
A Read-Write Memory Network for Movie Story Understanding

Seil Na1, Sangho Lee1, Jisung Kim2, Gunhee Kim1

1Seoul National University, 2SK Telecom

{seil.na, sangho.lee}@vision.snu.ac.kr, joyful.kim@sk.com, gunhee@snu.ac.kr

https://github.com/seilna/RWMN

Abstract

We propose a novel memory network model named Read-

Write Memory Network (RWMN) to perform question and

answering tasks for large-scale, multimodal movie story

understanding. The key focus of our RWMN model is to

design the read network and the write network that con-

sist of multiple convolutional layers, which enable memory

read and write operations to have high capacity and flex-

ibility. While existing memory-augmented network models

treat each memory slot as an independent block, our use of

multi-layered CNNs allows the model to read and write se-

quential memory cells as chunks, which is more reasonable

to represent a sequential story because adjacent memory

blocks often have strong correlations. For evaluation, we

apply our model to all the six tasks of the MovieQA bench-

mark [24], and achieve the best accuracies on several tasks,

especially on the visual QA task. Our model shows a poten-

tial to better understand not only the content in the story,

but also more abstract information, such as relationships

between characters and the reasons for their actions.

1. Introduction

For many problems of video understanding, including

video classification [1, 14], video captioning [28, 29] and

MovieQA [24], it is key to success for models to correctly

process, represent, and store long sequential information.

In the era of deep learning, one prevailing approach to

model sequential input is to use recurrent neural networks

(RNNs) [16] which store the given information into a hid-

den memory and update it over time. However, RNNs ac-

cumulate information in a single fixed-length memory re-

gardless of the length of an input sequence, thus tend to fail

to utilize far-distant information due to a vanishing gradient

problem, which is still not fully solved even with advanced

models such as LSTM [12] and GRU [3].

As another recent alternative to resolve this issue, many

studies attempt to leverage an external memory structure

for neural networks, often referred to as neural memory
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Figure 1. The intuition of the RWMN (Read-Write Memory Net-

work) model for movie question and answering tasks. Using

read/write networks of multi-layered CNNs, it abstracts a given

series of frames stepwise to capture higher-level sequential infor-

mation and stores it into memory slots. It eventually helps answer

complex questions of movie QAs.

networks [8, 9, 10, 15, 23, 27]. One key benefit of exter-

nal memory is to enable a neural model to cache sequen-

tial inputs in memory slots, and explicitly utilize even far

early information. Such ability is particularly powerful to

solve question and answering (QA) problems, which of-

ten require models to memorize a large amount of infor-

mation, and correctly access the most relevant information

to a given question. For this reason, memory networks

have been popularly applied as state-of-the-art approaches

to many QA tasks, such as bAbI task [26], SQuAD [21],

and LSMDC [22].

MovieQA [24] is another challenging visual QA dataset,

in which models need to understand movies over two hours

long, and solve QA problems related to movie content and

plots. The MovieQA benchmark consists of six tasks ac-

cording to which sources of information is usable to solve

the QA problems, including videos, subtitles, DVS, scripts,

plot synopses, and open-end information. Understanding a

movie is a highly challenging task; it is necessary not only

to understand the content of individual video frames such

as a characters’ actions, places of events, but also to infer

more abstract and high-level knowledge such as reasons of a
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characters’ behaviors, and relationships between them. For

instance, in the Harry Potter movie, to answer a question

(Q. What does Harry trick Lucius into doing? A. Freeing

Dobby), models need to realize that Dobby was a Lucius’s

house elf, wanted to escape from him, had a positive rela-

tionship with Harry, and Harry helped him. Some of such

information is visually or textually observable in the movie,

but much information like relationships between characters

and correlations between events should be deduced.

Our objective is to propose a novel memory network

model to perform QA tasks for large-scale, multimodal

movie story understanding. That is, the input to the model

can be very long (e.g. videos more than two hours long),

or be multimodal (e.g. text-only or video-text pairs). The

key focus of our novel memory network named Read-Write

Memory Networks (RWMN) is on defining the memory

read/write operations to have high capacity and flexibility,

for which we propose the read and write networks that con-

sist of multiple convolutional layers. Existing neural mem-

ory network models treat each memory slot as an indepen-

dent block. However, adjacent memory blocks often have

strong correlations, which are the case to represent a se-

quential story. That is, when human understands a story,

the entire story is often recognized as a sequence of closely-

interconnected abstract events. Hence, preferably memory

networks need to read and write sequential memory cells as

chunks, which are implemented by multiple convolutional

layers of the read and write network.

To conclude introduction, we summarize the contribu-

tions of this work as follows.

1. We propose a novel memory network named RWMN

that enables the model to flexibly read and write more

complex and abstract information into memory slots

through read/write networks. To the best of our knowl-

edge, it is the first attempt to leverage multi-layer

CNNs for read/write operations of a memory network.

2. The RWMN shows the best accuracies on several tasks

of MovieQA benchmark [24]; as of the ICCV2017

submission deadline (March 27, 2017 23:59 GMT),

our RWMN achieves the best performance for four out

of five tasks in the validation set, and four out of six

tasks in the test set. Our quantitative and qualitative

evaluation also assures that the read/write networks ef-

fectively utilize higher-level information in the exter-

nal memory, especially on the visual QA task.

2. Related Work

Neural Memory Networks. Recently, much research

has been done to model sequential data using explicit mem-

ory architecture. The memory access of existing memory

network models can be classified into content-based ad-

dressing and location-based addressing [8]. The content-

based addressing (e.g. [9, 27, 18]) lets the controller to gen-

erate a key vector and measure its similarity with each mem-

ory cell to find out which cells are to be attended as the rele-

vant cells to the key vector. Location-based addressing (e.g.

[8]), on the other hand, enables simple arithmetic operations

that find out the addresses to store or retrieve information,

regardless of the content of the key vector.

Neural Turing Machine (NTM) [8] and its extensions of

DNC [9], D-NTM [10], focus on learning the entire process

of memory interaction (read/write operations), and thus the

degree of freedom (or capability) of the model is high in

solving a given problem. They have been successfully ap-

plied to complex tasks such as sorting, sequence copying,

and graph traversal. The memory networks of [15, 23, 27]

address the QA problems using continuous memory repre-

sentation similar to the NTM. However, while the NTM

leverages both content-based and location-based address-

ing, they use only the former (content-based) memory inter-

action. They apply the concept of multi-hops to recurrently

read the memory, which results in performance improve-

ment in solving QA problems that require causal reasoning.

The work of [18, 30] proposes a key-value memory network

that stores information in the form of (key, value) pairs into

the external knowledge base. These methods are good at

solving QA problems that focus on the content or facts in a

context such as WikiMovies [18] and bAbI dataset [26].

The work of [2, 20] deals with how to make the

read/write operations scalable with extremely large amount

of memory. Chandar et al. [2] propose to organize memory

hierarchically, and Rae et al. [20] make read and write op-

erations sparse, thereby increasing scalability and reducing

the cost of operations.

Compared to all the previous models, our RWMN model

is explicitly equipped with learnable read/write networks of

CNNs, which are specialized in storing and utilizing more

abstract information, such as relationships between charac-

ters, reasons for characters’ specific behaviors, as well as

understanding of facts in a given story.

Models for MovieQA. Among the models applied to

the MovieQA benchmark [24], the end-to-end memory net-

work [23] is the state-of-the-art approach. It splits each

movie into shot subshots, and constructs memory slots

with video and subtitle features. It then uses content-

based addressing to attend on the information relevant to

a given question. Recently, Wang and Jiang [25] present the

compare-aggregate framework for word-level matching to

measure the similarity of sentences. However, it is applied

to only a single task (plot synopses) of MovieQA.

There have been also several studies to solve Video

QA tasks in other datasets, such as LSMDC [22], MSR-

VTT [28], and TGIF-QA [13], which mainly focus on un-

derstanding short video clips, and answering about factual
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elements in the clips. Yu et al. [29] achieve compelling

performance in video captioning, video QA, and video

retrieval by constructing an end-to-end trainable concept-

word-detector along with vision-to-language models.

3. Read-Write Memory Network (RWMN)

Figure 2 shows the overall structure of our RWMN. The

RWMN is trained to store the movie content with proper

representation in the memory, extract relevant information

from memory cells in response to a given query, and select

correct answer from five choices.

Based on the QA format of MovieQA dataset [24], the

input of the model is (i) a sequence of video segment

and subtitle pairs Smovie = {(v1, s1), ..., (vn, sn)} for the

whole movie, which takes about 2 hours (n ∼ 1, 558 on av-

erage), (ii) a question q for the movie, and (iii) five answer

candidates a = {a1, ..., a5}. In the video+subtitle task of

MovieQA, for example, each si is a dialog sentence of a

character, and vi = {vi1, ..., vim} is a video subshot (i.e. a

set of frames) sampled at 6 fps that are temporally aligned

with si. The output is a confidence score vector over the

five answer candidates.

In the following, we explain the architecture according

to information flow, from movie embedding to answer se-

lection via write/read networks.

3.1. Movie Embedding

We convert each subshot vi and text sentence si into fea-

ture representation as follows. For each frame vij ∈ vi, we

first obtain its feature vij by applying the ResNet-152 [11]

pretrained on ImageNet [4]. We then mean-pool over all

frames as vi =
∑

j vij ∈ R
7×7×2,048, as a representation

of the subshot vi. For each sentence si, we first divide the

sentence into words, apply the pretrained Word2Vec [17],

and then mean-pool with the position encoding (PE) [23] as

si =
∑

j PE(sij) ∈ R
300.

Finally, to obtain a multimodal space embedding of vi

and si, we use the Compact Bilinear Pooling (CBP) [6] as

E[i] = CBP(vi, si) ∈ R
4,096. (1)

We perform this procedure for all n pairs of subshots and

text, resulting in a 2D movie embedding matrix E ∈
R

n×4,096, which is the input of our write network.

3.2. The Write Network

The write network takes a movie embedding matrix E

as an input and generates a memory tensor M as output.

The write network is motivated by that when human under-

stands a movie, she does not remember it as a simple se-

quence of speech and visual content, but rather ties together

several adjacent utterances and scenes in a form of events

or episodes. That is, each memory cell needs to associate

neighboring movie embeddings, instead of storing each of

n movie embedding separately. To implement this idea of

jointly storing adjacent embeddings into every slot, we ex-

ploit a convolutional neural network (CNN) as the write net-

work. We experimentally confirm the following CNN de-

sign after thorough tests, by varying the dimensions, depths,

strides of convolution layers.

To the movie embedding E ∈ R
n×4,096, we first ap-

ply a fully connected (FC) layer with parameter Wc ∈
R

4,096×d,bc ∈ R
d to project each E[i] into a d-dimensional

vector. The FC layer reduces the dimension of E in order

to equalize the dimensions of query embedding and answer

embedding, which is also beneficial to reduce the number of

required convolution operations later. We then use a convo-

lution layer consisting of a filter ww
conv ∈ R

fw

v
×fw

h
×1×fw

c ,

whose vertical and horizontal filter size is fw
v = 40, fw

h =
d, the number of filter channel is fw

c = 3 and strides are

swv = 30 and swh = 1, respectively:

M = ReLU(conv((EWc + bc),w
w
conv,bw)) (2)

where conv (input, filter, bias) indicates the convolution

layer, bw ∈ R
fw

c is a bias, and ReLU indicates the element-

wise ReLU activation [19]. Finally, the generated memory

is M ∈ R
m×d×3, where m = ⌊((n− 1)/swv + 1)⌋.

Note that the write network can employ multiple convo-

lutional layers. If the number of layers is νw, then we obtain

M by recursively applying

M(l+1) = ReLU(conv(M(l),ww(l)
conv,b

(l)
w )) (3)

from l = 1 . . . , νw − 1. In section 4, we will report the

result of ablation study to find out the best-performing νw.

3.3. The Read Network

The read network takes a question q and then generate

answer from a compatibility between q and M.

Question embedding. We embed the question sentence

q as follows. We first obtain the Word2Vec vector [17] q as

done in section 3.1, and then project it as follows.

u = Wqq+ bq (4)

where parameters are Wq ∈ R
d×300 and bq ∈ R

d.

Next the read network takes the memory M and the

query embedding u as input, and generates the confidence

score vector o ∈ R
d as follows.

Query-dependent memory embedding. We first trans-

form the memory M to be query-dependent. Its intuition is

that, according to the query, different types of information

must be retrieved from the memory slots. For example, for

the Harry Potter movie, suppose that one memory slot con-

tains the information about a particular scene where Harry

is chanting magic spells. This memory slot should be read
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Figure 2. Illustration of the proposed Read-Write Network. (a) The multimodal movie embedding E is obtained using the ResNet feature

and the Word2Vec representation from movie subshots and subscripts (section 3.1). (b) The write memory M abstracts higher-level

sequential information through multiple convolution layers (section 3.2). (c) The query-dependent memory Mq is obtained via the Compact

Bilinear Pooling (CBP) between the query and each slot of M, and then the read memory Mr is constructed through convolution layers

(section 3.3). (d) Finally, the answer with the highest confidence score is chosen out of five candidates (section 3.4).

differently according to two different questions Q1: What

color is Harry wearing? and Q2: Why is Harry chanting

magic spells? In section 4, we will empirically show the

effectiveness of this question-dependent memory update.

To transform the memory M into a query-dependent

memory Mq ∈ R
m×d×3, we apply the CBP [6] between

each memory cell of M and the query embedding u as

Mq[i, :, j] = CBP(M[i, :, j],u) (5)

for all i = 1, · · · ,m, and j = 1, 2, 3.

Convolutional memory read. As done in the write net-

work, we also leverage a CNN to implement the read net-

work. Our intuition is that, for correctly answering the ques-

tion of movie understanding, it is important to connect and

relate a series of scenes as a whole. Therefore, we use the

CNN architecture to access chunks of sequential memory

slots. We obtain the reconstructed memory Mr by applying

convolutional layers with a filter wr
conv ∈ R

fr

v
×fr

h
×3×fr

c

whose vertical and horizontal filter size is fr
v = 3, fr

h = d,

the number of filter channel is fr
c = 3 and strides are

srv = 1, srh = 1, respectively. Finally, the reconstructed

memory is Mr ∈ R
c×d×3 with c = ⌊(m− 1)/srv + 1⌋:

Mr = ReLU(conv(Mq,w
r
conv,br)) (6)

where br ∈ R
3 is a bias term. As in the write network, the

read network can also have a νr number of stacks of con-

volutional layers; the formulation is the same with Eq.(3)

only except replacing M,ww
conv,bw with Mr,w

r
conv,br,

respectively. We will also report the results of ablation study

about different νr in section 4.

3.4. Answer Selection

Next we compute the attention matrix p ∈ R
c×3 through

applying the softmax to the dot product between the query

embedding u and each cell of memory Mr:

p[i, j] = softmax(Mr[i, :, j] · u) (7)

where · indicates the dot product. Finally, the output vector

o ∈ R
d is obtained through a weighted sum between each

memory cell of Mr and the attention vector p:

o[i] =

c∑

j=1

3∑

k=1

Mr[j, i, k]p[j, k]. (8)

Next we obtain the embedding of five answer candidate sen-

tences {a} as done for the question in Eq.(4) with sharing

the parameters Wq and bq . As a result, we compute the

embedding of answer candidates g ∈ R
5×d.

We compute the confidence vector z ∈ R
5 by finding the

similarity between g and the weighted sum of o and u.

z = softmax((αo+ (1− α)u)Tg), (9)
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Story sources # movie # QA pairs

Videos and subtitles 140 6,462

Subtitles 408 14,944

DVS 60 2,446

Scripts 199 7,810

Plot synopses 408 14,944

Table 1. The number of movies and QA pairs according to data

sources in the MovieQA dataset [24].

where α ∈ [0, 1] is a trainable parameter. Finally, we

predict the answer y with the highest confidence score:

y = argmaxi∈[1,5](zi).

3.5. Training

For training of our model, we minimize the softmax

cross-entropy between the prediction z and the groundtruth

one-hot vector zgt. All training parameters are initialized

with the Xavier method [7]. Experimentally, we select the

Adagrad [5] optimizer with a mini-batch size of 32, a learn-

ing rate of 0.001, and an initial accumulator value of 0.1.

We train our model up to 200 epochs, although we actively

use the early stopping to avoid overfitting due to the small

size of the MovieQA dataset. We repeat training each model

with 12 different random initializations, and select the one

with the lowest cost.

4. Experiments

We evaluate the proposed RWMN model for all the tasks

of MovieQA benchmark [24]. We defer more experimental

results and implementation details to the supplementary file.

4.1. MovieQA Tasks and Experimental Setting

As summarized in Table 1, MovieQA dataset [24] con-

tains 408 movies and 14,944 multiple choice QA pairs, each

of which consists of five answer choices with only one cor-

rect answer. The dataset provides with five types of story

sources associated with the movies: videos, subtitles, DVS,

scripts, and plot synopses, based on which the MovieQA

challenge hosts 6 subtasks, according to which sources of

information are differently used: (i) video+subtitle, (ii) sub-

titles only, (iii) DVS only, (iv) scripts only, (v) plot synopses

only, and (vi) open-ended. That is, there are one video-text

QA task, and four text-only QA tasks, and one open-end

QA task with no restriction on additional story sources. We

strictly follow the test protocols of the challenge, including

training/validation/test split and evaluation metrics. More

details of the dataset and rules are available in [24] and its

homepage1.

Among six tasks, we discuss our results with more focus

on the video+subtitle task, because it is the only VQA task

that requires both video and text understanding, whereas the

1http://movieqa.cs.toronto.edu/.

Methods
Video+Subtitle

val test

OVQAP – 23.61

Simple MLP – 24.09

LSTM + CNN – 23.45

LSTM + Discriminative CNN – 24.32

VCFSM – 24.09

DEMN – 29.97

MEMN2N [24] 34.20 –

RWMN-noRW 34.20 –

RWMN-noR 36.50 –

RWMN-noQ 38.17 –

RWMN-noVid 37.20 –

RWMN 38.67 36.25

RWMN-bag 38.37 35.69

RWMN-ensemble 38.30 –

Table 2. Performance comparison for the video+subtitle task on

MovieQA public validation/test dataset. (–) means that the method

does not participate on the task. Baselines include DEMM (Deep

embedded memory network), OVQAP (Only video question an-

swer pairs) and VCFSM (Video clip features with simple MLP).

other tasks are text-only. We weight less on the plot syn-

opses only task, since plot synopses are given with a ques-

tion, and all the QA pairs are generated from plot synopses,

this task can be tackled using simple word/sentence match-

ing algorithms (with little movie understanding), achieving

a very high accuracy of 77.63%.

We solve the video+subtitle task using the proposed

RWMN model in Figure 2. For the four text-only QA

tasks, no visual sources {v1, ..., vn} are given, thus we

use {s1, ..., sn} only to construct the movie embedding E

of Eq.(1) without the CBP. Except this, we use the same

RWMN model to solve four text-only QA tasks.

4.2. Baselines

We compare the performance of our approach with those

of all the methods proposed in the original MovieQA pa-

per [24] or in the official MovieQA leaderboard2. We de-

scribe the baseline names in the caption of each result table.

In order to measure the effects of key components of

the RWMN, we experiment with five variants: (i) (RWMN-

noRW) model without read/write networks, (ii) (RWMN-

noR) model with only the write network, (iii) (RWMN-

noQ) model without query-dependant memory embedding,

(iv) (RWMN-noVid) model trained without using videos to

quantify the importance of visual input, and (v) (RWMN)

model with both write/read networks.

We also test two ensemble versions of our model. Since

the MovieQA dataset size is relatively small compared

to task difficulty (e.g. 4,318 training QA examples in

video+subtitle category), models often suffer from severe

2http://movieqa.cs.toronto.edu/leaderboard/ as of

the ICCV2017 submission deadline (March 27, 2017 23:59 GMT).
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Method Subtitle Script DVS Plot Synopses Open-end

val test val test val test val test test

MEMN2N [24] 38.0 36.9 42.3 37.0 33.0 35.0 40.6 38.4 –

SSCB-W2V [24] 24.8 23.7 25.0 24.4 24.8 24.9 45.1 45.6 –

SSCB-TF-IDF [24] 27.6 26.5 26.1 23.9 24.5 23.3 48.5 47.4 –

SSCB Fusion [24] 27.7 – 28.7 – 24.8 – 56.7 56.7 –

CNN Word Matching [25] – – – – – – 72.1 72.9 –

Convnet Fusion (TF-IDF + Word2Vec) – – – – – – – 77.6 –

Longest Answer – – – – – – – – 25.6

RWMN 40.4 38.5 44.0 39.4 40.0 34.2 37.0 34.8 36.6

Table 3. Performance comparison for all the tasks on MovieQA public validation/test dataset. (–) indicates that the method does not

participate on the task. The description of baselines with no reference can be found in the MovieQA leaderboard.

overfitting, which the ensemble methods can mitigate. The

first (RWMN-bag) is a bagged version of our approach, in

which we independently learn RWMN models on 30 boot-

strapped datasets, and obtain the averaged prediction. The

second (RWMN-ensemble) is a simple ensemble, in which

we independently train 20 models with different random

initializations, and compute the average prediction.

4.3. Quantitative Results

We below report the results of each method on the val-

idation and test sets, both of which are not used for train-

ing at all. While the original MovieQA paper [24] reports

the results on the validation set only, the official leader-

board shows the performance on the test set only, for which

groundtruth answers are not observable and the evaluation

is performed through the evaluation server. The test sub-

mission to the server is limited to once every 72 hours.

As of the ICCV2017 submission deadline, our RWMN

achieves the best performance for four out of five tasks in

the validation set, and four out of six tasks in the test set.

Results of VQA task. Table 2 compares the perfor-

mance of our RWMN model with those of baselines for

the video+subtitle task. We observe that RWMN achieves

the best performance on both validation and test sets. For

example, in the test set, RWMN attains 36.25%, which is

significantly better than the runner-up DEMN of 29.97%.

As expected, the RWMN with both read/write networks

is the best among our variants on both validation and test

sets. It implicates that read/write networks play a key role in

improving movie understanding. For example, the RWMN-

noR with only write network attains higher performance

than the RWMN-noRW, which has similar or lower perfor-

mance than other existing models. The RWMN-noQ with-

out question-dependent memory embedding also underper-

forms the normal RWMN, which shows that the memory

update according to the question is indeed helpful to se-

lect a more relevant answer to the question. Finally, the

RWMN-noVid is not as good as the RWMN, meaning that

our RWMN successfully exploits both full videos and subti-

tles for training. Interestingly, the ensemble methods of our

model, RWMN-bag and RWMN-ensemble, slightly under-

perform the single model RWMN.

Results of text-only tasks. Table 3 shows the results on

the validation and test sets for text-only categories (i.e. sub-

title only, DVS only, script only, plot synopses only). For

the open-end task, we simply use the plot synopses version

of our method, which outperforms the only trivial baseline

for the test set (i.e. selecting the longest answer choice).

Our RWMN achieves the best performance in all tasks

except for DVS-test set and plot synopses task. We also

observe that the ensemble methods hardly improve the per-

formance of our method noticeably. As discussed before,

the memory network approaches including our RWMN and

MEMN2N are not outstanding in the plot synopses only

category. It is mainly due to that the queries and answer

choices are made directly from the plot sentences, and thus,

this task can be tackled better by word/sentence matching

methods with little story comprehension. In addition, each

plot synopsis consists of about 35 sentences on average as a

summary of a movie, which is much shorter than other data

types, for examples, about 1,558 sentences of subtitles per

movie. Therefore, the memory abstraction by our method

becomes less critical to solve the problems in this category.

One important difference between the four text-only

tasks is that each story source has a different n (i.e. the

number of sentences), and thus the density of information

contained in each sentence is also different. For exam-

ple, the average n of the scripts is about 2,877 per movie,

while the average n of DVS is about 636; thus, each sen-

tence in the script contains low-level details, while each

sentence in the DVS contain high-level and abstract content.

Given that the performance improvement by our RWMN is

more significant in the DVS only task (e.g. RWMN: 40.0

and MEMN2N: 33.0), it can be seen that our proposal to

read/write networks may be more beneficial to understand

and answer high-level and abstract content.

4.4. Ablation Results

We experiment the performance variation according to

the structure of CNNs in the write/read networks. Among
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hyperparameters of the RWMN, the following three com-

binations have significant effects on the performance of

the model; i) conv-filter/stride sizes of the write network

(fw
v , swv , f

w
c ), ii) conv-filter/stride sizes of the read net-

work (fr
v , s

r
v, f

r
c ), and iii) number of read/write CNN layers

νr, νw. Regarding the convolutions, the larger the convo-

lution filter sizes, the more memories are read/written as

a chunk. Also, as the stride size decreases or the number

of output channels increases, the total number of memory

blocks increases.

Table 4 summarizes the performance variation on the

video+subtitle task according to different combinations of

these three hyperparameters. We make several observations

from the results. First, as the number of CNN layers in

read/write network increases, the capacity of memory inter-

action may increase as well; yet the performance becomes

worsen. Presumably, the main reason may be overfitting

due to a relative small dataset size of MovieQA as dis-

cussed. It is hinted by our results that the two-layer CNN is

the best for training performance, while the one-layer CNN

is the best for validation. Second, we observe that there

is no absolute magic number of how many memory slots

should be read/written as a single chunk and how many

strides the memory controller moves. If the stride height

is too small or too large compared to the height of a con-

volution filter, the performance decreases. It means that the

performance can be degraded when too much information

is read/written as a single abstracted slot, when too much

information is overlapped in adjacent reads/writes (due to a

small stride), or when the information overlap is too coarse

(due to a high stride). We present more ablation results to

the supplementary file.

Figure 3 compares between the MEMN2N [24] and

our RWMN model according to question types in the

video+subtitle task. We examine the results of six question

types, according to what starting word is used in the ques-

tion: Who, Where, When, What, Why, and How. Usually,

Why questions require abstraction and high-level reasoning

to answer correctly (e.g. Why did Harry end his relationship

with Helen?, Why does Michael depart for Sicily?). On the

other hand, Who and When questions primarily deal with

factual elements (e.g. Who is Harry’s girlfriend?, When

does Grissom plan to set up Napier to be murdered?). Com-

pared to the MEMN2N [24], our RWMN shows higher per-

formance enhancement in the questions starting with Why,

which may implicate the superiority of the RWMN to deals

with high-level reasoning questions.

4.5. Qualitative Results

Figure 4 illustrates selected qualitative examples of

video+subtitle problems solved by our methods, including

four success and two near-miss cases. In each example,

we present a sampled query video, a question, and five

# Layers Write network Read network Acc.

νw νr (fw
vi, s

w
vi, f

w
ci) (fr

vi, s
r
vi, f

w
ri)

0 0 – – 34.2

1 0 (40,7,1) – 33.9

1 0 (40,30,3) – 36.5

1 1 (40,30,3) (3,1,1) 38.6

1 1 (40,60,3) (3,1,1) 33.6

2 1 (40,10,3), (10,5,3) (3,1,1) 37.2

2 1 (5,3,1), (5,3,1) (3,1,1) 37.3

2 2 (4,2,1), (4,2,1) (3,1,1), (3,1,1) 36.9

2 2 (4,2,1), (4,2,1) (4,2,1), (4,2,1) 37.3

3 1 (10,3,3), (40,3,3), (100,3,3) (3,1,1) 35.1

3 1 (40,3,3), (10,3,3), (10,3,3) (3,1,1) 37.9

3 1 (40,3,3), (40,3,3), (40,3,3) (3,1,1) 35.7

3 1 (100,3,3), (40,3,3), (10,3,3) (3,1,1) 35.8

Table 4. Performance of the RWMN on the video+subtitle task, ac-

cording to the structure parameters of write/read networks. νw/r:

the number of layers for write/read networks, (f
w/r
vi , s

w/r
vi , f

w/r
ci ):

the height and the stride of convolution filters, and the number of

output channels.

0.2

0.25

0.3

0.35

0.4

0.45

who where when what why how

MEMN2N RWMN

A
cc
u
ra
cy

Figure 3. Accuracy comparison between RWMN and the

MEMN2N [24] baseline on the video+subtitle task according to

question types. The RWMN leads higher improvement for Why

questions that often require abstract and high-level understanding.

answer choices in which groundtruth is in bold and our

model’s selection is red checked. We also show on which

parts our RWMN attends over entire movies, along with the

groundtruth (GT) attention maps indicating the temporal lo-

cations of the clips where the question is actually generated,

provided by the dataset. As examples show, movie question

answering is highly challenging, and sometimes is not easy

even for human.

Our predicted attention often agrees well with the GT;

the RWMN can implicitly learn where to place its attention

in a very long movie for answering, although such infor-

mation is not available for training. However, sometimes

the RWMN can find correct answers even with the attention

mismatch with the GT. It is due to that the MovieQA dataset

also includes many questions that are hardly solvable with

only attending on the GT parts. That is, some questions re-
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Q. Why does Amy’s disappearance receive heavy press coverage?

[0] Because her parents are popular

[1] Because Amy was the inspiration for the popular “Amazing Amy” children 

books

[2] Because Amy is a popular actress

[3] Because it happened on the day of her wedding anniversary

[4] Because her husband is popular

Q. Where does the Joker set a trap for Vicki?

[0] At the Gotham Museum of Art

[1] At her house

[2] At Gotham Police Station

[3] At the Gotham Museum of History

[4] At Bruce’s mansion

Q. How does Forrest get admitted to public school despite his low IQ?

[0] His mother agrees to pay more money

[1] His mother agrees to a one night stand with the shool principal

[2] He gets a football scholarship because he runs very fast

[3] His mother begs the principal and he takes mercy on her

[4] Forrest is very good in football so the school accepts him on this account

Q. What does Gandalf learn from Pippin's visions?

A1. Sauron will attack Minas Tirith

A2. Sauron will hide in Minas Tirith

A3. Sauron will attack Erebor

A4. Sauron will attack The Shire A5. Sauron will flee from Minas Tirith

Q. How does Travis think Miley knows Hannah Montana?

[0] He thinks that Miley and Hannah are friends from school

[1] He thinks that Hannah saved Miley’s life in a surfing accident

[2] He thinks that Miley and Hannah are cousins

[3] He thinks that Miley saved Hannah’s life in a surfing accident

[4] He thinks that Miley saved Hannah’s life in a car accident

Q. Why did Lillian run away from her wedding? 

A1. Because she spilled something on her dress right before the ceremony and was 

too embarrassed of everyone seeing 

A2. Because of Annie's extravagant planning and out of fear of leaving her life in 

Milwaukee 

A3. Because it didn't feel right without Annie there 

A4. No reason in particular 

A5. Because of Helen's extravagant planning and out of fear of leaving her life 

in Milwaukee

GT

Ours

GT

Ours

GT

Ours

GT

Ours

GT

Ours

GT

Ours

Figure 4. Qualitative examples of MovieQA video+subtitle problems solved by our methods (success cases in the top two rows, and failure

cases in the last row). Bold sentences are groundtruth answers and red check symbols indicate our model’s selection. In each example, we

also show on which parts our RWMN model attend over entire movie. The attention by the RWMN often matches well with the groundtruth

(GT) where the question is actually generated.

quire understanding the relationship between characters or

progress of event development, for which attending beyond

GT parts is necessary.

5. Conclusion

We proposed a new memory network model named

Read-Write Memory Network (RWMN), whose key idea is

to propose the CNN-based read/write network that enable

the model to have highly-capable and flexible read/write

operations. We empirically validated that the proposed

read/write networks indeed improve the performance of vi-

sual question answering tasks for large-scale, multimodal

movie story understanding. Specifically, our approach

achieved the best accuracies in multiple tasks of MovieQA

benchmark, with a significant improvement on visual QA

task. We believe that there are several future research di-

rections that go beyond this work. First, we can apply our

approach to other QA tasks that require complicated story

understanding. Second, we can explore better video and

text representation methods beyond ResNet and Word2Vec.
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