization approaches, where the idea is to

postpone the discretization of Ω ⊂ R
n and Γ ⊂ R as long

as possible. The prototypical class of continuous optimiza-

tion problems which we consider in this work are noncon-

vex free-discontinuity problems, inspired by the celebrated

Mumford-Shah functional [4, 19]:

E(u) =

∫

Ω\Ju

f (x, u(x),∇u(x)) dx

+

∫

Ju

d
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x).

(1)

The first integral is defined on the region Ω \ Ju where u
is continuous. The integrand f : Ω × Γ × R

n → [0,∞]
can be thought of as a combined data term and regularizer,

where the regularizer can penalize variations in terms of the

(weak) gradient ∇u. The second integral is defined on the

(n− 1)-dimensional discontinuity set Ju ⊂ Ω and d : Ω×
Γ × Γ × Sn−1 → [0,∞] penalizes jumps from u− to u+

in unit direction νu. The appropriate function space for (1)

are the special functions of bounded variation. These are

11183



functions of bounded variation (cf. Section 2 for a defintion)

whose distributional derivative Du can be decomposed into

a continuous part and a jump part in the spirit of (1):

Du = ∇u · Ln +
(
u+ − u−

)
νu · Hn−1 ¬

Ju, (2)

where Ln denotes the n-dimensional Lebesgue measure

and Hn−1 ¬
Ju the (n − 1)-dimensional Hausdorff mea-

sure restricted to the jump set Ju. For an introduction to

functions of bounded variation and the study of existence of

minimizers to (1) we refer the interested reader to [2].

Note that due to the possible nonconvexity of f in the

first two variables a surprisingly large class of low-level vi-

sion problems fits the general framework of (1). While (1)

is a difficult nonconvex optimization problem, the state-of-

the-art are convex relaxations [1, 6, 9]. We give an overview

of the idea behind the convex reformulation in Section 3.

Extensions to the vectorial setting, i.e., dim(Γ) > 1,

have been studied by Strekalovskiy et al. in various works

[12, 26, 27] and recently using the theory of currents by

Windheuser and Cremers [29]. The case when Γ is a man-

ifold has been considered by Lellmann et al. [17]. These

advances have allowed for a wide range of difficult vecto-

rial and joint optimization problems to be solved within a

convex framework.

1.2. Related work

The first practical implementation of (1) was proposed

by Pock et al. [20], using a simple finite differencing

scheme in both Ω and Γ which has remained the stan-

dard way to discretize convex relaxations. This leads to a

strong label bias (see Figure 1b), top-left) despite the ini-

tially label-continuous formulation.

In the MRF community, a related approach to overcome

this label-bias are discrete-continuous models (discrete Ω
and continuous Γ), pioneered by Zach et al. [30, 31]. Most

similar to the present work is the approach of Fix and Agar-

wal [11]. They derive the discrete-continuous approaches

as a discretization of an infinite dimensional dual linear

program. Their approach differs from ours, as we start

from a different (nonlinear) infinite-dimensional optimiza-

tion problem and consider a representation of the dual vari-

ables which enforces continuity. The recent work of Bach

[3] extends the concept of submodularity from discrete to

continuous Γ along with complexity estimates.

There are also continuous-discrete models, i.e. the range

Γ is discretized into labels but Ω is kept continuous [10, 16].

Recently, these spatially continuous multilabeling models

have been extended to allow for so-called sublabel accu-

rate solutions [15, 18], i.e., solutions which lie between two

labels. These are, however, limited to total variation regu-

larization, due to the separate convexification of data term

and regularizer. We show in this work that for general reg-

ularizers a joint convex relaxation is crucial.

Finally, while not focus of this work, there are of course

also fully-discrete approaches, among many [14, 25, 28],

which inspired some of the continuous formulations.

1.3. Contribution

In this work, we propose an approximation strategy

for fully-continuous relaxations which retains continuous Γ
even after discretization (see Figure 1b), bottom-right). We

summarize our contributions as:

• We generalize the work [18] from total variation to

general convex and nonconvex regularization.

• We prove (see Prop. 2 and Prop. 4) that different ap-

proximations to a convex relaxation of (1) give rise to

existing relaxations [20] and [18]. We investigate the

relationship to discrete-continuous MRFs in Prop. 5.

• On the example of the vectorial Mumford-Shah func-

tional [26] we show that our framework yields also

sublabel-accurate formulations of extensions to (1).

2. Notation and preliminaries

We denote the Iverson bracket as J·K. Indicator functions

from convex analysis which take on values 0 and ∞ are

denoted by δ{·}. We denote by f∗ the convex conjugate of

f : Rn → R ∪ {∞}. Let Ω ⊂ R
n be a bounded open set.

For a function u ∈ L1(Ω;R) its total variation is defined by

TV (u) = sup

{∫

Ω

uDivϕ dx : ϕ ∈ C1
c (Ω;R

n)

}
. (3)

The space of functions of bounded variation, i.e., for which

TV (u) < ∞ (or equivalently for which the distributional

derivative Du is a finite Radon measure) is denoted by

BV(Ω;R) [2]. We write u ∈ SBV(Ω;R) for functions

u ∈ BV(Ω;R) whose distributional derivative admits the

decomposition (2). For the rest of this work, we will make

the following simplifying assumptions:

• The Lagrangian f in (1) is separable, i.e.,

f(x, t, g) = ρ(x, t) + η(x, g), (4)

for possibly nonconvex ρ : Ω×Γ → R and regularizers

η : Ω× R
n → R which are convex in g.

• The jump regularizer in (1) is isotropic and induced by

a concave function κ : R≥0 → R:

d(x, u−, u+, νu) = κ(|u− − u+|)‖νu‖2, (5)

with κ(a) = 0 ⇔ a = 0.

• The range Γ = [γ1, γℓ] ⊂ R is a compact interval.
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Figure 2: The central idea behind the convex relaxation for

problem (1) is to reformulate the functional in terms of the

complete graph Gu ⊂ Ω × Γ of u : Ω → Γ in the product

space. This procedure is often referred to as “lifting”, as

one lifts the dimensionality of the problem.

3. The convex relaxation

In [1, 6, 9] the authors propose a convex relaxation for

the problem (1). Their basic idea is to reformulate the en-

ergy (1) in terms of the complete graph of u, i.e. lifting

the problem to one dimension higher as illustrated in Fig-

ure 2. The complete graph Gu ⊂ Ω × Γ is defined as the

(measure-theoretic) boundary of the characteristic function

of the subgraph 1u : Ω× R → {0, 1} given by:

1u(x, t) = Jt < u(x)K. (6)

Furthermore we denote the inner unit normal to 1u with

νGu
. It is shown in [1] that for u ∈ SBV(Ω;R) one has

E(u) = F (1u) = sup
ϕ∈K

∫

Gu

〈ϕ, νGu
〉 dHn, (7)

with constraints on the dual variables ϕ ∈ K given by

K =
{
(ϕx, ϕt) ∈ C1

c (Ω× R;Rn × R) :

ϕt(x, t) + ρ(x, t) ≥ η∗(x, ϕx(x, t)), (8)

∥∥
∫ t′

t

ϕx(x, t)dt
∥∥
2
≤ κ(|t− t′|), ∀t, t′, ∀x

}
. (9)

The functional (7) can be interpreted as the maximum flux

of admissible vector fields ϕ ∈ K through the cut given by

the complete graph Gu. The set K can be seen as capacity

constraints on the flux field ϕ. This is reminiscent to con-

structions from the discrete optimization community [14].

The constraints (8) correspond to the first integral in (1) and

the non-local constraints (9) to the jump penalization.

Using the fact that the distributional derivative of the

subgraph indicator function 1u can be written as

D1u = νGu
· Hm ¬

Gu, (10)

one can rewrite the energy (7) as

F (1u) = sup
ϕ∈K

∫

Ω×Γ

〈ϕ,D1u〉. (11)

A convex formulation is then obtained by relaxing the set of

admissible primal variables to a convex set:

C =
{
v ∈ BVloc(Ω× R; [0, 1]) :

v(x, t) = 1 ∀t ≤ γ1, v(x, t) = 0 ∀t > γℓ,

v(x, ·) non-increasing
}
.

(12)

This set can be thought of as the convex hull of the sub-

graph functions 1u. The final optimization problem is then

a convex-concave saddle point problem given by:

inf
v∈C

sup
ϕ∈K

∫

Ω×R

〈ϕ,Dv〉. (13)

In dimension one (n = 1), this convex relaxation is tight

[8, 9]. For n > 1 global optimality can be guaranteed by

means of a thresholding theorem in case κ ≡ ∞ [7, 21].

If the primal solution v̂ ∈ C to (13) is binary, the global

optimum u∗ of (1) can be recovered simply by pointwise

thresholding û(x) = sup{t : v̂(x, t) > 1
2}. If v̂ is not

binary, in the general setting it is not clear how to obtain

the global optimal solution from the relaxed solution. An

a posteriori optimality bound to the global optimum E(u∗)
of (1) for the thresholded solution û can be computed by:

|E(û)− E(u∗)| ≤ |F (1û)− F (v̂)|. (14)

Using that bound, it has been observed that solutions are

usually near globally optimal [26]. In the following sec-

tion, we show how different discretizations of the continu-

ous problem (13) lead to various existing lifting approaches

and to generalizations of the recent sublabel-accurate con-

tinuous multilabeling approach [18].

4. Sublabel-accurate discretization

4.1. Choice of primal and dual mesh

In order to discretize the relaxation (13), we partition the

range Γ = [γ1, γℓ] into k = ℓ − 1 intervals. The individual

intervals Γi = [γi, γi+1] form a one dimensional simplicial

complex (see e.g., [13]), and we have Γ = Γ1∪. . .∪Γk. The

points γi ∈ Γ are also referred to as labels. We assume that

the labels are equidistantly spaced with label distance h =
γi+1 − γi. The theory generalizes also to non-uniformly

spaced labels, as long as the spacing is homogeneous in Ω.

Furthermore, we define γ0 = γ1 − h and γℓ+1 = γℓ + h.

The mesh for dual variables is given by dual complex,

which is formed by the intervals Γ∗
i = [γ∗

i−1, γ
∗
i ] with nodes

γ∗
i = γi+γi+1

2 . An overview of the notation and the consid-

ered finite dimensional approximations is given in Figure 3.
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Figure 3: Overview of the notation and proposed finite di-

mensional approximation spaces.

4.2. Representation of the primal variable

As 1u is a discontinuous jump function, we consider a

piecewise constant approximation for v ∈ C,

Φ0
i (t) = Jt ∈ ΓiK, 1 ≤ i ≤ k, (15)

see Figure 3a). Due to the boundary conditions in Eq. (12),

we set v outside of Γ to 1 on the left and 0 on the right. Note

that the non-decreasing constraint in C is implicitly realized

as ϕt ∈ K can be arbitrarily large.

For coefficients v̂ : Ω× {1, . . . , k} → R we have

v(x, t) =

k∑

i=1

v̂(x, i)Φ0
i (t). (16)

As an example of this representation, consider the approxi-

mation of 1u at point p shown in Figure 2:

v̂(p, ·) =
k∑

i=1

ei

∫

Γ

Φ0
i (t)1u(p, t)dt

= h ·
[
1 1 0.4 0

]⊤
.

(17)

This leads to the sublabel-accurate representation also con-

sidered in [18]. In that work, the representation from the

above example (17) encodes a convex combination between

the labels γ3 and γ4 with interpolation factor 0.4. Here it

is motivated from a different perspective: we take a finite

dimensional subspace approximation of the infinite dimen-

sional optimization problem (13).

4.3. Representation of the dual variables

4.3.1 Piecewise constant ϕt

The simplest discretization of the dual variable ϕt is to pick

a piecewise constant approximation on the dual intervals Γ∗
i

as shown in Figure 3b): The functions are given by

Ψ0
i (t) = Jt ∈ Γ∗

i K, 1 ≤ i ≤ ℓ, (18)

As ϕ is a vector field in C1
c , the functions Ψ vanish outside

of Γ. For coefficient functions ϕ̂t : Ω × {1, . . . , ℓ} → R

and ϕ̂x : Ω× {1, . . . , k} → R
n we have:

ϕt(t) =

ℓ∑

i=1

ϕ̂t(i)Ψ
0
i (t), ϕx(t) =

k∑

i=1

ϕ̂x(i)Φ
0
i (t). (19)

To avoid notational clutter, we dropped x ∈ Ω in (19) and

will do so also in the following derivations. Note that for

ϕx we chose the same piecewise constant approximation as

for v, as we keep the model continuous in Ω, and ultimately

discretize it using finite differences in x.

Discretization of the constraints In the following, we

will plug in the finite dimensional approximations into the

constraints from the set K. We start by reformulating the

constraints in (8). Taking the infimum over t ∈ Γi they can

be equivalently written as:

inf
t∈Γi

ϕt(t) + ρ(t)− η∗ (ϕx(t)) ≥ 0, 1 ≤ i ≤ ℓ. (20)

Plugging in the approximation (19) into the above leads to

the following constraints for 1 ≤ i ≤ k:

ϕ̂t(i)+ inf
t∈[γi,γ∗

i
]
ρ(t) ≥ η∗(ϕ̂x(i)),

ϕ̂t(i+ 1)+ inf
t∈[γ∗

i
,γi+1]

ρ(t)

︸ ︷︷ ︸
min-pooling

≥ η∗(ϕ̂x(i)). (21)

These constraints can be seen as min-pooling of the contin-

uous unary potentials in a symmetric region centered on the

label γi. To see that more easily, assume one-homogeneous

regularization so that η∗ ≡ 0 on its domain. Then two

consecutive constraints from (21) can be combined into one

where the infimum of ρ is taken over Γ∗
i = [γ∗

i , γ
∗
i+1] cen-

tered the label γi. This leads to capacity constraints for the

flow in vertical direction −ϕ̂t(i) of the form

− ϕ̂t(i) ≤ inf
t∈Γ∗

i

ρ(t), 2 ≤ i ≤ ℓ− 1, (22)

as well as similar constraints on ϕ̂t(1) and ϕ̂t(ℓ). The effect

of this on a nonconvex energy is shown in Figure 4 on the

left. The constraints (21) are convex inequality constraints,
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Figure 4: Left: piecewise constant dual variables ϕt lead to a linear approximation (shown in black) to the original cost

function (shown in red). The unaries are determined through min-pooling of the continuous cost in the Voronoi cells around

the labels. Right: continuous piecewise linear dual variables ϕt convexify the costs on each interval.

which can be implemented using standard proximal opti-

mization methods and orthogonal projections onto the epi-

graph epi(η∗) as described in [21, Section 5.3].

For the second part of the constraint set (9) we insert

again the finite-dimensional representation (19) to arrive at:

∥∥(1− α)ϕ̂x(i) +

j−1∑

l=i+1

ϕ̂x(l) + βϕ̂x(j)
∥∥

≤
κ(γβ

j − γα
i )

h
, ∀ 1 ≤ i ≤ j ≤ k, α, β ∈ [0, 1],

(23)

where γα
i := (1−α)γi +αγi+1. These are infinitely many

constraints, but similar to [18] these can be implemented

with finitely many constraints.

Proposition 1. For concave κ : R+
0 → R with κ(a) = 0 ⇔

a = 0, the constraints (23) are equivalent to

∥∥
j∑

l=i

ϕ̂x(l)
∥∥ ≤

κ(γj+1 − γi)

h
, ∀1 ≤ i ≤ j ≤ k. (24)

Proof. Proofs are given in the supplementary material.

This proposition reveals that only information from the

labels γi enters into the jump regularizer κ. For ℓ = 2 we

expect all regularizers to behave like the total variation.

Discretization of the energy For the discretization of the

saddle point energy (13) we apply the divergence theorem

∫

Ω×R

〈ϕ,Dv〉 =

∫

Ω×R

−Divϕ · v dt dx, (25)

and then discretize the divergence by inserting the piecewise

constant representations of ϕt and v:

∫

R

−∂tϕt(t)v(t) dt =

− ϕ̂t(1)−

k∑

i=1

v̂(i) [ϕ̂t(i+ 1)− ϕ̂t(i)] .

(26)

The discretization of the other parts of the divergence are

given as the following:

∫

R

−∂xj
ϕx(t)v(t) dt = −h

k∑

i=1

∂xj
ϕ̂x(i)v̂(i), (27)

where the spatial derivatives ∂xj
are ultimately discretized

using standard finite differences. It turns out that the above

discretization can be related to the one from [20]:

Proposition 2. For convex one-homogeneous η the dis-

cretization with piecewise constant ϕt and ϕx leads to the

traditional discretization as proposed in [20], except with

min-pooled instead of sampled unaries.

4.3.2 Piecewise linear ϕt

As the dual variables in K are continuous vector fields, a

more faithful approximation is given by a continuous piece-

wise linear approximation, given for 1 ≤ i ≤ ℓ as:

Ψ1
i (t) =





t−γi−1

h , if t ∈ [γi−1, γi],
γi+1−t

h , if t ∈ [γi, γi+1],

0 otherwise.

(28)

They are shown in Figure 3c), and we set:

ϕt(t) =

ℓ∑

i=1

ϕ̂t(i)Ψ
1
i (t). (29)

Note that the piecewise linear dual representation consid-

ered by Fix et al. in [11] differs in this point, as they do not

ensure a continuous representation. Unlike the proposed ap-

proach their approximation does not take a true subspace of

the original infinite dimensional function space.

Discretization of the constraints We start from the refor-

mulation (20) of the original constraints (8). With (29) for

ϕt and (19) for ϕx, we have for 1 ≤ i ≤ k:

inf
t∈Γi

ϕ̂t(i)
γi+1 − t

h
+ ϕ̂t(i+ 1)

t− γi
h

+ ρ(t) ≥ η∗(ϕ̂x(i)).

(30)
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While the constraints (30) seem difficult to implement, they

can be reformulated in a simpler way involving ρ∗.

Proposition 3. The constraints (30) can be equivalently

reformulated by introducing additional variables a ∈ R
k,

b ∈ R
k, where ∀i ∈ {1, . . . , k}:

r(i) = (ϕ̂t(i)− ϕ̂t(i+ 1))/h,

a(i) + b(i)− (ϕ̂t(i)γi+1 − ϕ̂t(x, i+ 1)γi)/h = 0,

r(i) ≥ ρ∗i (a(i)) , ϕ̂x(i) ≥ η∗ (b(i)) ,

(31)

with ρi(x, t) = ρ(x, t) + δ{t ∈ Γi}.

The constraints (31) are implemented by projections

onto the epigraphs of η∗ and ρ∗i , as they can be written as:

(r(i), a(i)) ∈ epi(ρ∗i ), (ϕ̂x(i), b(i)) ∈ epi(η∗). (32)

Epigraphical projections for quadratic and piecewise linear

ρi are described in [18]. In Section 5.1 we describe how

to implement piecewise quadratic ρi. As the convex conju-

gate of ρi enters into the constraints, it becomes clear that

this discretization only sees the convexified unaries on each

interval, see also the right part of Figure 4.

Discretization of the energy It turns out that the piece-

wise linear representation of ϕt leads to the same discrete

bilinear saddle point term as (26). The other term remains

unchanged, as we pick the same representation of ϕx.

Relation to existing approaches In the following we

point out the relationship of the approximation with piece-

wise linear ϕt to the sublabel-accurate multilabeling ap-

proaches [18] and the discrete-continuous MRFs [31].

Proposition 4. The discretization with piecewise linear ϕt

and piecewise constant ϕx, together with the choice η(g) =
‖g‖ and κ(a) = a is equivalent to the relaxation [18].

Thus we extend the relaxation proposed in [18] to more

general regularizations. The relaxation [18] was derived

starting from a discrete label space and involved a separate

relaxation of data term and regularizer. To see this, first note

that the convex conjugate of a convex one-homogeneous

function is the indicator function of a convex set [23, Corol-

lary 13.2.1]. Then the constraints (8) can be written as

−ϕt(x, t) ≤ ρ(x, t), (33)

ϕx(x, t) ∈ dom{η∗}, (34)

where (33) is the data term and (34) the regularizer. This

provides an intuition why the separate convex relaxation of

data term and regularizer in [18] worked well. However,

for general choices of η a joint relaxation of data term and

regularizer as in (30) is crucial. The next proposition estab-

lishes the relationship between the data term from [31] and

the one from [18].

Proposition 5. The data term from [18] (which is in turn a

special case of the discretization with piecewise linear ϕt)

can be (pointwise) brought into the primal form

D(v̂) = inf
xi≥0,

∑
i
xi=1

v̂=y/h+I⊤x

k∑

i=1

xiρ
∗∗
i

(
yi
xi

)
, (35)

where I ∈ R
k×k is a discretized integration operator.

The data term of Zach and Kohli [31] is precisely given

by (35) except that the optimization is directly performed

on x, y ∈ R
k. The variable x can be interpreted as 1-sparse

indicator of the interval Γi and y ∈ R
k as a sublabel offset.

The constraint v̂ = y/h+ I⊤x connects this representation

to the subgraph representation v̂ via the operator I ∈ R
k×k

(see supplementary material for the definition). For general

regularizers η, the discretization with piecewise linear ϕt

differs from [18] as we perform a joint convexification of

data term and regularizer and from [31] as we consider the

spatially continuous setting. Another important question to

ask is which primal formulation is actually optimized af-

ter discretization with piecewise linear ϕt. In particular the

distinction between jump and smooth regularization only

makes sense for continuous label spaces, so it is interesting

to see what is optimized after discretizing the label space.

Proposition 6. Let γ = κ(γ2−γ1) and ℓ = 2. The approx-

imation with piecewise linear ϕt and piecewise constant ϕx

of the continuous optimization problem (13) is equivalent to

inf
u:Ω→Γ

∫

Ω

ρ∗∗(x, u(x))+(η∗∗ � γ‖ ·‖)(∇u(x)) dx, (36)

where (η � γ‖ · ‖)(x) = infy η(x− y) + γ‖y‖ denotes the

infimal convolution (cf. [23, Section 5]).

From Proposition 6 we see that the minimal discretiza-

tion with ℓ = 2 amounts to approximating problem (1) by

globally convexifying the data term. Furthermore, we can

see that Mumford-Shah (truncated quadratic) regularization

(η(g) = α‖g‖2, κ(a) ≡ λJa > 0K) is approximated by a

convex Huber regularizer in case ℓ = 2. This is because the

infimal convolution between x2 and |x| corresponds to the

Huber function. While even for ℓ = 2 this is a reasonable

approximation to the original model (1), we can gradually

increase the number of labels to get an increasingly faithful

approximation of the original nonconvex problem.

4.3.3 Piecewise quadratic ϕt

For piecewise quadratic ϕt the main difficulty are the con-

straints in (20). For piecewise linear ϕt the infimum over

a linear function plus ρi lead to (minus) the convex conju-

gate of ρi. Quadratic dual variables lead to so called gen-

eralized Φ-conjugates [24, Chapter 11L*, Example 11.66].
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EQ = 2002.9
[21], ℓ = 2

EQ = 15708.3
[21], ℓ = 3

EQ = 5103.8
[21], ℓ = 5

EQ = 2415.9

[21], ℓ = 16
EQ = 2016.5

Proposed, ℓ = 2
EQ = 2002.9

Proposed, ℓ = 3
EQ = 2002.9

Proposed, ℓ = 5
EQ = 2002.9

Figure 5: To verify the tightness of the approximation,

we optimize a convex problem (quadratic data term with

quadratic regularization). The discretization with piecewise

linear ϕt recovers the exact solution with 2 labels and re-

mains tight (numerically) for all ℓ > 2, while the traditional

discretization from [21] leads to a strong label bias.

Such conjugates were also theoretically considered in the

recent work [11] for discrete-continuous MRFs, however an

efficient implementation seems challenging. The advantage

of this representation would be that one can avoid convexi-

fication of the unaries on each interval Γi and thus obtain a

tighter approximation. While in principle the resulting con-

straints could be implemented using techniques from con-

vex algebraic geometry and semi-definite programming [5]

we leave this direction open to future work.

5. Implementation and extensions

5.1. Piecewise quadratic unaries ρi

In some applications such as robust fusion of depth

maps, the data term ρ has a piecewise quadratic form:

ρ(u) =
M∑

m=1

min
{
νm, αm (u− fm)

2
}
. (37)

The intervals on which the above function is a quadratic

are formed by the breakpoints fm ±
√
νm/αm. In order

to optimize this within our framework, we need to compute

the convex conjugate of ρ on the intervals Γi, see Eq. (31).

We can write the data term (37) on each Γi as

min
1≤j≤ni

ai,ju
2 + bi,ju+ ci,j + δ{u ∈ Ii,j}︸ ︷︷ ︸

=:ρi,j(u)

, (38)

where ni denotes the number of pieces and the intervals Ii,j
are given by the breakpoints and Γi. The convex conjugate

is then given by ρ∗i (v) = max1≤j≤ni
ρ∗i,j(v). As the epi-

graph of the maximum is the intersection of the epigraphs,

epi(ρ∗i ) =
⋂nj

j=1 epi
(
ρ∗i,j

)
, the constraints for the data term

(ri, ai) ∈ epi(ρ∗i ), can be broken down:

(ri,j , ai,j) ∈ epi
(
ρ∗i,j

)
, ri = ri,j , ai = ai,j , ∀j. (39)

The projection onto the epigraphs of the ρ∗i,j are carried out

as described in [18]. Such a convexified piecewise quadratic

function is shown on the right in Figure 4.

5.2. The vectorial MumfordShah functional

Recently, the free-discontinuity problem (1) has been

generalized to vectorial functions u : Ω → R
nc by

Strekalovskiy et al. [26]. The model they propose is

nc∑

c=1

∫

Ω\Ju

fc(x, uc(x),∇xuc(x)) dx+λHn−1(Ju), (40)

which consists of a separable data term and separable reg-

ularization on the continuous part. The individual channels

are coupled through the jump part regularizer Hn−1(Ju)
of the joint jump set across all channels. Using the same

strategy as in Section 4, applied to the relaxation described

in [26, Section 3], a sublabel-accurate representation of the

vectorial Mumford-Shah functional can be obtained.

5.3. Numerical solution

We solve the final finite dimensional optimization prob-

lem after finite-difference discretization in spatial direction

using the primal-dual algorithm [20] implemented in the

convex optimization framework prost 1.

6. Experiments

6.1. Exactness in the convex case

We validate our discretization in Figure 5 on the con-

vex problem ρ(u) = (u − f)2, η(∇u) = λ|∇u|2. The

global minimizer of the problem is obtained by solving

(I − λ∆)u = f . For piecewise linear ϕt we recover the

exact solution using only 2 labels, and remain (experimen-

tally) exact as we increase the number of labels. The dis-

cretization from [21] shows a strong label bias due to the

piecewise constant dual variable ϕt. Even with 16 labels

their solution is different from the ground truth energy.

6.2. The vectorial MumfordShah functional

Joint depth fusion and segmentation We consider the

problem of joint image segmentation and robust depth fu-

sion from [22] using the vectorial Mumford-Shah functional

from Section 5.2. The data term for the depth channel is

given by (37), where fm are the input depth hypotheses,

αm is a depth confidence and νm is a truncation parameter

to be robust towards outliers. For the segmentation, we use

1https://github.com/tum-vision/prost
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(a) Left input image (b) Proposed, (Segmentation) (c) Proposed, (Depth map) (d) [26], (Segmentation) (e) [26], (Depth map)

Figure 6: Joint segmentation and stereo matching. b), c) Using the proposed discretization we can arrive at smooth solutions

using a moderate (5 × 5 × 5 × 5) discretization of the 4-dimensional RGB-D label space. d), e) When using such a coarse

sampling of the label space, the classical discretization used in [26] leads to a strong label bias. Note that with the proposed

approach, a piecewise constant segmentation as in d) could also be obtained by increasing the smoothness parameter.

Noisy Input,

(PSNR=10.4)

[26], ℓ = 2 × 2 × 2
(PSNR=14.7)

[26], ℓ = 4 × 4 × 4
(PSNR=25.0)

[26], ℓ = 6 × 6 × 6
(PSNR=29.3)

Ours, ℓ = 2 × 2 × 2,

(PSNR=24.8)

Ours, ℓ = 4 × 4 × 4,

(PSNR=28.0)

Ours, ℓ = 6 × 6 × 6,

(PSNR=30.0)

Figure 7: Denoising of a synthetic piecewise smooth image degraded with 30% Gaussian noise. The standard discretization of

the vectorial Mumford-Shah functional shows a strong bias towards the chosen labels (see also Figure 8), while the proposed

discretization has no bias and leads to the highest overall peak signal to noise ratio (PSNR).

Figure 8: We show a 1D-slice through the resulting image in

Figure 7 (with ℓ = 4× 4× 4). The discretization [26] (left)

shows a strong bias towards the labels, while the proposed

discretization (right) yields a sublabel-accurate solution.

a quadratic difference dataterm in RGB space. For Figure 6

we computed multiple depth hypotheses fm on a stereo pair

using different matching costs (sum of absolute (gradient)

differences, and normalized cross correlation) with varying

patch radii (0 to 2). Even for a moderate label space of

5× 5× 5× 5 we have no label discretization artifacts.

The piecewise linear approximation of the unaries in [26]

leads to an almost piecewise constant segmentation of the

image. To highlight the sublabel-accuracy of the proposed

approach we chose a small smoothness parameter which

leads to a piecewise smooth segmentation, but with a higher

smoothness term or different choice of unaries a piecewise

constant segmentation could also be obtained.

Piecewise-smooth approximations In Figure 7 we com-

pare the discretizations for the vectorial Mumford-Shah

functional. We see that the approach [26] shows strong label

bias (see also Figure 8 and 1) while the discretiziation with

piecewise linear duals leads to a sublabel-accurate result.

7. Conclusion

We proposed a framework to numerically solve fully-

continuous convex relaxations in a sublabel-accurate fash-

ion. The key idea is to implement the dual variables us-

ing a piecewise linear approximation. We prove that dif-

ferent choices of approximations for the dual variables give

rise to various existing relaxations: in particular piecewise

constant duals lead to the traditional lifting [20] (with min-

pooling of the unary costs), whereas piecewise linear duals

lead to the sublabel lifting that was recently proposed for

total variation regularized problems [18]. While the lat-

ter method is not easily generalized to other regularizers

due to the separate convexification of data term and regu-

larizer, the proposed representation generalizes to arbitrary

convex and non-convex regularizers such as the scalar and

the vectorial Mumford-Shah problem. The proposed ap-

proach provides a systematic technique to derive sublabel-

accurate discretizations for continuous convex relaxation

approaches, thereby boosting their memory and runtime ef-

ficiency for challenging large-scale applications.
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[16] J. Lellmann and C. Schnörr. Continuous multiclass label-

ing approaches and algorithms. SIAM J. Imaging Sciences,

4(4):1049–1096, 2011. 2

[17] J. Lellmann, E. Strekalovskiy, S. Koetter, and D. Cremers.

Total variation regularization for functions with values in a

manifold. In Proceedings of the IEEE International Confer-

ence on Computer Vision, ICCV, 2013. 2
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