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Abstract

This work provides a unified framework for addressing

the problem of visual supervised domain adaptation and

generalization with deep models. The main idea is to exploit

the Siamese architecture to learn an embedding subspace

that is discriminative, and where mapped visual domains

are semantically aligned and yet maximally separated. The

supervised setting becomes attractive especially when only

few target data samples need to be labeled. In this scenario,

alignment and separation of semantic probability distribu-

tions is difficult because of the lack of data. We found that by

reverting to point-wise surrogates of distribution distances

and similarities provides an effective solution. In addition,

the approach has a high “speed” of adaptation, which re-

quires an extremely low number of labeled target training

samples, even one per category can be effective. The ap-

proach is extended to domain generalization. For both ap-

plications the experiments show very promising results.

1. Introduction

Many computer vision applications require enough la-

beled data (target data) for training visual classifiers to ad-

dress a specific task at hand. Whenever target data is either

not available, or it is expensive to collect and/or label it, the

typical approach is to use available datasets (source data),

representative of a closely related task. Since this practice

is known for leading to suboptimal performance, techniques

such as domain adaptation [6] and/or domain generaliza-

tion [5] have been developed to address the issue. Domain

adaptation methods require target data, whereas domain

generalization methods do not. Domain adaptation can be

either supervised [60, 33], unsupervised [38, 38, 61], or

semi-supervised [26, 29, 67]. Unsupervised domain adap-

tation (UDA) is attractive because it does not require target

data to be labeled. Conversely, supervised domain adapta-

tion (SDA) requires labeled target data.

UDA expects large amounts of target data in order to

be effective, and this is emphasized even more when using

deep models. Moreover, given the same amount of target

data, SDA typically outperforms UDA, as we will later ex-

plain. Therefore, especially when target data is scarce, it is

more attractive to use SDA, also because limited amounts

of target data are likely to not be very expensive to label.

In the absence of target data, domain generalization

(DG) exploits several cheaply available datasets (sources),

representing different specific but closely related tasks. It

then attempts to learn by combining data sources in a way

that produces visual classifiers that are less sensitive to the

specific target data that will need to be processed.

In this work, we introduce a supervised approach for vi-

sual recognition that can be used for both SDA and DG.

The SDA approach requires very few labeled target sam-

ples per category in training. Indeed, even one sample can

significantly increase performance, and a few others bring

it closer to a peak, showing a remarkable “speed” of adap-

tation. Moreover, the approach is also robust to adapt-

ing to categories that have no target labeled samples. Al-

though domain adaptation and generalization are closely

related, adaptation techniques are not directly applied to

DG, and viceversa. However, we show that by making sim-

ple changes to our proposed training loss function, and by

maintaining the same architecture, our SDA approach very

effectively extends to DG.

Using basic principles, we analyze how visual classifi-

cation is extended to handle UDA by aligning a source do-

main distribution to a target domain distribution to make

the classifier domain invariant. This leads to observing that

SDA approaches improve upon UDA by making the align-

ment semantic, because they can ensure the alignment of se-

mantically equivalent distributions from different domains.

However, we go one step ahead by suggesting that semantic

distribution separation should further increase performance,

and this leads to the introduction of a classification and con-

trastive semantic alignment (CCSA) loss.

We deal with the limited size of target domain samples

by observing that the CCSA loss relies on computing dis-

tances and similarities between distributions (as typically

done in adaptation and generalization approaches). Those

are difficult to represent with limited data. Thus, we revert
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Figure 1. Deep supervised domain adaptation. In training, the semantic alignment loss minimizes the distance between samples from

different domains but the same class label and the separation loss maximizes the distance between samples from different domains and

class labels. At the same time, the classification loss guarantees high classification accuracy.

to point-wise surrogates. The resulting approach turns out

to be very effective as shown in the experimental section.

2. Related work

Domain adaptation. Visual recognition algorithms are

trained with data from a source domain, and when they are

tested on a target domain with marginal distribution that dif-

fers from the one of the sources, we experience the visual

domain adaptation (DA) problem (also known as dataset

bias [48, 59, 58], or covariate shift [54]), and observe a per-

formance decrease.

Traditional DA methods attempt to directly minimize

the shift between source and target distributions. We di-

vide them in three categories. The first one includes those

that try to find a mapping between source and target dis-

tributions [53, 34, 27, 26, 19, 57]. The second one seeks

to find a shared latent space for source and target distribu-

tions [40, 2, 44, 21, 22, 47, 43]. The third one regularizes

a classifier trained on a source distribution to work well on

a target distribution [4, 1, 66, 15, 3, 12]. UDA approaches

fall in the first and second categories, while SDA methods

could fall either in the second or third category or some-

times both. Recently, [7, 42] have addressed UDA when

an auxiliary data view [36, 43], is available during training,

which is beyond the scope of this work.

Here, we are interested in finding a shared subspace for

source and target distributions. Among algorithms for sub-

space learning, Siamese networks [11] work well for differ-

ent tasks [14, 55, 35, 63, 9]. Recently, Siamese networks

have been used for domain adaptation. In [60], which is

an SDA approach, unlabeled and sparsely labeled target do-

main data are used to optimize for domain invariance to fa-

cilitate domain transfer while using a soft label distribution

matching loss. In [56], which is a UDA approach, unlabeled

target data are used to learn a nonlinear transformation that

aligns correlations of layer activations in deep neural net-

works. Some approaches went beyond the Siamase weight-

sharing and used couple networks for DA. [33] uses two

CNN streams, for source and target, fused at the classifier

level. [50] uses a two-streams architecture, for source and

target, with related but not shared weights. Here we use

a Siamese network to learn an embedding such that sam-

ples from the same class are mapped as close as possible to

each other. This semantic alignment objective is similar to

other deep approaches, but unlike them, we explicitly model

and introduce cross-domain class separation forces. More-

over, we do so with very few training samples, which makes

the problem of characterizing distributions challenging, and

this is why we propose to use point-wise surrogates.

Domain generalization. Domain generalization (DG) is a

less investigated problem and is addressed in two ways. In

the first one, all information from the training domains or

datasets is aggregated to learn a shared invariant represen-

tation. Specifically, [5] pulls all of the training data together

in one dataset, and learns a single SVM classifier. [44]

learns an invariant transformation by minimizing the dis-

similarity across domains. [23], which can be used for SDA

too, finds a representation that minimizes the mismatch be-

tween domains and maximizes the separability of data. [24]

learns features that are robust to variations across domains.

The second approach to DG is to exploit all information

from the training domains to train a classifier or regulate its

weights [32, 17, 65, 45, 46]. Specifically, [32] adjusts the

weights of the classifier to work well on an unseen dataset,

and [65] fuses the score of exemplar classifiers given any

test sample. While most works use the shallow models, here

we approach DG as in the first way, and extend the proposed

SDA approach by training a deep Siamese network to find

a shared invariant representation where semantic alignment

as well as separation are explicitly accounted for. To the

best of our knowledge, [24] is the only DG approach using

deep models, and our method is the first deep method that

solves both adaptation and generalization.
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Figure 2. Deep domain generalization. In training, the semantic alignment loss minimizes the distance between samples from different

domains but the same class label and the separation loss maximizes the distance between samples from different domains and class labels.

At the same time, the classification loss guarantees high classification accuracy. In testing, the embedding function embeds samples from

unseen distributions to the domain invariant space and the prediction function classifies them (right). In this figure, different colors represent

different domain distributions and different shapes represent different classes.

3. Supervised DA with Scarce Target Data

In this section we describe the model we propose to ad-

dress supervised domain adaptation (SDA), and in the fol-

lowing Section 4 we extend it to address the domain gen-

eralization problem. We are given a training dataset made

of pairs Ds = {(xs
i , y

s
i )}

N
i=1

. The feature xs
i ∈ X is a re-

alization from a random variable Xs, and the label ysi ∈ Y
is a realization from a random variable Y . In addition, we

are also given the training data Dt = {(xt
i, y

t
i)}

M
i=1

, where

xt
i ∈ X is a realization from a random variable Xt, and the

labels yti ∈ Y . We assume that there is a covariate shift [54]

between Xs and Xt, i.e., there is a difference between the

probability distributions p(Xs) and p(Xt). We say that Xs

represents the source domain and that Xt represents the tar-

get domain. Under this settings the goal is to learn a predic-

tion function f : X → Y that during testing is going to

perform well on data from the target domain.

The problem formulated thus far is typically referred to

as supervised domain adaptation. In this work we are es-

pecially concerned with the version of this problem where

only very few target labeled samples per class are available.

We aim at handling cases where there is only one target la-

beled sample, and there can even be some classes with no

target samples at all.

3.1. Deep SDA

In the absence of covariate shift a visual classifier f is

trained by minimizing a classification loss

LC(f) = E[ℓ(f(Xs), Y )] , (1)

where E[·] denotes statistical expectation and ℓ could be any

appropriate loss function (for example categorical cross-

entropy for multi-class classification). When the distribu-

tions of Xs and Xt are different, a deep model fs trained

with Ds will have reduced performance on the target do-

main. Increasing it would be trivial by simply training a

new model ft with data Dt. However, Dt is small and deep

models require large amounts of labeled data.

In general, f could be modeled by the composition of

two functions, i.e., f = h ◦ g. Here g : X → Z would

be an embedding from the input space X to a feature or

embedding space Z , and h : Z → Y would be a function

for predicting from the feature space. With this notation we

would have fs = hs ◦ gs and ft = ht ◦ gt, and the SDA

problem would be about finding the best approximation for

gt and ht, given the constraints on the available data.

The unsupervised DA paradigm (UDA) assumes that Dt

does not have labels. In that case the typical approach as-

sumes that gt = gs = g, and f minimizes (1), while g also

minimizes

LCA(g) = d(p(g(Xs)), p(g(Xt))) . (2)

The purpose of (2) is to align the distributions of the fea-

tures in the embedding space, mapped from the source and

the target domains. d is meant to be a metric between dis-

tributions that once aligned, they will no longer allow to tell

whether a feature is coming from the source or the target

domain. For that reason, we refer to (2) as the confusion

alignment loss. A popular choice for d is the Maximum

Mean Discrepancy [28]. In the embedding space Z , fea-

tures are assumed to be domain invariant. Therefore, UDA

methods say that from the feature to the label space it is safe

to assume that ht = hs = h.

Since we are interested in visual recognition, the embed-

ding function g would be modeled by a convolutional neural

network (CNN) with some initial convolutional layers, fol-

lowed by some fully connected layers. In addition, the train-

ing architecture would have two streams, one for source and

the other for target samples. Since gs = gt = g, the CNN

parameters would be shared as in a Siamese architecture. In

addition, the source stream would continue with additional

fully connected layers for modeling h. See Figure 1.

From the above discussion it is clear that in order to per-

form well, UDA needs to align effectively. This can hap-

pen only if distributions are represented by a sufficiently

large dataset. Therefore, UDA approaches are in a posi-

tion of weakness because we assume Dt to be small. More-
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Figure 3. Visualization of the MNIST-USPS datasets. Left: 2D visualization of the row images of the MNIST-USPS datasets. The

samples from the same class and different domains lie far from each other on the 2D subspace. Middle: 2D visualization of the embedded

images using our base model (without domain adaptation). The samples from the same class and different domains still lie far from each

other on the 2D subspace. Right: 2D visualization of the embedded images using our SDA model. The samples from the same class and

different domains lie very close to each other on the 2D subspace.

over, UDA approaches have also another intrinsic limita-

tion, which is that even with perfect confusion alignment,

there is no guarantee that samples from different domains

but the same class label, would map nearby in the embed-

ding space. This lack of semantic alignment is a major

source of performance reduction.

SDA approaches easily address the semantic alignment

problem by replacing (2) with

LSA(g) =

C∑

a=1

d(p(g(Xs
a)), p(g(X

t
a))) , (3)

where C is the number of class labels, and Xs
a = Xs|{Y =

a} and Xt
a = Xt|{Y = a} are conditional random vari-

ables. d instead is a suitable distance mesure between the

distributions of Xs
a and Xt

a in the embedding space. We

refer to (3) as the semantic alignment loss, which clearly

encourages samples from different domains but the same

label, to map nearby in the embedding space.

While the analysis above clearly indicates why SDA pro-

vides superior performance than UDA, it also suggests that

deep SDA approaches have not considered that greater per-

formance could be achieved by encouraging class separa-

tion, meaning that samples from different domains and with

different labels, should be mapped as far apart as possible in

the embedding space. This idea means that, in principle, a

semantic alignment less prone to errors should be achieved

by adding to (3) the following term

LS(g) =
∑

a,b|a 6=b

k(p(g(Xs
a)), p(g(X

t
b))) , (4)

where k is a suitable similarity mesure between the distri-

butions of Xs
a and Xt

b in the embedding space, which adds

a penalty when the distributions p(g(Xs
a)) and p(g(Xt

b))
come close, since they would lead to lower classification

accuracy. We refer to (4) as the separation loss.

Finally, we suggest that SDA could be approached by

learning a deep model f = h ◦ g such that

LCCSA(f) = LC(h ◦ g) + LSA(g) + LS(g) . (5)

We refer to (5) as the classification and contrastive semantic

alignment loss. This would allow to set gs = gt = g. The

classification network h is trained only with source data, so

hs = h. In addition, to improve performance on the target

domain, ht could be obtained via fine-tuning based on the

few samples in Dt, i.e.,

ht = fine-tuning(h|Dt) . (6)

Note that the network architecture remains the one in Fig-

ure 1, only with a different loss, and training procedure.

3.2. Handling Scarce Target Data

When the size of the labeled target training dataset Dt

is very small, minimizing the loss (5) becomes a challenge.

The problem is that the semantic alignment loss as well as

the separation loss rely on computing distances and simi-

larities between distributions, and those are very difficult to

represent with as few as one data sample.

Rather than attempting to characterize distributions with

statistics that require enough data, because of the reduced

size of Dt, we compute the distance in the semantic align-

ment loss (3) by computing average pairwise distances be-

tween points in the embedding space, i.e., we compute

d(p(g(Xs
a)), p(g(X

t
a))) =

∑

i,j

d(g(xs
i ), g(x

t
j)) , (7)
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Figure 4. (a), (b), (c): Improvement of CCSA over the base model.

(d): Average classification accuracy for the M → U task for dif-

ferent number of labeled target samples per category (n). It shows

that our model provides significant improvement over baselines.

where it is assumed ysi = ytj = a. The strength of this ap-

proach is that it allows even a single labeled target sample

to be paired with all the source samples, effectively trying

to semantically align the entire source data with the few tar-

get data. Similarly, we compute the similarities in the sep-

aration loss (4) by computing average pairwise similarities

between points in the embedding space, i.e., we compute

k(p(g(Xs
a)), p(g(X

t
b))) =

∑

i,j

k(g(xs
i ), g(x

t
j)) , (8)

where it is assumed that ysi = a 6= ytj = b.

Moreover, our implementation further assumes that

d(g(xs
i ), g(x

t
j)) =

1

2
‖g(xs

i )− g(xt
j)‖

2 , (9)

k(g(xs
i ), g(x

t
j)) =

1

2
max(0,m− ‖g(xs

i )− g(xt
j)‖)

2(10)

where ‖ · ‖ denotes the Frobenius norm, and m is the mar-

gin that specifies the separability in the embedding space.

Note that with the choices outlined in (9) and (10), the loss

LSA(g)+LS(g) becomes the well known contrastive loss as

defined in [30]. Finally, to balance the classification versus

the contrastive semantic alignment portion of the loss (5),

(7) and (8) are normalized and weighted by 1 − γ and (1)

by γ.

4. Extension to Domain Generalization

In visual domain generalization (DG), D labeled datasets

Ds1 , · · · , DsD , representative of D distinct source domains

are given. The goal is to learn from them a visual classifier

f that during testing is going to perform well on data Dt, not

available during training, thus representative of an unknown

target domain.

The SDA method in Section 3 treats source and target

datasets Ds and Dt almost symmetrically. In particular, the

embedding g aims at achieving semantic alignment, while

favoring class separation. The only asymmetry is in the pre-

diction function h that is trained only on the source, to be

then fine-tuned on the target.

In domain generalization, we are not interested in adapt-

ing the classifier to the target domain, because it is un-

known. Instead, we want to make sure that the embedding

g maps to a domain invariant space. To do so we consider

every distinct unordered pair of source domains (u, v), rep-

resented by Dsu and Dsv , and, like in SDA, impose the se-

mantic alignment loss (3) as well as the separation loss (4).

Moreover, the losses are summed over every pair in order to

make the map g as domain invariant as possible. Similarly,

the classifier h should be as accurate as possible for any of

the mapped samples, to maximize performance on an un-

seen target. This calls for having a fully symmetric learning

for h by training it on all the source domains, meaning that

the classification loss (1) is summed over every domain su.

See Figure 2.

The network architecture is still the one in Figure 1, and

we have implemented it with the same choices for distances

and similarities as those made in Section 3.2. However,

since we are summing the losses (3) and (4) over every un-

ordered pair of source domains, there is a quadratic growth

of paired training samples. So, if necessary, rather than pro-

cessing every paired sample, we select them randomly.

5. Experiments

We divide the experiments into two parts, domain adap-

tation and domain generalization. In both sections, we use

benchmark datasets and compare our domain adaptation

model and our domain generalization model, both indicated

as CCSA, with the state-of-the-art.

5.1. Domain Adaptation

We present results using the Office dataset [53], the

MNIST dataset [37], and the USPS dataset [31].

5.1.1 Office Dataset

The office dataset is a standard benchmark dataset for visual

domain adaptation. It contains 31 object classes for three

domains: Amazon, Webcam, and DSLR, indicated as A,

W , and D, for a total of 4,652 images. We consider six

domain shifts using the three domains (A → W , A → D,

W → A, W → D, D → A, and D → W). We performed

several experiments using this dataset.

First experiment. We followed the setting described

in [60]. All classes of the office dataset and 5 train-test splits
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Table 1. Office dataset. Classification accuracy for domain adaptation over the 31 categories of the Office dataset. A, W , and D stand for

Amazon, Webcam, and DSLR domain. Lower Bound is our base model without adaptation.
Unsupervised Supervised

Lower Bound [62] [39] [25] [60] [33] CCSA

A → W 61.2 ± 0.9 61.8 ± 0.4 68.5 ± 0.4 68.7 ± 0.3 82.7 ± 0.8 84.5 ± 1.7 88.2 ± 1.0

A → D 62.3 ± 0.8 64.4 ± 0.3 67.0 ± 0.4 67.1 ± 0.3 86.1 ± 1.2 86.3 ± 0.8 89.0 ± 1.2

W → A 51.6 ± 0.9 52.2 ± 0.4 53.1 ± 0.3 54.09 ± 0.5 65.0 ± 0.5 65.7 ± 1.7 72.1 ± 1.0

W → D 95.6 ± 0.7 98.5 ± 0.4 99.0 ± 0.2 99.0 ± 0.2 97.6 ± 0.2 97.5 ± 0.7 97.6 ± 0.4

D → A 58.5 ± 0.8 52.1 ± 0.8 54.0 ± 0.4 56.0 ± 0.5 66.2 ± 0.3 66.5 ± 1.0 71.8 ± 0.5

D → W 80.1 ± 0.6 95.0 ± 0.5 96.0 ± 0.3 96.4 ± 0.3 95.7 ± 0.5 95.5 ± 0.6 96.4 ± 0.8

Average 68.2 70.6 72.9 73.6 82.21 82.68 85.8

Table 2. Office dataset. Classification accuracy for domain adap-

tation over the Office dataset when only the labeled target samples

of 15 classes are available during training. Testing is done on all

31 classes. A, W , and D stand for Amazon, Webcam, and DSLR

domain. Lower Bound is our base model without adaptation.
Lower Bound [60] CCSA

A → W 52.1 ± 0.6 59.3 ± 0.6 63.3 ± 0.9

A → D 61.6 ± 0.8 68.0 ± 0.5 70.5 ± 0.6

W → A 34.5 ± 0.9 40.5 ± 0.2 43.6 ± 1.0

W → D 95.1 ± 0.2 97.5 ± 0.1 96.2 ± 0.3

D → A 40.1 ± 0.3 43.1 ± 0.2 42.6 ± 0.6

D → W 89.7 ± 0.8 90.0 ± 0.2 90.0 ± 0.2

Average 62.26 66.4 67.83

are considered. For the source domain, 20 examples per cat-

egory for the Amazon domain, and 8 examples per category

for the DSLR and Webcam domains are randomly selected

for training for each split. Also, 3 labeled examples are ran-

domly selected for each category in the target domain for

training for each split. The rest of the target samples are

used for testing. Note that we used the same splits gener-

ated by [60]. We also report the classification results of the

SDA algorithm presented in [39] and [33]. In addition to the

SDA algorithms, we report the results of some recent UDA

algorithms. They follow a different experimental protocol

compared to the SDA algorithms, and use all samples of the

target domain in training as unlabeled data together with all

samples of the source domain.

For the embedding function g, we used the convolutional

layers of the VGG-16 architecture [55] followed by 2 fully

connected layers with output size of 1024 and 128, respec-

tively. For the prediction function h, we used a fully con-

nected layer with softmax activation. Similar to [60], we

used the weights pre-trained on the ImageNet dataset [51]

for the convolutional layers, and initialized the fully con-

nected layers using all the source domain data. We then

fine-tuned all the weights using the train-test splits.

Table 1 reports the classification accuracy over 31 classes

for the Office dataset and shows that CCSA has better per-

formance compared to [60]. Since the difference between

W domain and D domain is not considerable, unsupervised

algorithms work well on D → W and W → D. However,

in the cases when target and source domains are very dif-

ferent (A → W , W → A, A → D, and D → A), CCSA

shows larger margins compared to the second best. This

suggests that CCSA will provide greater alignment gains

when there are bigger domain shifts. Figure 4(a) instead,

shows how much improvement can be obtained with respect

to the base model. This is simply obtained by training g and

h with only the classification loss and source training data,

so no adaptation is performed.

Second experiment. We followed the setting described

in [60] when only 10 target labeled samples of 15 classes

of the Office dataset are available during training. Similar

to [60], we compute the accuracy on the remaining 16 cat-

egories for which no target data was available during train-

ing. We used the same network structure as in the first ex-

periment and the same splits generated by [60].

Table 2 shows that CCSA is effective at transferring in-

formation from the labeled classes to the unlabeled target

classes. Similar to the first experiment, CCSA works well

when shifts between domains are larger.

Third experiment. We used the original train-test splits of

the Office dataset [53]. The splits are generated in a sim-

ilar manner to the first experiment but here instead, only

10 classes are considered (backpack, bike, calculator, head-

phones, keyboard, laptop-computer, monitor, mouse, mug,

and projector). In order to compare our results with the

state-of-the-art, we used DeCaF-fc6 features [14] and 800-

dimension SURF features as input. For DeCaF-fc6 features

(SURF features) we used 2 fully connected layers with out-

put size of 1024 (512) and 128 (32) with ReLU activation as

the embedding function, and one fully connected layer with

softmax activation as the prediction function. The features

and splits are available on the Office dataset webpage 1.

We compared our results with three UDA (GFK [26],

mSDA [8], and RTML [13]) and one SDA (CDML [64])

algorithms under the same settings. Table 3 shows that

CCSA provides an improved accuracy with respect to the

others. Again, greater domain shifts are better compensated

by CCSA . Figure 4(b) shows the improvement of CCSA

over the base model using DeCaF-fc6 features.

5.1.2 MNIST-USPS Datasets

The MNIST (M) and USPS (U ) datasets have recently been

used for domain adaptation [20, 50]. They contain images

1https://cs.stanford.edu/∼jhoffman/domainadapt/
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Table 3. Office dataset. Classification accuracy for domain adaptation over the 10 categories of the Office dataset. A, W , and D stand for

Amazon, Webcam, and DSLR domain. Lower Bound is our base model with no adaptation.
Lower Bound GFK [26] mSDA [8] CDML [64] RTML [13] CCSA

SURF

A → W 26.5 ± 3.1 39.9 ± 0.9 35.5 ± 0.5 37.3 ± 0.7 43.4 ± 0.9 71.2 ± 1.3

A → D 17.5 ± 1.2 36.2 ± 0.7 29.7 ± 0.7 35.3 ± 0.5 43.3 ± 0.6 74.2 ± 1.3

W → A 25.9 ± 1.0 29.8 ± 0.6 32.1 ± 0.8 32.4 ± 0.5 37.5 ± 0.7 42.9 ± 0.9

W → D 46.9 ± 1.1 80.9 ± 0.4 56.6 ± 0.4 77.9 ± 0.9 91.7 ± 1.1 85.1 ± 1.0

D → A 19.3 ± 1.9 33.2 ± 0.6 33.6 ± 0.8 29.4 ± 0.8 36.3 ± 0.3 28.9 ± 1.3

D → W 48.0 ± 2.1 79.4 ± 0.6 68.6 ± 0.7 79.4 ± 0.6 90.5 ± 0.7 77.3 ± 1.6

Average 30.6 43.5 38.4 43.5 49.8 63.2

DeCaF-fc6

A → W 78.9 ± 1.8 73.1 ± 2.8 64.6 ± 4.2 75.9 ± 2.1 79.5 ± 2.6 94.5 ± 1.9

A → D 79.2 ± 2.1 82.6 ± 2.1 72.6 ± 3.5 81.4 ± 2.6 83.8 ± 1.7 97.2 ± 1.0

W → A 77.3 ± 1.1 82.6 ± 1.3 71.4 ± 1.7 86.3 ± 1.6 90.8 ± 1.6 91.2 ± 0.8

W → D 96.6 ± 1.0 98.8 ± 0.9 99.5 ± 0.6 99.4 ± 0.4 100 ± 0.0 99.6 ± 0.5

D → A 84.0 ± 1.3 85.4 ± 0.7 78.8 ± 0.5 88.4 ± 0.5 90.6 ± 0.5 91.7 ± 1.0

D → W 96.7 ± 0.9 91.3 ± 0.4 97.5 ± 0.4 95.1 ± 0.5 98.6 ± 0.3 98.7 ± 0.6

Average 85.4 85.63 80.73 87.75 90.55 95.4

Table 4. MNIST-USPS datasets. Classification accuracy for do-

main adaptation over the MNIST and USPS datasets. M and

U stand for MNIST and USPS domain. Lower Bound is our

base model without adaptation. CCSA - n stands for our method

when we use n labeled target samples per category in training.
Method M → U U → M Average

ADDA [61] 89.4 90.1 89.7

CoGAN [38] 91.2 89.1 90.1

Lower Bound 65.4 58.6 62.0

CCSA-1 85.0 78.4 81.7

CCSA-2 89.0 82.0 85.5

CCSA-3 90.1 85.8 87.9

CCSA-4 91.4 86.1 88.7

CCSA-5 92.4 88.8 90.1

CCSA-6 93.0 89.6 91.3

CCSA-7 92.9 89.4 91.1

CCSA-8 92.8 90.0 91.4

Table 5. VLCS dataset. Classification accuracy for domain gen-

eralization over the 5 categories of the VLCS dataset. LB (Lower

Bound) is our base model trained without the contrastive semantic

alignment loss. 1NN stands for first nearest neighbor.
Lower Bound Domain Generalization

1NN SVM LB UML [17] LRE-SVM [65] SCA [23] CCSA

L, C,S → V 57.2 58.4 59.1 56.2 60.5 64.3 67.1

V, C,S → L 52.4 55.2 55.6 58.5 59.7 59.6 62.1

V,L,S → C 90.5 85.1 86.1 91.1 88.1 88.9 92.3

V,L, C → S 56.9 55.2 54.6 58.4 54.8 59.2 59.1

C,S → V,L 55.0 55.5 55.3 56.4 55.0 59.5 59.3

C,L → V,S 52.6 51.8 50.9 57.4 52.8 55.9 56.5

V, C → L,S 56.6 59.9 60.1 55.4 58.8 60.7 60.2

Average 60.1 60.1 60.2 61.5 61.4 64.0 65.0

of digits from 0 to 9. We considered two cross-domain

tasks, M → U and U → M, and followed the experimental

setting in [20, 50], which involves randomly selecting 2000

images from MNIST and 1800 images from USPS. Here,

we randomly selected n labeled samples per class from tar-

get domain data and used them in training. We evaluated

our approach for n ranging from 1 to 8 and repeated each

experiment 10 times (we only show the mean of the accura-

cies because the standard deviation is very small).

Similar to [37], we used 2 convolutional layers with 6

and 16 filters of 5 × 5 kernels followed by max-pooling

layers and 2 fully connected layers with size 120 and 84

as the embedding function g, and one fully connected layer

with softmax activation as the prediction function h. We

compare our method with 2 recent UDA methods. Those

methods use all target samples in their training stage, while

we only use very few labeled target samples per category in

training.

Table 4 shows the average classification accuracy of the

MNIST-USPS datasets. CCSA works well even when only

one target sample per category (n = 1) is available in train-

ing. Also, we can see that by increasing n, the accuracy

quickly converges to the top.

Ablation study. We consider three baselines to compare

with CCSA for the M → U task. First, we train the network

with source data and then fine-tune it with available target

data. Second, we train the network using the classification

and semantic alignment losses (LCSA(f) = LC(h ◦ g) +
LSA(g)). Third, we train the network using the classifica-

tion and separation losses (LCS(f) = LC(h ◦ g)+LS(g)).
Figure 4(d) shows the average accuracies over 10 repeti-

tions. It shows that CSA and CS improve the accuracy over

fine-tuning, while using the proposed CCSA loss shows the

best performance.

Visualization. We show how samples lie on the embedding

space using CCSA . First, we considered the row images of

the MNIST and USPS datasets and plotted 2D visualization

of them using t-SNE [41]. As Figure 3(Left) shows the row

images of the same class and different domains lie far away

from each other in the 2D subspace. For example, the sam-

ples of the class zero of the USPS dataset (0 U ) are far from

the class zero of the MNIST dataset (0 M ). Second, we

trained our base model with no adaptation on the MNIST

dataset. We then plotted the 2D visualization of the MNIST

and USPS samples in the embedding space (output of g,

the last fully connected layer). As Figure 3(Middle) shows,

the samples from the same class and different domains still

lie far away from each other in the 2D subspace. Finally,

we trained our SDA model on the MNIST dataset and 3 la-
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beled samples per class of the USPS dataset. We then plot-

ted the 2D visualization of the MNIST and USPS samples

in the embedding space (output of g). As Figure 3(Right)

shows, the samples from the same class and different do-

mains now lie very close to each other in the 2D subspace.

Note however, that this is only a 2D visualization of high-

dimensional data, and Figure 3(Right) may not perfectly re-

flect how close is the data from the same class, and how

classes are separated.

Weight sharing: There is no restriction on whether or

not gt and gs should share weights. Not sharing weights

likely leads to overfitting, given the reduced amount of tar-

get training data, and weight-sharing acts as a regularizer.

For instance, we repeated the experiment for the M → U
task with n = 4. Not sharing weights provides an aver-

age accuracy of 88.6 over 10 repetitions, which is less than

the average accuracy with weight-sharing (see Table 4). A

similar behavior is observable in other experiments.

5.2. Domain Generalization

We evaluate CCSA on different datasets. The goal is to

show that CCSA is able to learn a domain invariant embed-

ding subspace for visual recognition tasks.

5.3. VLCS Dataset

In this section, we use images of 5 shared object cat-

egories (bird, car, chair, dog, and person), of the PAS-

CAL VOC2007 (V) [16], LabelMe (L) [52], Caltech-101

(C) [18], and SUN09 (S) [10] datasets, which is known as

VLCS dataset [17].

[24, 23] have shown that there are covariate shifts be-

tween the above 4 domains and have developed a DG

method to minimize them. We followed their experi-

mental setting, and randomly divided each domain into a

training set (70%) and a test set (30%) and conducted a

leave-one-domain-out evaluation (4 cross-domain

cases) and a leave-two-domain-out evaluation (3
cross-domain cases). In order to compare our results with

the state-of-the-art, we used DeCaF-fc6 features which are

publicly available 2, and repeated each cross-domain case

20 times and reported the average classification accuracy.

We used 2 fully connected layers with output size of

1024 and 128 with ReLU activation as the embedding func-

tion g, and one fully connected layer with softmax activa-

tion as the prediction function h. To create positive and

negative pairs for training our network, for each sample of a

source domain we randomly selected 5 samples from each

remaining source domain, and help in this way to avoid

overfitting. However, to train a deeper network together

with convolutional layers, it is enough to create a large

amount of positive and negative pairs.

2http://www.cs.dartmouth.edu/∼chenfang/proj page

/FXR iccv13/index.php

Table 6. MNIST dataset. Classification accuracy for domain gen-

eralization over the MNIST dataset and its rotated domains.
CAE [49] MTAE [24] CCSA

M15◦ ,M30◦ ,M45◦ ,M60◦ ,M75◦ → M 72.1 82.5 84.6

M,M30◦ ,M45◦ ,M60◦ ,M75◦ → M15◦ 95.3 96.3 95.6

M,M15◦ ,M45◦ ,M60◦ ,M75◦ → M30◦ 92.6 93.4 94.6

M,M15◦ ,M30◦ ,M60◦ ,M75◦ → M45◦ 81.5 78.6 82.9

M,M15◦ ,M30◦ ,M45◦ ,M75◦ → M60◦ 92.7 94.2 94.8

M,M15◦ ,M30◦ ,M45◦ ,M60◦ → M75◦ 79.3 80.5 82.1

Average 85.5 87.5 89.1

We report comparative results in Table 5, where all DG

methods work better than the base model, emphasizing the

need for domain generalization. Our DG method has higher

average performance. Also, note that in order to compare

with the state-of-the-art DG methods, we only used 2 fully

connected layers for our network and precomputed features

as input. However, when using convolutional layers on row

images, we expect our DG model to provide better per-

formance. Figure 4(c) shows the improvement of our DG

model over the base model using DeCaF-fc6 features.

5.4. MNIST Dataset

We followed the setting in [24], and randomly selected a

set M of 100 images per category from the MNIST dataset

(1000 in total). We then rotated each image in M five

times with 15 degrees intervals, creating five new domains

M15◦ , M30◦ , M45◦ , M60◦ , and M75◦ . We conducted a

leave-one-domain-out evaluation (6 cross-domain

cases in total). We used the same network of Section 5.1.2,

and we repeated the experiments 10 times. To create pos-

itive and negative pairs for training our network, for each

sample of a source domain we randomly selected 2 samples

from each remaining source domain. We report compar-

ative average accuracies for CCSA and others in Table 6,

showing again a performance improvement.

6. Conclusions

We have introduced a deep model in combination

with the classification and contrastive semantic alignment

(CCSA) loss to address SDA. We have shown that the

CCSA loss can be augmented to address the DG problem

without the need to change the basic model architecture.

However, the approach is general in the sense that the ar-

chitecture sub-components can be changed. We found that

addressing the semantic distribution alignments with point-

wise surrogates of distribution distances and similarities for

SDA and DG works very effectively, even when labeled tar-

get samples are very few. In addition, we found the SDA

accuracy to converge very quickly as more labeled target

samples per category are available.
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