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Abstract

We introduce the Single Stage Headless (SSH) face de-

tector. Unlike two stage proposal-classification detectors,

SSH detects faces in a single stage directly from the early

convolutional layers in a classification network. SSH is

headless. That is, it is able to achieve state-of-the-art re-

sults while removing the “head” of its underlying classifica-

tion network – i.e. all fully connected layers in the VGG-16

which contains a large number of parameters. Additionally,

instead of relying on an image pyramid to detect faces with

various scales, SSH is scale-invariant by design. We simul-

taneously detect faces with different scales in a single for-

ward pass of the network, but from different layers. These

properties make SSH fast and light-weight. Surprisingly,

with a headless VGG-16, SSH beats the ResNet-101-based

state-of-the-art on the WIDER dataset. Even though, un-

like the current state-of-the-art, SSH does not use an image

pyramid and is 5X faster. Moreover, if an image pyramid

is deployed, our light-weight network achieves state-of-the-

art on all subsets of the WIDER dataset, improving the AP

by 2.5%. SSH also reaches state-of-the-art results on the

FDDB and Pascal-Faces datasets while using a small input

size, leading to a speed of 50 frames/second on a GPU.

1. Introduction

Face detection is a crucial step in various problems in-

volving verification, identification, expression analysis, etc.

From the Viola-Jones [29] detector to recent work by Hu

et al. [7], the performance of face detectors has been im-

proved dramatically. However, detecting small faces is still

considered a challenging task. The recent introduction of

the WIDER face dataset [35], containing a large number

of small faces, exposed the performance gap between hu-

mans and current face detectors. The problem becomes

more challenging when the speed and memory efficiency

of the detectors are taken into account. The best perform-

ing face detectors are usually slow and have high memory
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Figure 1: SSH is able to detect various face sizes in a single

CNN feed-forward pass and without employing an image

pyramid in ∼ 0.1 second for an image with size 800×1200
on a GPU.

foot-prints (e.g. [7] takes more than 1 second to process an

image, see Section 4.5) partly due to the huge number of

parameters as well as the way robustness to scale or incor-

poration of context are addressed.

State-of-the-art CNN-based detectors convert image

classification networks into two-stage detection systems

[4, 24]. In the first stage, early convolutional feature maps

are used to propose a set of candidate object boxes. In the

second stage, the remaining layers of the classification net-

works (e.g. fc6~8 in VGG-16 [26]), which we refer to as the

network “head”, are deployed to extract local features for

these candidates and classify them. The head in the classifi-

cation networks can be computationally expensive (e.g. the

network head contains ∼ 120M parameters in VGG-16 and

∼ 12M parameters in ResNet-101). Moreover, in the two

stage detectors, the computation must be performed for all

proposed candidate boxes.

Very recently, Hu et al. [7] showed state-of-the-art re-

sults on the WIDER face detection benchmark by using a

similar approach to the Region Proposal Networks (RPN)

[24] to directly detect faces. Robustness to input scale is

achieved by introducing an image pyramid as an integral
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part of the method. However, it involves processing an in-

put pyramid with an up-sampling scale up to 5000 pixels per

side and passing each level to a very deep network which

increased inference time.

In this paper, we introduce the Single Stage Headless

(SSH) face detector. SSH performs detection in a single

stage. Like RPN [24], the early feature maps in a classifi-

cation network are used to regress a set of predefined an-

chors towards faces. However, unlike two-stage detectors,

the final classification takes place together with regressing

the anchors. SSH is headless. It is able to achieve state-

of-the-art results while removing the head of its underlying

network (i.e. all fully connected layers in VGG-16), leading

to a light-weight detector. Finally, SSH is scale-invariant

by design. Instead of relying on an external multi-scale

pyramid as input, inspired by [14], SSH detects faces from

various depths of the underlying network. This is achieved

by placing an efficient convolutional detection module on

top of the layers with different strides, each of which is

trained for an appropriate range of face scales. Surpris-

ingly, SSH based on a headless VGG-16, not only outper-

forms the best-reported VGG-16 by a large margin but also

beats the current ResNet-101-based state-of-the-art method

on the WIDER face detection dataset. Unlike the current

state-of-the-art, SSH does not deploy an input pyramid and

is 5 times faster. If an input pyramid is used with SSH

as well, our light-weight VGG-16-based detector outper-

forms the best reported ResNet-101 [7] on all three subsets

of the WIDER dataset and improves the mean average pre-

cision by 4% and 2.5% on the validation and the test set

respectively. SSH also achieves state-of-the-art results on

the FDDB and Pascal-Faces datasets with a relatively small

input size, leading to a speed of 50 frames/second.

The rest of the paper is organized as follows. Section 2

provides an overview of the related works. Section 3 intro-

duces the proposed method. Section 4 presents the experi-

ments and Section 5 concludes the paper.

2. Related Works

2.1. Face Detection

Prior to the re-emergence of convolutional neural net-

works (CNN), different machine learning algorithms were

developed to improve face detection performance [29, 39,

10, 11, 18, 2, 31]. However, following the success of these

networks in classification tasks [9], they were applied to

detection as well [6]. Face detectors based on CNNs sig-

nificantly closed the performance gap between human and

artificial detectors [12, 33, 32, 38, 7]. However, the intro-

duction of the challenging WIDER dataset [35], containing

a large number of small faces, re-highlighted this gap. To

improve performance, CMS-RCNN [38] changed the Faster

R-CNN object detector [24] to incorporate context informa-

tion. Very recently, Hu et al. proposed a face detection

method based on proposal networks which achieves state-

of-the-art results on this dataset [7]. However, in addition

to skip connections, an input pyramid is processed by re-

scaling the image to different sizes, leading to slow detec-

tion speeds. In contrast, SSH is able to process multiple

face scales simultaneously in a single forward pass of the

network, which reduces inference time noticeably.

2.2. Single Stage Detectors and Proposal Networks

The idea of detecting and localizing objects in a single

stage has been previously studied for general object detec-

tion. SSD [16] and YOLO [23] perform detection and classi-

fication simultaneously by classifying a fixed grid of boxes

and regressing them towards objects. G-CNN [19] mod-

els detection as a piece-wise regression problem and itera-

tively pushes an initial multi-scale grid of boxes towards ob-

jects while classifying them. However, current state-of-the-

art methods on the challenging MS-COCO object detection

benchmark are based on two-stage detectors[15]. SSH is a

single stage detector; it detects faces directly from the early

convolutional layers without requiring a proposal stage.

Although SSH is a detector, it is more similar to the ob-

ject proposal algorithms which are used as the first stage in

detection pipelines. These algorithms generally regress a

fixed set of anchors towards objects and assign an object-

ness score to each of them. MultiBox [28] deploys cluster-

ing to define anchors. RPN [24], on the other hand, defines

anchors as a dense grid of boxes with various scales and as-

pect ratios, centered at every location in the input feature

map. SSH uses similar strategies, but to localize and at the

same time detect, faces.

2.3. Scale Invariance and Context Modeling

Being scale invariant is important for detecting faces in

unconstrained settings. For generic object detection, [1, 36]

deploy feature maps of earlier convolutional layers to de-

tect small objects. Recently, [14] used skip connections

in the same way as [17] and employed multiple shared

RPN and classifier heads from different convolutional lay-

ers. For face detection, CMS-RCNN [38] used the same

idea as [1, 36] and added skip connections to the Faster

RCNN [24]. [7] creates a pyramid of images and processes

each separately to detect faces of different sizes. In con-

trast, SSH is capable of detecting faces at different scales

in a single forward pass of the network without creating an

image pyramid. We employ skip connections in a similar

fashion as [17, 14], and train three detection modules jointly

from the convolutional layers with different strides to detect

small, medium, and large faces.

In two stage object detectors, context is usually modeled

by enlarging the window around proposals [36]. [1] mod-

els context by deploying a recurrent neural network. For
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face detection, CMS-RCNN [38] utilizes a larger window

with the cost of duplicating the classification head. This in-

creases the memory requirement as well as detection time.

SSH uses simple convolutional layers to achieve the same

larger window effect, leading to more efficient context mod-

eling.

3. Proposed Method

SSH is designed to decrease inference time, have a low

memory foot-print, and be scale-invariant. SSH is a single-

stage detector; i.e. instead of dividing the detection task into

bounding box proposal and classification, it performs clas-

sification together with localization from the global infor-

mation extracted from the convolutional layers. We empiri-

cally show that in this way, SSH can remove the “head” of

its underlying network while achieving state-of-the-art face

detection accuracy. Moreover, SSH is scale-invariant by de-

sign and can incorporate context efficiently.

3.1. General Architecture

Figure 2 shows the general architecture of SSH. It is a

fully convolutional network which localizes and classifies

faces early on by adding a detection module on top of fea-

ture maps with strides of 8, 16, and 32, depicted as M1,

M2, and M3 respectively. The detection module consists

of a convolutional binary classifier and a regressor for de-

tecting faces and localizing them respectively.

To solve the localization sub-problem, as in [28, 24, 19],

SSH regresses a set of predefined bounding boxes called an-

chors, to the ground-truth faces. We employ a similar strat-

egy to the RPN [24] to form the anchor set. We define the

anchors in a dense overlapping sliding window fashion. At

each sliding window location, K anchors are defined which

have the same center as that window and different scales.

However, unlike RPN, we only consider anchors with as-

pect ratio of one to reduce the number of anchor boxes. We

noticed in our experiments that having various aspect ratios

does not have a noticeable impact on face detection preci-

sion. More formally, if the feature map connected to the

detection module Mi has a size of Wi × Hi, there would

be Wi ×Hi ×Ki anchors with aspect ratio one and scales

{S1

i
, S2

i
, . . . SKi

i
}.

For the detection module, a set of convolutional layers

are deployed to extract features for face detection and lo-

calization as depicted in Figure 3. This includes a simple

context module to increase the effective receptive field as

discussed in section 3.3. The number of output channels

of the context module, (i.e. “X” in Figures 3 and 4) is set

to 128 for detection module M1 and 256 for modules M2

and M3. Finally, two convolutional layers perform bound-

ing box regression and classification. At each convolution

location in Mi, the classifier decides whether the windows

at the filter’s center and corresponding to each of the scales

{Sk

i
}K
k=1

contains a face. A 1× 1 convolutional layer with

2 ×K output channels is used as the classifier. For the re-

gressor branch, another 1×1 convolutional layer with 4×K

output channels is deployed. At each location during the

convolution, the regressor predicts the required change in

scale and translation to match each of the positive anchors

to faces.

3.2. Scale-Invariance Design

In unconstrained settings, faces in images have varying

scales. Although forming a multi-scale input pyramid and

performing several forward passes during inference, as in

[7], makes it possible to detect faces with different scales, it

is slow. In contrast, SSH detects large and small faces simul-

taneously in a single forward pass of the network. Inspired

by [14], we detect faces from three different convolutional

layers of our network using detection modules M1,M2,

and M3. These modules have strides of 8, 16, and 32 and

are designed to detect small, medium, and large faces re-

spectively.

More precisely, the detection module M2 performs de-

tection from the conv5-3 layer in VGG-16. Although it is

possible to place the detection module M1 directly on top

of conv4-3, we use the feature map fusion which was previ-

ously deployed for semantic segmentation [17], and generic

object detection [14]. However, to decrease the memory

consumption of the model, the number of channels in the

feature map is reduced from 512 to 128 using 1 × 1 con-

volutions. The conv5-3 feature maps are up-sampled and

summed up with the conv4-3 features, followed by a 3 × 3
convolutional layer. We used bilinear up-sampling in the

fusion process. For detecting larger faces, a max-pooling

layer with stride of 2 is added on top of the conv5-3 layer

to increase its stride to 32. The detection module M3 is

placed on top of this newly added layer.

During the training phase, each detection module Mi

is trained to detect faces from a target scale range as dis-

cussed in 3.4. During inference, the predicted boxes from

the different scales are joined together followed by Non-

Maximum Suppression (NMS) to form the final detections.

3.3. Context Module

In two-stage detectors, it is common to incorporate con-

text by enlarging the window around the candidate propos-

als. SSH mimics this strategy by means of simple convo-

lutional layers. Figure 4 shows the context layers which

are integrated into the detection modules. Since anchors are

classified and regressed in a convolutional manner, applying

a larger filter resembles increasing the window size around

proposals in a two-stage detector. To this end, we use 5× 5
and 7 × 7 filters in our context module. Modeling the con-

text in this way increases the receptive field proportional to

the stride of the corresponding layer and as a result the tar-

4877



conv5_3

Max pool 

1/2

Detection 

Module M2

Detection 

Module M3

Dim Red 

�×�

R
e
L

U

Dim Red 

�×�

Bilinear 

Upsampling
Eltwise

Sum

Conv 

�×�

Detection 

Module M1

5
1

2
 C

h
a

n
n

e
ls

512 Channels

128 Channels

512 Channels

Scores

Boxes

Scores

Boxes

Scores

Boxes

C
o

n
v

s

1
-1
~
4
-3

R
e
L

U

R
e
L

U

128 Channels

128 Channels
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Figure 4: SSH context module.

get scale of each detection module. To reduce the number

of parameters, we use a similar approach as [27] and deploy

sequential 3×3 filters instead of larger convolutional filters.

The number of output channels of the detection module (i.e.

“X” in Figure 4) is set to 128 for M1 and 256 for modules

M2 and M3. It should be noted that our detection mod-

ule together with its context filters uses fewer of parameters

compared to the module deployed for proposal generation

in [24]. Although, more efficient, we empirically found that

the context module improves the mean average precision on

the WIDER validation dataset by more than half a percent.

3.4. Training

We use stochastic gradient descent with momentum and

weight decay for training the network. As discussed in sec-

tion 3.2, we place three detection modules on layers with

different strides to detect faces with different scales. Con-

sequently, our network has three multi-task losses for the

classification and regression branches in each of these mod-

ules as discussed in Section 3.4.1. To specialize each of

the three detection modules for a specific range of scales,

we only back-propagate the loss for the anchors which are

assigned to faces in the corresponding range. This is im-

plemented by distributing the anchors based on their size

to these three modules (i.e. smaller anchors are assigned to

M1 compared to M2, and M3). An anchor is assigned to

a ground-truth face if and only if it has a higher IoU than

0.5. This is in contrast to the methods based on Faster R-

CNN which assign to each ground-truth at least one anchor

with the highest IoU. Thus, we do not back-propagate the

loss through the network for ground-truth faces inconsistent

with the anchor sizes of a module.

3.4.1 Loss function

SSH has a multi-task loss. This loss can be formulated as

follows:

∑

k

1

N c

k

∑

i∈Ak

ℓc(pi, gi)+

λ
∑

k

1

Nr

k

∑

i∈Ak

I(gi = 1)ℓr(bi, ti) (1)

where ℓc is the face classification loss. We use standard

multinomial logistic loss as ℓc. The index k goes over the

SSH detection modules M = {Mk}
K
1

and Ak represents

the set of anchors defined in Mk. The predicted category

for the i’th anchor in Mk and its assigned ground-truth la-

bel are denoted as pi and gi respectively. As discussed in

Section 3.2, an anchor is assigned to a ground-truth bound-

ing box if and only if it has an IoU greater than a threshold

(i.e. 0.5). As in [24], negative labels are assigned to anchors

with IoU less than a predefined threshold (i.e. 0.3) with any

ground-truth bounding box. N c

k
is the number of anchors

in module Mk which participate in the classification loss

computation.

ℓr represents the bounding box regression loss. Fol-

lowing [6, 5, 24], we parameterize the regression space
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with a log-space shift in the box dimensions and a scale-

invariant translation and use smooth ℓ1 loss as ℓr. In this

parametrized space, pi represents the predicted four di-

mensional translation and scale shift and ti is its assigned

ground-truth regression target for the i’th anchor in mod-

ule Mk. I(.) is the indicator function that limits the re-

gression loss only to the positively assigned anchors, and

Nr

k
=

∑
i∈Ak

I(gi = 1).

3.5. Online hard negative and positive mining

We use online negative and positive mining (OHEM) for

training SSH as described in [25]. However, OHEM is ap-

plied to each of the detection modules (Mk) separately.

That is, for each module Mk, we select the negative an-

chors with the highest scores and the positive anchors with

the lowest scores with respect to the weights of the net-

work at that iteration to form our mini-batch. Also, since

the number of negative anchors is more than the positives,

following [4], 25% of the mini-batch is reserved for the pos-

itive anchors. As empirically shown in Section 4.8, OHEM

has an important role in the success of SSH which removes

the fully connected layers out of the VGG-16 network.

4. Experiments

4.1. Experimental Setup

All models are trained on 4 GPUs in parallel using

stochastic gradient descent. We use a mini-batch of 4
images. Our networks are fine-tuned for 21K iterations

starting from a pre-trained ImageNet classification network.

Following [4], we fix the initial convolutions up to conv3-1.

The learning rate is initially set to 0.04 and drops by a factor

of 10 after 18K iterations. We set momentum to 0.9, and

weight decay to 5e−4. Anchors with IoU> 0.5 are assigned

to positive class and anchors which have an IoU< 0.3 with

all ground-truth faces are assigned to the background class.

For anchor generation, we use scales {1, 2} in M1, {4, 8}
in M2, and {16, 32} in M3 with a base anchor size of 16
pixels. All anchors have aspect ratio of one. During train-

ing, 256 detections per module is selected for each image.

During inference, each module outputs 1000 best scoring

anchors as detections and NMS with a threshold of 0.3 is

performed on the outputs of all modules together.

4.2. Datasets

WIDER dataset[35]: This dataset contains 32, 203 im-

ages with 393, 703 annotated faces, 158, 989 of which are

in the train set, 39, 496 in the validation set and the rest are

in the test set. The validation and test set are divided into

“easy”, “medium”, and “hard” subsets cumulatively (i.e. the

“hard” set contains all images). This is one of the most chal-

lenging public face datasets mainly due to the wide variety

of face scales and occlusion. We train all models on the

Table 1: Comparison of SSH with top performing methods on the

validation set of the WIDER dataset.

Method easy medium hard

CMS-RCNN [38] 89.9 87.4 62.9

HR(VGG-16)+Pyramid [7] 86.2 84.4 74.9

HR(ResNet-101)+Pyramid [7] 92.5 91.0 80.6

SSH(VGG-16) 91.9 90.7 81.4

SSH(VGG-16)+Pyramid 93.1 92.1 84.5

train set of the WIDER dataset and evaluate on the valida-

tion and test sets. Ablation studies are performed on the the

validation set (i.e. “hard” subset).

FDDB[8]: FDDB contains 2845 images and 5171 anno-

tated faces. We use this dataset only for testing.

Pascal Faces[30]: Pascal Faces is a subset of the Pascal

VOC dataset [3] and contains 851 images annotated for face

detection. We use this dataset only to evaluate our method.

4.3. WIDER Dataset Result

We compare SSH with HR [7], CMS-RCNN [38], Mul-

titask Cascade CNN [37], LDCF [20], Faceness [34], and

Multiscale Cascade CNN [35]. When reporting SSH with-

out an image pyramid, we rescale the shortest side of

the image up to 1200 pixels while keeping the largest

side below 1600 pixels without changing the aspect ratio.

SSH+Pyramid is our method when we apply SSH to a pyra-

mid of input images. Like HR, a four level image pyramid

is deployed. To form the pyramid, the image is first scaled

to have a shortest side of up to 800 pixels and the longest

side less than 1200 pixels. Then, we scale the image to have

min sizes of 500, 800, 1200, and 1600 pixels in the pyramid.

All modules detect faces on all pyramid levels, except M3

which is not applied to the largest level.

Table 1 compares SSH with best performing methods on

the WIDER validation set. SSH without using an image

pyramid and based on the VGG-16 network outperforms

the VGG-16 version of HR by 5.7%, 6.3%, and 6.5% in

“easy”, “medium”, and “hard” subsets respectively. Sur-

prisingly, SSH also outperforms HR based on ResNet-101

on the whole dataset (i.e. “hard” subset) by 0.8. In con-

trast HR deploys an image pyramid. Using an image pyra-

mid, SSH based on a light VGG-16 model, outperforms the

ResNet-101 version of HR by a large margin, increasing the

state-of-the-art on this dataset by ∼ 4%.

The precision-recall curves on the test set is presented in

Figure 5. We submitted the detections of SSH with an im-

age pyramid only once for evaluation. As can be seen, SSH

based on a headless VGG-16, outperforms the prior meth-

ods on all subsets, increasing the state-of-the-art by 2.5%.

4.4. FDDB and Pascal Faces Results

In these datasets, we resize the shortest side of the in-

put to 400 pixels while keeping the larger side less than
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Figure 5: Comparison among the methods on the test set of WIDER face detection benchmark.
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Figure 6: Comparison among the methods on FDDB and Pascal-Faces datasets. (*Note that unlike SSH, HR-ER is also

trained on the FDDB dataset in a 10-Fold Cross Validation fashion.)

800 pixels, leading to an inference speed of more than

50 frames/sec. We compare SSH with HR[7], HR-ER[7],

Conv3D[13], Faceness[34], Faster R-CNN(VGG-16)[24],

MTCNN[37], DP2MFD[21], and Headhunter[18]. Figures

6a and 6b show the ROC curves with respect to the discrete

and continuous measures on the FDDB dataset respectively.

It should be noted that HR-ER also uses FDDB as a train-

ing data in a 10-fold cross validation fashion. Moreover,

HR-ER and Conv3D both generate ellipses to decrease the

localization error. In contrast, SSH does not use FDDB for

training, and is evaluated on this dataset out-of-the-box by

generating bounding boxes. However, as can be seen, SSH

outperforms all other methods with respect to the discrete

score. Compare to HR, SSH improved the results by 5.6%
and 1.1% with respect to the continuous and discrete scores.

We also compare SSH with Faster R-CNN(VGG-

16)[24], HyperFace[22], Headhunter[18], and Face-

ness[34] on the Pascal-Faces dataset. As shown in Figure

6c, SSH achieves state-of-the-art results on this dataset.

4.5. Timing

SSH performs face detection in a single stage while re-

moving all fully-connected layers from the VGG-16 net-

work. This makes SSH an efficient detection algorithm.

Table 2 shows the inference time with respect to different

input sizes. We report average time on the WIDER valida-

Table 2: SSH inference time with respect to different input sizes.

Max Size 400× 800 600× 1000 800× 1200 1200× 1600

Time 48 ms 74 ms 107 ms 182 ms

tion set. Timing are performed on a NVIDIA Quadro P6000

GPU. In column with max size m × M , the shortest side

of the images are resized to “m” pixels while keeping the

longest side less than “M” pixels. As shown in section 4.3,

and 4.4, SSH outperforms HR on all datasets without an im-

age pyramid. On WIDER we resize the image to the last

column and as a result detection takes 182 ms/image. In

contrast, HR has a runtime of 1010 ms/image, more than

5X slower. As mentioned in Section 4.4, a maximum input

size of 400×800 is enough for SSH to achieve state-of-the-

art performance on FDDB and Pascal-Faces, with a detec-

tion speed of 50 frames/sec. If an image pyramid is used,

the runtime would be dominated by the largest scale.

4.6. Ablation study: Scale-invariant design

As discussed in Section 3.2, SSH uses each of its detec-

tions modules, {Mi}
3

i=1
, to detect faces in a certain range

of scales from layers with different strides. To better under-

stand the impact of these design choices, we compare the

results of SSH with and without multiple detection mod-
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(a) Effect of multi-scale design.

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

SSH-0.814
SSH-NoOHEM-0.766

(b) Effect of OHEM.
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(c) Effect of feature fusion.
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(d) Effect of increasing #anchors.

Figure 7: Ablation studies. All experiments are reported on the Wider Validation set.

Table 3: The effect of input size on average precision.

Max Size 600× 1000 800× 1200 1200× 1600 1400× 1800

AP 68.6 78.4 81.4 81.0

ules. That is, we remove {M1,M3} and only detect faces

with M2 from conv5-3 in VGG-16. However, for fair com-

parison, all anchor scales in {M1,M3} are moved to M2

(i.e. we use ∪3

i=1
Si in M2). Other parameters remain the

same. We refer to this simpler method as ”SSH-OnlyM2”.

As shown in Figure 7a, by removing the multiple detection

modules from SSH, the AP significantly drops by ∼ 12.8%
on the hard subset which contains smaller faces. Although

SSH does not deploy the expensive head of its underlying

network, results suggest that having independent simple de-

tection modules from different layers of the network is an

effective strategy for scale-invariance.

4.7. Ablation study: The effect of input size

The input size can affect face detection precision, espe-

cially for small faces. Table 3 shows the AP of SSH on

the WIDER validation set when it is trained and evaluated

with different input sizes. Even at a maximum input size of

800×1200, SSH outperforms HR-VGG16, which up-scales

images up to 5000 pixels, by 3.5%, showing the effective-

ness of our scale-invariant design for detecting small faces.

4.8. Ablation study: The effect of OHEM

As discussed in Section 3.5, we apply hard negative and

positive mining (OHEM) to select anchors for each of our

detection modules. To show its role, we train SSH, with

and without OHEM. All other factors are the same. Figure

7b shows the results. Clearly, OHEM is important for the

success of our light-weight detection method which does

not use the pre-trained head of the VGG-16 network.

4.9. Ablation study: The effect of feature fusion

In SSH, to form the input features for detection mod-

ule M1, the outputs of conv4-3 and conv5-3 are fused to-

gether. Figure 7c, shows the effectiveness of this design

choice. Although it does not have a noticeable computa-

tional overhead, as illustrated, it improves the AP on the

WIDER validation set.

4.10. Ablation study: Selection of anchor scales

As mentioned in Section 4.1, SSH uses S1 = {1, 2},

S2 = {4, 8}, S3 = {16, 32} as anchor scale sets. Fig-

ure 7d compares SSH with its slight variant which uses

S1 = {0.25, 0.5, 1, 2, 3}, S2 = {4, 6, 8, 10, 12}, S3 =
{16, 20, 24, 28, 32}. Although using a finer scale set leads

to a slower inference, it also reduces the AP due to the in-

crease in the number of False Positives.

4.11. Qualitative Results

Figure 8 shows some qualitative results on the Wider val-

idation set. The colors encode the score of the classifier.

Green and blue represent score 1.0 and 0.5 respectively.

5. Conclusion

We introduced the SSH detector, a fast and lightweight

face detector that, unlike two-stage proposal/classification

approaches, detects faces in a single stage. SSH localizes

and detects faces simultaneously from the early convolu-

tional layers in a classification network. SSH is able to

achieve state-of-the-art results without using the “head” of

its underlying classification network (i.e. fc layers in VGG-

16). Moreover, instead of processing an input pyramid,

SSH is designed to be scale-invariant while detecting dif-

ferent face scales in a single forward pass of the network.

SSH achieves state-of-the-art performance on the challeng-

ing WIDER dataset as well as FDDB and Pascal-Faces

while reducing the detection time considerably.
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Figure 8: Qualitative results of SSH on the validation set of the WIDER dataset. Green and blue represent a classification

score of 1.0 and 0.5 respectively.
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