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Abstract

Humans have rich understanding of liquid containers

and their contents; for example, we can effortlessly pour

water from a pitcher to a cup. Doing so requires estimating

the volume of the cup, approximating the amount of water

in the pitcher, and predicting the behavior of water when we

tilt the pitcher. Very little attention in computer vision has

been made to liquids and their containers. In this paper,

we study liquid containers and their contents, and propose

methods to estimate the volume of containers, approximate

the amount of liquid in them, and perform comparative vol-

ume estimations all from a single RGB image. Furthermore,

we show the results of the proposed model for predicting

the behavior of liquids inside containers when one tilts the

containers. We also introduce a new dataset of Containers

Of liQuid contEnt (COQE) that contains more than 5,000

images of 10,000 liquid containers in context labelled with

volume, amount of content, bounding box annotation, and

corresponding similar 3D CAD models.

1. Introduction

Recent advancements in visual recognition have enabled

researchers to start exploring tasks that go beyond catego-

rization and entail high-level reasoning in visual domains.

Visual reasoning, an essential component for a visually in-

telligent agent, has recently attracted computer vision re-

searchers [46, 31, 32, 23, 34, 52, 51, 6, 1, 24]. Almost all

the efforts in visual recognition and reasoning have been

devoted to solid objects: how to detect [14, 36] and seg-

ment [30, 8] them, how to reason about physics of a solid

world [31, 46], and how forces would affect their behav-

ior [32, 23]. Very little attention, however, has been made

to liquid containers and the behavior of their content.

Humans, on the other hand, deal with liquids and their

containers on a daily basis. We can comfortably pour wa-

ter from a pitcher to a cup knowing how much water is al-

ready in the cup and having an estimate of the volume of the
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Figure 1. Our goal is to estimate the volume of the container (Vol-

ume Estimation), approximate what fraction of the volume is filled

(Content Estimation), infer whether we can pour the content of one

container into another (Comparative Volume Estimation), and pre-

dict how much liquid will remain in a container over time if it

is tilted to a certain angle (Pouring Prediction). Our inference is

based on a single RGB image.

cup and the amount of water in the pitcher. We effortlessly

estimate the angle by which to tilt the pitcher to pour the

right amount of water into the cup. In fact, five month old

infants develop rich understanding of liquids and their con-

tainers and can predict whether water will pour or tumble

from a cup if the cup is upended [17]. Other species such as

orangutans can also estimate the volume of liquids inside a

container and can predict if the liquid in one container can

fit into the other one [7].

In this paper, we study liquid containers (Figure 1) and

propose methods to estimate the volume of containers and

their content in absolute and relative senses. We also show,

for the first time, that we can predict the amount of liquid

that remains in a container if it is tilted for a certain tilt an-

gle, all from a single image. We introduce Containers Of

liQuid contEnt (COQE), a dataset of images with contain-

ers annotated for their volume, the volume of their content,

bounding box, and corresponding similar 3D models. Es-

timating the volume of containers is extremely challenging

and requires reasoning about the size of the container, its
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shape, and contextual cues surrounding the container. The

volume of the liquid content of a container can be esti-

mated using subtle visual cues like the line at the edge of

the liquid inside the container. We propose a deep learning

based method to estimate the volume of containers and their

content using the contextual cues from the surrounding ob-

jects. In addition, by integrating Convolutional Neural Net-

works and Recurrent Neural Networks, we can predict the

behaviour of liquid contents inside containers as their reac-

tion to tilting the container.

Our experimental evaluations on COQE dataset show

that incorporating contextual cues provides improvement

for estimating volume of the containers and the amount of

their content. Furthermore, we show the results using a sin-

gle RGB image for predicting how much liquid will remain

inside a container over time if it is tilted by a certain angle.

2. Related Work

In this section, we describe the work relevant to ours.

To the best of our knowledge, there is little to no work that

directly addresses the same problem. Below, we mention

past work that are most related.

In [13], a hybrid discriminative-generative approach is

proposed to detect transparent objects such as bottles and

glasses. [35] propose a method for detection, 3D pose esti-

mation, and 3D reconstruction of glassware. [48] also pro-

pose a method for reconstruction of 3D scenes that include

transparent objects. Our work goes beyond detection and

reconstruction since we perform reasoning about higher-

level tasks such as content estimation or pour prediction.

Object sizes are inferred by [2] using a combination of

visual and linguistic cues. In this paper, we focus only on

visual cues. Size estimates have also been used by [19, 41]

to better estimate the geometry of scenes.

The result of 3D object detectors [27, 40, 15] can be

used to obtain a rough estimate of the volume of the con-

tainers. However, they are typically designed for RGBD

images. Moreover, the output of these detectors cannot be

used for estimation of the amount of content or pouring pre-

diction. Depth estimation methods from single RGB images

[11, 29, 12] can also be used for computing the relative size

of containers.

The affordance of containing liquids is inferred by [49].

Additionally, they reason about the best filling and transfer

directions. The problem that we address is different and we

use RGB images during inference (as opposed to RGBD

images). [26] uses physical simulation to infer the affor-

dance of containers and containment relationship between

objects. Our work is different since we reason about liquid

content estimation, pouring prediction, etc.

Our pouring prediction task shares similarities with [32].

In [32], they predict the sequence of movement of rigid ob-

jects for a given force. In this work, we are concerned with

liquids that have different dynamics and appearance statis-

tics than solid objects.

There are a number of works in the robotics community

that tackle the problem of liquid pouring [43, 4, 37, 47, 22,

38]. However, these approaches either have been designed

for synthetic environments [47, 22] or they have been tested

in lab settings and with additional sensors [43, 37, 4, 38].

Fluid simulation is a popular topic in computer graphics

[33, 20, 5]. Our problem is different since we predict the

liquid behavior from a single image and are not concerned

about rendering.

There are also several cognitive studies about liquids,

their physical properties and their interaction with the con-

tainers [10, 39, 9, 18, 3, 42, 42, 21, 25].

3. Tasks

In this paper, we focus on four important tasks related to

liquids and their containers:

• Container volume estimation: Our goal in this task

is to infer the volume of the container (i.e, the volume

of the liquid inside the container when the container is

full). The input is a single RGB image and the query

container, and the output is the volume estimate (e.g.,

50mL, 200mL, etc).

• Content estimation: In this task, the goal is to esti-

mate how full a container is given a single RGB image

and a query container. The example outputs are empty,

10% full, 50% full, etc.

• Comparative volume estimation: The task is to infer

if we can pour the entire content of one container into

another container. The input is a single RGB image

and a pair of query containers in that image, and the

output is yes, no, or can’t tell (since we have opaque

containers in the dataset). This is more complex than

the previous two tasks since it requires reasoning about

the size of the two containers and the amount of liquid

in them simultaneously.

• Pouring prediction: The goal is to infer the amount of

liquid in a container over time after tilting the container

by a given angle. The inputs are a single RGB image,

a query object, and a tilt angle. The output is a variable

length sequence that determines the amount of liquid

at each time step. The sequence has a variable length

since some containers become empty much faster than

other containers depending on the initial amount of liq-

uid in them, the size of the container, and the tilt angle.

4. COQE Dataset

There is no dataset to train and evaluate models on the

four tasks defined above. Hence, we introduce a new dataset
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Figure 2. COQE dataset. Example containers in our dataset. The bottom row shows the corresponding 3D CAD model for the container

inside the yellow bounding box.

called Containers Of liQuid contEnt (COQE).

The COQE dataset includes more than 5,000 images,

where in each image there are at least two containers. The

containers belong to different categories such as bottle,

glass, pitcher, bowl, kettle, pot, etc. Figure 2 shows some

example images in the dataset.

It is infeasible to use web for collecting this dataset since

obtaining accurate groundtruth volume estimates for arbi-

trary web images is not trivial. To overcome this problem,

we used a commercial crowd-sourcing platform to collect

images and their corresponding annotations. The annota-

tors took pictures using their cameras or cellphones and

measured the container volume using a measuring cup or

reported the volume on the container label.

The data collectors were instructed to meet certain re-

quirements. First, the images should include the context

around the container since estimating the size from an im-

age that only shows the container is an ambiguous task. To

impose this constraint, we asked the annotators to take pic-

tures that have at least 4 objects in each image. Second,

the dataset should include annotations only for containers

that had a bounding box whose larger side is larger than 30

pixels. We had this requirement because the content of the

containers is not visible if the containers appear very small

in the image. Finally, the dataset should include images

that have objects in a natural setting to better capture back-

ground clutter, different illumination conditions, occlusion,

etc.

Each container in our dataset has been annotated by its

bounding box, the volume, and the amount of liquid inside

the container. Additionally, we downloaded 34 CAD mod-

els from Trimble 3D Warehouse and we specify which 3D

CAD model is most similar to each container in the im-

ages. Finding the correspondence with the CAD models

enables us to run pouring simulations. For pouring simula-

tion, we rescale the CAD models to the annotated volume

and consider the annotated amount of liquid in the CAD

model. Then, we tilt the CAD model by x degrees and

record how much liquid remains in the CAD model for each

tilt angle. Section 6.5 provides more details about pouring

simulations.

5. Our Approach

5.1. Volume and Content Estimation

We now describe the model for estimation of container

volume and content volume for a query container in an im-

age.

We use a Convolutional Neural Network (CNN), where

the input has 4 channels. The first three channels of the

input are the RGB channels of the input image, and the

fourth channel is used to represent the bounding box of the

query container, which is basically a bounding box mask

smoothed by a Gaussian kernel. An additional input to our

model is a set of masks generated by an object detector. The

masks generated by the object detector enable us to capture

contextual information. The idea is that the surrounding ob-

jects typically provide a rough prior for the volume of the

container of interest. We use Multipath network [50] as our

object detector, which is a state-of-the-art instance segmen-

tation method that generates a mask for objects along with

the category information. We use Multipath that is trained

on COCO dataset [28] so it generates masks for 80 cate-

gories defined by [28]. We create a binary image for each

category, where the pixels of all masks for that category are

set to 1. Then, we resize the mask to 28 × 28. We obtain a

28 × 28 × 81 cube, referred to as context tensor, since the

object detector has 80 categories and we consider one cat-

egory for the background (areas not covered by the masks

of the 80 categories). For efficiency concerns, we do not

use these masks in the input channel and we use them in a

1873



co
n
v
_
3
_
2

co
n
v
_
4
_
1

Multipath

ResNet

81

28

28

volume

class

content

class

Figure 3. Model architecture. For volume and content estima-

tion, the input to our network is an RGB image and the mask for

the query container. We feed the RGB image into the Multipath

network [50] to generate a set of mask detections. The masks for

different categories form a tensor (shown in grey) and are concate-

nated with the output of the conv 3 2 layer of ResNet-18 (the

purple cube).

higher level of the model.

The architecture of our model is shown in Figure 3.

We concatenate the context tensor with the input of the

conv4 1 layer of ResNet-18 [16] whose input size is

28× 28× 128. As a result, the input to conv4 1 will be of

size 28× 28× 209. We refer to this network as Contextual

ResNet for Containers (CRC) throughout the paper.

We formulate volume and content estimation as classifi-

cation. We change the layer before the classification layer

of ResNet based on the number of classes in each task. The

loss for this network is the cross-entropy loss, which is typi-

cally used for multi-class classification. We consider differ-

ent weights for different classes according to their inverse

frequency in the training data. We could alternatively for-

mulate these tasks as a regression problem. However, we

obtained better performance using the classification formu-

lation. Note that we train the network separately for volume

and content estimation tasks (i.e. the classification layer has

different size of output depending on the task).

5.2. Comparative Volume Estimation

Here, we answer the following question: “Can we pour

the entire content of container 1 into container 2 in the same

image?”. Basically, the model needs to estimate the volume

for the two containers and infer the current amount of liquid

in each of them to answer the question. Our approach is

implicit in that we let the network figure out these quantities

and do not provide explicit supervision.

Our model for this task is a Siamese network, where

there are two branches corresponding to two different con-

tainers in question. Similar to the previous tasks, each

branch of the model receives a 4-channel input, where the

first 3 channels is the RGB image and the 4th channel is the

bounding box mask for the query container. We concate-

nate the output of the layers before the classification lay-

ers of the two branches (the concatenation output is 1024-

dimensional). A fully connected (FC) layer follows the out-

put of the concatenation, which provides the input to a Log-

Softmax layer. Alternatively, we tried a 5-channel input

(i.e., 3 RGB channels, one channel for the mask of container

1 and another channel for the mask of container 2). The

performance for this scenario was worse than the perfor-

mance of the proposed model. We also tried two scenarios

for the Siamese network, where we considered shared and

non-shared weights. The performance for the shared weight

case was better. The loss for this task is cross-entropy loss

as well since we formulate it as classification, where the la-

bels are yes, no, can’t tell (which happens when at least one

of the containers is opaque and its content is not visible).

5.3. Pouring Prediction

In this task, we predict how much liquid will remain in

the container if we tilt it by x degrees. The output of this

task is a function of a few factors: (1) The initial amount

of liquid in the container, e.g., if a bottle is 10% full, tilting

it by a few degrees will not have any effect on the amount

of the liquid that remains inside the container. (2) The ge-

ometry of the container. For example, a large tilt angle is

required to pour the liquid from a container that has a nar-

row mouth. (3) The volume of the container. For example,

it takes longer to pour the content of a larger container com-

pared to a tiny container. Estimating each of these factors is

a challenging task by itself.

We formulate this task as sequence prediction, where our

goal is to generate the sequence of the amount of liquid in

the container over time given a single RGB image, a query

container, and a tilt angle x.

The amount of the liquid at each time step is dependent

on the previous time steps so we use a recurrent network

to capture these dependencies. Our architecture is a Con-

volutional Neural Network (CNN) followed by a Recurrent

Neural Network (RNN).

The CNN part of the network has the same architecture

as that of CRC (shown in Figure 3) with two differences.

The first difference is that we have an additional input chan-

nel to encode the angle x. This channel has the same height

and width as the input image and it is concatenated with

the input image. All elements of this channel are set to

x. The second difference is that we remove the classifi-

cation layer of CRC so we can feed the output of the CNN

into the recurrent part. We denote the output of the CNN

by f , which is a 512 dimensional vector. We use f as the

input to the recurrent part of the network. The architec-

ture for this task is shown in Figure 4. We consider a 100-

dimensional hidden unit for the recurrent network. The out-
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Figure 4. Model architecture for pouring prediction. The input

to this model is an RGB image, the mask for the query container

and an image that encodes the tilt angle. The output of our model

(CRC) is fed into an RNN that predicts a sequence that represents

how much liquid remains in the container over time. We train this

network end-to-end.

put of the RNN at each time step, ot, is |R| dimensional,

where R = {r0, r1, · · · , rN , p} is the set of discretized

amounts of liquid, for example, r0 represents empty, r1 rep-

resents 10% full, etc. The label p represents the opaque

case. Some of the containers are opaque. In this case, no

estimation can be provided since the content is not visible.

Note that the problem at each time step is a classification

problem, where the RNN generates one of |R| classes. As

described in Section 4, there is a 3D CAD model associ-

ated to each example. Therefore, we can simulate tilting for

each container given an initial amount of liquid and obtain

the groundtruth for this task. Note that the 3D CAD models

are only used during training and not for inference.The de-

tailed procedure for obtaining the groundtruth sequence is

described in Section 6.5.

The RNN stops the sequence if it generates r0, which

is the empty state, or p, which corresponds to the opaque

container case. The reason is that the rest of the sequence

should be the same if it generates either of these two labels.

We consider a maximum length of 5 for the sequences in

our experiments.

The loss function is defined over the output sequence.

Suppose we denote the groundtruth and output sequence by

S = (s0, s1, · · · , st′) and O = (o0,o1, · · · ,ot), respec-

tively. The loss will be defined as:

L(S,O) = −
1

T

T∑

t=0

wt(st) log(ot[st]), (1)

where T is the maximum length of sequence, and wt(st)
is the weight for each class (i.e. the inverse frequency of

the amount st at time t in the training data). Also, ot[st] is

the st-th element of ot. Recall that ot is |R|-dimensional.

Also, note that ot = SoftMax(g(ht)), where ht is the

hidden unit of the RNN at time step t, and g is a linear func-

tion followed by a ReLU non-linearity. Hence, the loss is

a cross-entropy loss defined over the sequence. If the out-

put sequence and the groundtruth sequence have different

lengths (i.e. t 6= t′) , we pad them by the last element of the

sequence to make them the same length.

6. Experiments

We evaluate our models on different tasks that we de-

fined: estimating the volume of a query container, estimat-

ing how full the container is (content estimation), compara-

tive volume estimation that infers if we can pour the entire

content of one query container into another, and pouring

prediction that provides a temporal estimate of how much

liquid will remain inside the query container if we tilt it.

The first three tasks are mainly related to estimating the ge-

ometry of the container and its content, while the fourth task

addresses the estimation of the behavior of the liquid inside

the container.

Dataset: Our dataset consists of more than 5,000 images

that include more than 10,000 annotated containers. We use

6,386 containers for training, 1,000 for validation and 3,000

for test. Each container is annotated with the volume, the

amount of content, a bounding box, and a corresponding

3D CAD model.

6.1. Implementation Details

We use Torch1 to implement the proposed neural net-

works. We run the experiments on a Tesla K40 GPU. We

feed the training images into the network in batches of size

96, where each batch contains RGB images, the mask im-

ages for the query container (or two masks for the compara-

tive volume estimation task), and context tensor (described

in Section 5.1).

Our learning rate is 10−3 for all experiments. We use

ResNet-18 [16] for the ResNet part of the networks. The

ResNet is pre-trained on ImageNet 2. We randomly initial-

ize the mask channels of the input layer and additional chan-

nels of conv 4 1 in CRC. For the random initialization, we

randomly sample from a Gaussian distribution with mean 0

and standard deviation 0.01. To train the proposed models

and the baselines we use 20,000 iterations. We choose the

model that has the highest performance on the validation

set.

6.2. Volume Estimation

We first provide evaluations for the volume estimation

task. We divide the space of volumes into 10 classes, where

the maximum volumes in each class are: 50, 100, 200, 300,

500, 750, 1000, 2000, 3000, ∞. The unit for the measure-

ment is milliliter (mL). For example, the first class contains

all containers that are smaller than 50mL, the second class

are containers whose volume is between 50mL and 100mL

1http://torch.ch
2https://github.com/facebook/fb.resnet.torch/tree/master/pretrained
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Figure 5. Qualitative results of volume estimation. The volume for the query container (indicated by the yellow bounding box) is shown

under the image.

and so on. The reason that the range is not uniform is to

have better visual separation of examples. We could alterna-

tively formulate the problem as a regression problem since

volume is a continuous quantity, but the performance was

worse. [45, 44, 32] also formulated a continuous variable

estimation problem as classification due to the same reason.

The baselines for this task are: (1) a naive regression

that takes width and height of the container bounding box

(normalized by the image width and height, respectively) as

features and regresses the volume. (2) classification using

AlexNet, where we replace the FC7 layer of AlexNet and

its classification layer to adapt them to a 10-class classifi-

cation. (3) The CRC model without the contextual infor-

mation. We use the same number of iterations for training

these networks.

Table 1 shows the results for this task. Our evaluation

metric is average per-class accuracy. The chance perfor-

mance for this task is 10%. Our model provides about

2.5% improvement over the case that we do not use contex-

tual information. The results suggest that the information

about the surrounding objects can help volume estimation.

The overall low performance of these state-of-the-art CNNs

shows how challenging the task is. Figure 5 shows qualita-

tive examples of volume estimation.

Avg. per-class accuracy

Chance 10.00

Box-Regression 11.36

AlexNet 17.33

Ours w/o context 15.33

Ours w/ context (CRC) 17.79

Table 1. Quantitative results for volume estimation.

6.3. Content Estimation

In this task, we estimate the amount of content in a

query container in an RGB image. The annotators provide

groundtruth for this task in terms of one of the following 6

classes: 0% (empty), 33%, 50%, 66%, 100%, and opaque.

The content of an opaque container cannot be estimated us-

ing visual cues so we consider this category as well to han-

dle this case. Similar to above, we use average per-class ac-

curacy as the evaluation metric. We use similar CNN-based

baselines as above.

Table 2 shows the results for this task. Our model im-

proved the performance by 2.7% compared to the case that

we do not use context. The chance accuracy for this task is

16.67%. Our method achieves 32.01% per-class accuracy

which is 15.3% above the chance performance. However,

this result shows that there is still a large room for improve-

ment on this task. Figure 6 shows a few qualitative exam-

ples of content estimation.

Avg. per-class accuracy

Chance 16.67

AlexNet 29.30

Ours w/o context 29.29

Ours w/ context (CRC) 32.01

Table 2. Quantitative results for content estimation.

6.4. Comparative Volume Estimation

In this task, we infer whether we can pour the entire con-

tent of a query container into another one. This is a chal-

lenging task since it requires estimation of the content vol-

ume for both containers and also the volume of the container

that the liquid is poured into. We formulate this problem as

a 3-class classification, where the classes are yes, no, and

can’t tell (when at least one of the containers is opaque).

The procedure for obtaining groundtruth for this task is

as follows. Let v1 and v2 to be the volume for a pair of

containers in an image, respectively, and c1 and c2 represent

how full each container is (0 ≤ c1, c2 ≤ 1). Note that in

our dataset we have annotations for v1, v2, c1, and c2. If

c1 ∗ v1 < (1 − c2) ∗ v2, we can pour the entire content of

container 1 into container 2.

For this experiment, two 4-channel input images are fed

into the two branches of the Siamese network. As baselines,

we replace both branches of the network by AlexNets or our
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Figure 6. Qualitative results of content estimation. On the left side of each image, we show the predicted amount of liquid in the query

container (indicated by the yellow box). The rightmost image shows an opaque container for which it is not possible to correctly predict

the amount of content.

model without context, where a fully connected (FC) layer

and a Log-Softmax layer follow the concatenation of the

output of these branches. Similar to the previous tasks, we

use average per-class accuracy as the evaluation metric.

Table 3 shows the results. Note that in this task, we

consider only containers that are in the same image since

comparative volume estimation across different images is a

difficult task even for humans.

Avg. per-class accuracy

Chance 33.33

AlexNet 43.90

Ours w/o context 48.97

Ours w/ context (CRC) 49.81

Table 3. Quantitative results for comparative volume estimation.

6.5. Pouring Prediction

The above evaluations mainly address the properties of

the containers such as the volume of the containers and the

amount of their content. We now describe the results for

pouring prediction task, which is related to the behavior of

the liquid inside the containers. This task requires generat-

ing a sequence, where each element of the sequence shows

how full the container is at each timestep. We first explain

how we obtain groundtruth sequences and then present the

evaluations.

Obtaining groundtruth: Recall that we have a 3D CAD

model associated to each container in images. Therefore,

we can consider a certain amount of liquid in each 3D CAD

model. We compute the amount of liquid remaining at each

timestep during a pour as follows. At each timestep, we use

the angle of the container to compute the maximum amount

of liquid that could stably be held in the container without

overflowing. To do this, we draw a horizontal plane par-

allel to the ground from the lip of the container. We then

compute the volume of the container below that plane using

a 3D mesh of its interior. Then, to compute the remain-

ing amount of liquid at that timestep, we simply take the

maximum of this value and the initial amount of liquid in

the container. Intuitively, this means that if the container

at a given angle can hold more liquid than it was initially

filled with, then none will have spilled out and that is the

amount that is in the container. Conversely, if the maxi-

mum amount of liquid that can rest stably in a container is

less than the initial amount, then all excess will have spilled

out and the amount remaining will be the maximum stable

amount3. We also used Fluidix (a fluid simulation library),

but the results were not significantly different from the re-

sults of the above method (the error was smaller than our

bin size).

During training, for each container in the images, we

have an associated CAD model and an initial amount of liq-

uid in the container (one of the following values according

to the annotations: 0%, 33%, 50%, 66%, 100%, or opaque).

Therefore, we can estimate the amount of remaining liq-

uid in the container for different angles and different initial

amount of liquid. Note that during test we only have a sin-

gle RGB image, the mask for the query container and the

query angle, and we do not use 3D CAD models.

To generate sequences, we tilt each container from 0

degrees to a certain degree x, where 0 degree is the up-

right pose and 180 degrees corresponds to an upside down

container (we ignore containers that are not in the upright

pose in the image for training and evaluation). The max-

imum length of sequence that we consider is 5 i.e. we

consider 5 timesteps for tilting from 0 to x degrees and

measure the remaining amount of liquid at each timestep

using the procedure described above. We consider a dis-

crete set of fractions 0, 0.1, 0.2, . . . , 0.9, 1 and assign the

remaining amount of liquid to the closest fraction. There-

fore, each element of the sequence belongs to one of 12

classes (11 fractions + 1 opaque class). More concretely, in

R = {r0, r1, · · · , rN , p} (defined in Section 5.3), r0 = 0,

r1 = 0.1, r2 = 0.2, etc.

Note that the sequences can have different length. For

example, if a container is initially empty, the sequence will

be of length 1 since the amount of liquid will not change as

the result of tilting. Similarly, the corresponding sequence

for all opaque containers is of length 1 since no estimation

can be performed for opaque containers.

The result for this task is shown in Table 4. Our evalua-

tion criteria is defined as follows. We consider a predicted

3Note that this approximation does not take into account attributes such

as liquid viscosity or surface tension. However, this approximation is ac-

curate enough for our purposes.
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Figure 7. Qualitative results for pouring prediction. Our method estimates the amount of the remaining liquid at each time step. The tilt

angle for each sequence is shown under the sequence. The bottom row shows the case that the amount of liquid in the container does not

change as the result of tilting. Note that we show the CAD models only for visualization purposes. They are neither predicted nor used for

inference.

sequence as correct if all elements of that sequence match

the elements in the groundtruth sequence. The first column

of the table shows the result of the exact match of the se-

quences. We also show the results for different edit dis-

tances (edit distance between the predicted and groundtruth

sequences). Qualitative examples of pouring prediction are

shown in Figure 7.

We apply 5 different tilt angles to each container in train,

validation and test images. The chance performance for

this task is 1/192 since there are 192 unique patterns of

sequences in the test set.

Edit distance 0 1 2 3 4

AlexNet 21.39 27.23 31.08 34.84 45.09

Ours w/o context 28.97 36.32 40.03 43.03 51.34

Ours w/ context 30.13 36.38 39.96 42.90 51.74

Table 4. Quantitative results for pouring prediction. The results

for different edit distances of the groundtruth and predicted se-

quences are shown.

7. Conclusion

Reasoning about containers and the behavior of the liq-

uids inside them is an important component of visual rea-

soning. However, it has not received much attention in the

computer vision community. In this paper, we focused on

four different tasks in this area, where the inference relies

only on a single RGB image: (1) volume estimation, (2)

content estimation, (3) comparative volume estimation, and

(4) pouring prediction. We introduced the COQE dataset to

train and evaluate our models. In the future, we plan to con-

sider liquid attributes such as viscosity for more accurate

prediction of pouring. Moreover, we plan to incorporate

other modalities so we can perform more sophisticated rea-

soning in scenarios that the visual cues alone are not enough

(e.g., opaque containers).
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