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Abstract

We present a novel deep learning framework that models

the scene dependent image processing inside cameras. Of-

ten called as the radiometric calibration, the process of re-

covering RAW images from processed images (JPEG format

in the sRGB color space) is essential for many computer vi-

sion tasks that rely on physically accurate radiance values.

All previous works rely on the deterministic imaging model

where the color transformation stays the same regardless of

the scene and thus they can only be applied for images taken

under the manual mode. In this paper, we propose a data-

driven approach to learn the scene dependent and locally

varying image processing inside cameras under the auto-

mode. Our method incorporates both the global and the

local scene context into pixel-wise features via multi-scale

pyramid of learnable histogram layers. The results show

that we can model the imaging pipeline of different cameras

that operate under the automode accurately in both direc-

tions (from RAW to sRGB, from sRGB to RAW) and we show

how we can apply our method to improve the performance

of image deblurring.

1. Introduction

Deep learning has significantly changed the approaches

for solving computer vision problems. Instead of analytic

solutions with some combinations of hand chosen features,

probabilistic/physical models and some optimizations, most

methods now turn to deep learning which is a deeper neural

network that relies on big data. Deep learning has shown

superb performance in many computer vision problems in-

cluding image recognition [11], face recognition [30], seg-

mentation [23], etc. Image processing problems such as

super-resolution [8, 16] and colorization [20, 36] are also

solved with deep learning now, which provides effective

ways to process input images and output images that fit the

given task.

In this paper, we introduce a new application of using

(a) Manual mode (b) Auto-mode

Figure 1. Difference of two images captured (a) under the manual

mode and (b) under the auto-mode. The RAW images of both (a)

and (b) are identical. In (b), the brightness/contrast and the colors

were enhanced automatically by the camera.

deep learning for image processing: modelling the scene

dependent image processing. We are especially interested in

modelling the in-camera imaging pipeline to recover RAW

images from camera processed images (usually in the form

of JPEG in the sRGB color space) and vice versa. Usu-

ally called as the radiometric calibration, this process is im-

portant for many computer vision tasks that require accu-

rate measurement of the scene radiance such as photomet-

ric stereo [15], intrinsic imaging [2], high dynamic range

imaging [7], and hyperspectral imaging [27].

There are two strategies with regards to the image pro-

cessing in cameras, namely, the photographic reproduction

model and the photofinishing model [12]. In the photo-

graphic reproduction model, the image rendering pipeline

is fixed meaning that a raw RGB value will always be

mapped to an RGB value in the processed image regard-

less of the scene. Taking photos under the manual mode

triggers this model and all previous radiometric calibration

methods work only in this mode.
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In the photofinishing model, the image processing inside

the camera varies (possibly in a spatially varying manner)

in order to deliver visually optimal picture depending on

the shooting environment [4]. This scene dependent mode

will be activated usually when the camera is operated un-

der the auto-mode. Figure 1 compares the photos of a scene

captured under the manual mode and under the auto-mode.

In (b), the scene became brighter and the colors were en-

hanced compared to (a). It shows that the color rendering

will be dependent on the scene in the auto-mode. Scene

dependency in cameras were also verified in [5]. As men-

tioned above, none of the previous work can deal with the

scene dependent color rendering. This is a problem as there

are many photometry related topics in computer vision that

have access to only automatically taken images (e.g. inter-

net images) as in [2, 15]. Moreover, smartphone cameras

have become the major source for images and the many

phone cameras only work in the auto-mode.

The goal of this paper is to present a new algorithm that

can model the camera imaging process under the ”auto”

mode. To deal with the scene dependency, we take the

data-driven approach and design a deep neural network.

We show that modelling the image processing using con-

ventional CNN-based approaches is not effective for the

given task, and propose a multi-scale pyramid of learnable

histogram [33] to incorporate both the global and the lo-

cal color histogram into pixel-wise features. The extracted

multi-scale contextual features are processed with our CNN

to model the scene dependent and locally varying color

transformation.

To the best of our knowledge, this is the first paper that

can extract RAW images from processed images taken un-

der the auto setting. Being able to radiometrically calibrate

smartphone cameras is especially a significant contribution

of this work. We show that we can model both the forward

rendering (RAW to sRGB) and the reverse rendering (sRGB

to RAW) accurately using our deep learning framework.

We further apply our work to image deblurring. A

blurred image is first transformed to the RAW space, in

which a deblurring algorithm is executed. The deblurred

image is then transformed back to the sRGB space through

our deep network. We show that performing deblurring in

this fashion give much better results over deblurring in the

nonlinear sRGB space.

2. Related Work

In-camera Image Processing (Radiometric Calibration)

In the early works of radiometric calibration, the relation-

ship between the scene radiance and the image value was

explained just by a tonemapping function called the cam-

era response function. Different models of the response

function [9, 24, 26] as well as robust estimation algo-

rithms [7, 18, 22] were introduced. More comprehensive

reviews of the radiometric calibration literature is presented

in [17].

In [17], a more complete in-camera imaging pipeline

that includes processes such as the white balance, the color

space transformation, and the gamut mapping in addition to

the tone-mapping was introduced. With the new parametric

model for the imaging, the work also presented an algo-

rithm for recovering the parameters from a set of images

using a scattered point interpolation scheme. Using a simi-

lar pipeline, a probabilistic model that takes into account the

uncertainty in the color rendering was recently proposed in

[6].

As mentioned earlier, all previous works are based on the

assumption that the color rendering inside the camera is de-

terministic and therefore cannot be applied for photos taken

under the automode or by phone cameras. In comparison,

our deep network framework learns the scene dependent im-

age processing through given data and thus can be used for

automatically captured photos.

Deep Learning for Low-level Vision

Deep learning has been very successful in image classifi-

cation tasks, and the deep neural networks are now being

applied to various problems in computer vision including

the low-level vision tasks. In the field of low-level vision,

convolutional neural networks (CNNs) are used to exploit

the local context information for various applications such

as image super-resolution [8, 16], denoising [14, 25], and

filtering [21, 34]. While the input and the output of these

applications are RGB images, the learned mapping is more

of a structural mapping rather than being a color mapping.

Recently, deep learning based image colorization has

been studied [20, 36], of which the objective is to restore

chrominance information from a single channel luminance

image. These works exploit the high-level semantic infor-

mation to determine the chrominance of pixels by using

CNNs, similar to those used in the high-level recognition

tasks [31]. In this paper, we show that color histogram

based low-level features extracted using our deep network

are more efficient for the given task compared to the high-

level CNN features extracted from above previous work.

In [35], an automatic photo adjustment method using a

multi-layer perceptron was proposed. They feed the con-

catenation of global color features and semantic maps to

a neural network system to find the scene dependent and

the locally varying color mapping. As with the other data-

driven image enhancement techniques [3, 13], the features

for the color mapping in their work are manually selected.

However, one of the key properties behind the success of

deep learning is in its ability to extract good features for the

given task automatically. Instead of using manual features,

we propose an end-to-end trainable deep neural network to

model the scene dependent in-camera image processing.
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(a) Canon EOS 5D Mark III (b) Nikon D600 (c) Samsung Galaxy S7

Figure 2. Examples of images in our dataset. The dataset covers a wide range of scenes and colors.

3. Dataset

An essential ingredient for any deep learning system is

a good dataset. To model the image processing inside the

camera from data, we need pairs of RAW images and its

corresponding images in the nonlinear sRGB color space

with JPEG format. Using the RAW-JPEG shooting mode,

which is now supported by most cameras including Android

based smartphones, we can collect many pairs of corre-

sponding RAW and sRGB images. In this paper, we col-

lected images using three digital cameras: Canon 5D Mark

III, Nikon D600, and Samsung Galaxy S7. All pictures

were taken under the auto-mode and the features like Auto

Lighting Optimizer in the Canon camera that triggers lo-

cally varying processing such as contrast enhancement were

all turned on. Some of the images in our dataset are shown

in Figure 2. As can be seen, our dataset contains various

kind of scenes including outdoor, indoor, landscape, por-

trait, and colorful pictures. The number of images in the

dataset are 645, 710, and 290 for the Canon, the Nikon, and

the Samsung camera, respectively. 50 images of varying

scenes for each camera were selected for the test sets. In

training phase, we extract multiple patches from images on

the fly by using the patch-wise training method, which is

described in Sec. 4.3. Therefore, we can make millions of

training examples from hundreds of image data.

One thing to take notice is the white balancing in the

imaging pipeline. The white balance is one of the main fac-

tors in determing the image color. While the white balance

factor can be learned in the forward pipeline (from RAW to

JPEG) as shown in [28], estimating the white balance in the

reverse pipeline is seemingly a more difficult task as the il-

lumination is already normalized in the JPEG image. After

the images are illumination normalized with the white bal-

ancing, it becomes an one-to-many mapping problem as any

illuminant could have been mapped to the current image.

Fortunately, the meta information embedded in images

(EXIF data) provides the white balancing information. It

provides three coefficients, which are the scale factors for

the red, the green, and the blue channels. All the RAW

images in our dataset are first white balanced using this in-

formation from the EXIF data. Therefore, the mapping that

we learn in our system is from the white balanced RAW to

sRGB, and vice versa.

4. Deep Learning Framework for Modelling

the Imaging Pipeline

In this work, our goal is to model the imaging pipeline

by computing the function f that maps RAW images to

sRGB images and the function f−1 that maps sRGB images

to RAW images. The training data consist of RAW-sRGB

pairs D = {Xi, Y i}ni=0
, where X is the RAW image, Y

represents the sRGB image, and n is the number of training

examples. Since the deep neural networks are not invert-

ible, we train f and f−1 separately. Without the loss of

generality, the algorithm that follows will be explained for

the forward mapping f . Exactly the same process can be

applied for learning the reverse mapping f−1.

The mapping function f under the auto-mode varies ac-

cording to the scene and the local neighborhood. The func-

tion is formally described as:

Y i
x = f(Xi

x,Φ
i,Ωi

x), (1)

where i is the image index, x is the pixel index, Φ repre-

sents the global scene descriptor, and Ω indicates local de-

scriptor around a pixel. We propose a deep neural network

that learns the scene dependent color mapping f including

both Φ and Ω in Eq. (1) in an end-to-end manner.

To optimize the parameters of the proposed network, we

need to define the loss function that computes the difference

between the estimation and the ground truth. We minimize

l2 error from the training data as follows:

L =
1

n

n∑

i=0

‖f(Xi)− Y i‖2. (2)

As explained, the color mapping f is dependent on the

global and the local context. Coming up with features that

can describe this scene dependency manually is a difficult
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Figure 3. The overview of the proposed deep neural network.

task. One way to compute the features for this problem is

to use pre-trained CNNs like the VGG network [31] and

finetune using our training set. As we show in Section 5,

applying conventional CNN based structures do not capture

good features for the scene dependency in our task. From

the camera’s point of view, it would be difficult to run a

high-level scene recognition module for the scene depen-

dent rendering due to the computational load. Therefore,

it is reasonable to conjecture that the scene dependent color

mapping relies mostly on low-level features such as the con-

trast and the color distributions, which are computationally

cheaper than the semantic features. In this work, we exploit

color histogram as the feature to describe the scene.

4.1. Learnable Histogram

Color histogram is one of the most widely used features

to describe images. In deep networks that use histograms,

the centers and the widths of the bins are hand-tweaked by

the user. In addition, since the computation of histograms is

not differentiable, histograms are precomputed before train-

ing deep networks. Meanwhile, Wang et al. [33] recently

proposed the learnable histogram method, in which the key

is a specialized differentiable function that trains the opti-

mized histogram from data with deep networks in an end-

to-end manner.

With the learnable histogram, the bin for the value of an

element in the feature map is determined by the following

voting function:

ψk,b(xk) = max{0, 1− |xk − µk,b| × wk,b}. (3)

k and b are the index of the feature map element and the out-

put bin, respectively. xk is the value of the k-th element in

the feature map, µk,b and wk,b are the center and the width

of the b-th bin. The histogram is built by accumulating the

��,�
1��,�

Figure 4. The concept of histogram voting function of the learnable

histogram [33]. The left is the histogram voting function, and the

right is an example of it.

bins computed with the function ψk,b(xk) as illustrated in

Fig. 4. The centers µk,b and the widths wk,b are trainable

parameters and are optimized together with other parame-

ters of the deep network.

In this work, we adopt the histogram voting func-

tion Eq. (3) of the learnable histogram to extract image fea-

tures for our task of modelling the imaging pipeline. By

introducing a multi-scale pyramid of histograms, we de-

sign the pixel-wise color descriptor for the global and the

local context. In [33], the learnable histogram was applied

to the intermediate semantic feature maps to exploit global

connect global Bag-of-Words descriptors, which in turn im-

proves the performance of semantic segmentation and ob-

ject detection. As we are looking for more low level color

features instead of high-level semantic features, we directly

connect the learnable histogram to the input image to extract

RGB color histograms as show in Fig. 3 (a). Moreover, by

putting multi-scale pooling layers on the output of the learn-

able histogram, our new network can extract the global and

the local descriptors for each pixel.

To effectively extract the color distribution, it is neces-

sary to decouple the brightness and the chromaticity dis-

tribution. Therefore, we first convert the RGB values to a

lightness (L) and chromaticity (rg) channels before the im-
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age goes through the learnable histogram as follows:

L = (R+G+B)/3,

r = R/(R+G+B),

g = G/(R+G+B).

(4)

4.2. MultiScale Pyramid Pooling Layer

The output dimension of Eq. (3) is H ×W × (C × B),
where H , W and C are the number of the height, width

and channel of the input, C is the number of bins of the

histogram. To get the global and the local color histogram,

multiple average poolings with different pooling size are ap-

plied to the output feature maps as shown in Fig. 3 (b). We

concatenate the multi-scale features corresponding to the

same input pixel to incorporate the global and local context

into pixel-wise features. Formally, our multi-scale pyramid

of histogram features is described as:

Ωi
x = [h1x, h

2

x, ..., h
s
x], (5)

where hsx is the feature vector of s-th scale of the histogram

layer corresponds to the pixel x.

In our implementation, we compute four scales of the

multi-scale pyramid by cascading three 3× 3 average pool-

ing layers followed by a global average pooling for the

global histogram. The strides of the 3 local histogram layers

are 1, 2, and 2, respectively.

4.3. PatchWise Training Method and Implementa
tion Details

As illustrated in Fig. 3, our deep network is trained with

image patches instead of using the whole image. In the

training phase, the whole image is first forwarded to the

learnable histogram module (Fig. 3 (a)). Then a number

of patches are randomly selected from both the input im-

age and the histogram feature maps (Fig. 3 (b)). Specifi-

cally, patches are first extracted from the input image, and

the feature maps that correspond to each patch are cropped

to form the multi-scale features. Finally, only those selected

patches are used for training the CNN weights as shown in

Fig. 3 (c).

This patchwise training has the advantage of being able

to generate many training examples from a small dataset as

well as being efficient in both time and memory. At the test

time, the whole image and feature maps are forwarded to

generate the full size output.

For the configuration of our network, we used 6 bins for

the learnable histogram, the initial bin centers were set to

(0, 0.2, 0.4, 0.6, 0.8, 1.0), and the initial bin widths were set

to 0.2 as described in [33]. After the global and the local

features are extracted using the learnable histogram, the de-

scriptors are concatenated with the input RGB image. Then,

we apply 1×1 convolution filters to mix all input pixels and

feature information, followed by two 3 × 3 additional con-

volutions to estimate the output.

5. Experiments

5.1. Experimentation setup

The training images are preprocessed as follows. The

RAW images are first demosaiced, normalized to have the

max value of 1, and white-balanced using the EXIF meta-

data. Images are downsized and cropped to 512×512 im-

ages. In all camera datasets, we use 80% of images for

the training and the remaining 20% for the validation, ex-

cluding the 50 test images. For the training, we use the

Adam optimizer [19] to minimize our cost function. The

batch size is 4, and sixteen 32 × 32 sparse patches are ran-

domly extracted from it, which makes 64 training exam-

ples per batch. According to [1], our training with a small

fraction of images does not affect the convergence. With a

GTX 1080 GPU, we can train the proposed network of 100

epochs within an hour.

As explained before, we cannot compare the proposed

method with existing radiometric calibration methods as

they are deterministic models for specific manual settings

and cannot be applied to automode cameras. Instead, we

compare the proposed method with the following four base-

line methods.

• Multi-layer Perceptron: We designed a MLP that con-

sists of two hidden layers with 64 nodes each. The

MLP learns an RGB to RGB color mapping without

considering the scene dependency. We implemented

the MLP by applying 1× 1 convolution to images.

• SRCNN [8]: We used the SRCNN that consists of five

3× 3 convolutional layers without pooling, and this is

a simple attempt to model the scene dependency.

• FCN [23] and HCN [1, 10, 20]: Since we only have

hundreds of images in the training data, we adopt a

pixel-wise sampling method [1, 20] to a hypercolumn

network (HCN) to generate sufficient training signals.

It cannot be applied to FCN since sample position is

usually a fractional number in downsampled feature

maps. Note that we only use VGG network layers from

(conv1 1 to conv4 3) for the FCN and (conv1 2,

conv2 2, conv3 3) for the HCN, since our machine

cannot handle large feature maps computed from high-

definition input images (e.g. 1920×2880). For the

FCN, we use the FCN-8S configuration on the reduced

VGG network. We finetune both the FCN and the

HCN using the pretrained VGG network.

5.2. Experimental results

Table 1 shows the quantitative results using the 50 test

images in our dataset for each camera. In the table, PSNR
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Rendering
Methods

Canon 5D Mark III Nikon D600 Samsung Galaxy S7

Setting Mean Median Min Max Mean Median Min Max Mean Median Min Max

RAW-to-sRGB

MLP 25.43 25.58 18.08 32.46 27.63 27.84 22.95 30.93 27.62 27.90 24.96 30.56

SRCNN [8] 27.62 27.52 18.25 35.38 27.90 27.92 22.81 32.17 30.03 30.04 26.21 34.40

FCN [23] 20.18 20.40 12.97 24.30 20.70 20.98 17.05 23.34 20.80 20.84 16.27 26.87

HCN [20] 27.53 28.04 18.84 34.78 27.99 28.30 22.73 33.20 29.05 29.27 26.02 32.79

Ours 29.63 29.94 19.24 36.32 28.85 28.93 22.41 33.86 30.14 30.63 22.03 33.91

sRGB-to-RAW

MLP 34.72 34.77 26.35 44.19 32.77 32.04 24.38 40.77 29.56 29.99 23.23 34.28

SRCNN [8] 32.34 32.98 21.30 39.43 30.51 29.57 23.00 38.05 30.12 31.44 22.45 35.35

FCN [23] 21.46 21.02 17.18 28.95 20.58 20.44 15.67 25.17 21.05 21.08 18.06 26.05

HCN [20] 33.49 33.46 25.16 39.70 32.99 32.39 26.63 39.68 30.02 30.76 22.95 34.86

Ours 35.16 35.38 26.73 42.80 33.67 33.35 27.61 42.02 31.67 32.66 25.10 37.39

Table 1. Quantitative result. The values are 4 statistics (mean median, min, max) of PSNRs in 50 test images. Bold text indicates the best

performance.

GROUND TRUTH OURS SRCNN [8] ERROR (OURS) ERROR (SRCNN [8])
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Figure 5. Qualitative comparisons of results. The top 3 rows are the RAW-to-sRGB results of Canon 5D Mark III, Nikon D800, and

Samsung Galaxy S7, and the bottom rows are the inverse mapping results of them, respectively.
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(a) The histogram of RAW (b) Original (c) The manipulated output (d) The histogram of the output

Figure 6. The result of global luminance histogram manipulation. We replace the global luminance histogram of image (b) with that of

(a) during the forward process to analyze our network. (c) and (d) show the result and the change of the histogram. As the deep network

recognizes the content of (a) that consists of many dark and bright pixels, we can see that the histogram (red) shifts to the middle from the

original (blue).

(a) An external image (b) Original (c) The manipulated output (d) Errormap

Figure 7. The result of global chromiance histogram manipulation. This time we manipulated the color histogram where (a) is the image

from which we extract the global chrominance histogram. (c) shows the manipulated output and (d) shows the errormap between (b) and

(c). As the network recognizes the color distribution of image (a), the network modifies color more in the green and the brown regions.

values comparing the RGB values of the recovered image

with the ground truth are reported. For both the forward ren-

dering (RAW-to-sRGB) and the reverse rendering (sRGB-

to-RAW), the proposed method outperforms the other base-

line methods in all categories except for very few Min and

MaX errors among test images.

Results using the MLP were usually worse than the other

methods and this indirectly indicates the scene dependency

in photographs. While the SRCNN showed some ability to

deal with the scene dependency, its receptive field is limited

to local neighborhoods and it cannot model the global scene

context. The MLP and the SRCNN are optmized to model

the mean of the color mapping in dataset and some of high

values of the Min and the Max values in the results can be

explained that some test images exist around the mean of

our dataset.

One can expect that hierarchical CNN features are able

to capture the local and the global scene context that are

useful for the scene dependent imaging. However, the ex-

perimental results show that they are not as efficient as our

color histogram features. We attribute the bad performance

of the FCN to the fact that the FCN is not sufficiently trained

on only hundreds of training examples. Although we could

sufficiently train the HCN through the in-network sampling

method [1, 20], concatenating multi-level upsampled fea-

ture maps consume large memory for high-definition im-

ages from consumer cameras, which cannot be handled in

test time. In summary, the results clearly show that our deep

network that learns the local and the global color distribu-

tion is more efficient for accurately modelling the scene de-

pendent image processing in cameras.

Figure 5 shows some of the examples of the image recov-

ery. The figure shows that the proposed method can model

the in-camera imaging process accurately in a qualitative

way. It also shows that the other baseline methods also do

a reasonable job of recovering images as the scene depen-

dency applies to a set of specific colors or regions.

5.3. Analysis

We conducted more experiments to analyze the scene de-

pendent processing learned by our network. For the anal-

ysis, we use two RAW images A and B. We first extract

the learnable histogram feature from A, and replace the ex-

tracted histogram of B with that of A before injecting it to

the DNN forward process. Note that the RAW image itself

is the same, we just simulate the scene context change by

changing the histogram. The intention of this analysis is to

see how our network responds to the changes in the scene

context.

Figure 6 shows the result of manipulating the global lu-

minance histogram. The histogram in Fig. 6 (a) indicates

the luminance distribution of a high contrast image, which

is typical for backlit photos. We replace the histogram (a)

with that of image (b) during the forward process of (b).
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(a) (b) (c)

Figure 8. Image deblurring results. Blurred images are shown on top. In the bottom: original blurred image patch, deblurred result

using [29] in sRGB space, and deblurred result in RAW space. Deblurring in RAW space outputs much sharper images.

Figure 6 (c) and (d) show the result of the manipulation.

As can be seen, the deep network brightens shadow regions

and darken highlight regions. The network recognizes many

dark regions and bright regions in the given histogram, and

compensates by shifting the brightness to the middle (red

in Fig. 6 (d)) compared to the original histogram (blue in

Fig. 6 (d)). Note that it is what the Auto Lighting Optimizer

of Canon cameras does as described in [4].

In Fig. 7, we show the result of manipulating the global

chrominance histogram by going through the same process

as explained above. By changing the global color context

of image B with that of A, we can observe that our network

responses more strongly to green and brown colors than the

original. We can interpret this as our network recognizing

the context of A as a natural scene from color distribution,

trying to make natural objects like trees more visually pleas-

ing.

These examples show that our deep network recognizes

specific scene context such as high contrast or nature im-

ages, and manipulates the brightness and colors to make im-

ages more visually pleasing as done in the scene dependent

imaging pipeline of cameras. The experiments also show

that the deep network does not memorize each example and

can infer the mapping under various scene contexts.

5.4. Application to Image Deblurring

To show the effectiveness of the proposed method, we

apply it to the image deblurring application. It is well

known that the blur process actually happens in the RAW

space, but most deblurring algorithms are applied to the

sRGB images since the RAW images are usually unavail-

able. Tai et al. [32] brought up this issue and showed that

being able to linearize the images have a significant effect in

the deblurred results. However, the radiometric calibration

process in [32] is rather limited and can only work under

manual camera settings.

We show that we can improve the deblurring perfor-

mance on images taken from a smartphone camera (Sam-

sung Galaxy S7) in automode. To do this, we use the image

deblurring method of Pan et al. [29], which is a blind image

deblurring method that uses the dark channel prior. We use

the source code from the authors website and the default

settings except for the kernel size. The RAW images are

first computed from the corresponding sRGB images us-

ing the sRGB-to-RAW rendering of the proposed method,

deblurred, and converted back to sRGB images using the

RAW-to-sRGB rendering of the proposed method.

Figure 8 shows the deblurring results. As expected, the

deblurring method [29] does not work well on nonlinear

sRGB images and there are some artifacts on deblurred

scenes. On the other hand, the deblurring algorithm works

well using our framework. The recovered images are much

sharper and there are no significant artifacts.

6. Conclusion

In this paper, we presented a novel deep neural network

architecture that can model the scene dependent image pro-

cessing inside cameras. Compared to previous works that

employ imaging models that are scene independent and can

only work for images taken under the manual mode, our

framework can be applied to the images that are taken un-

der the auto-mode including photos from smartphone cam-

eras. We also showed the potential of applying the proposed

method for various computer vision tasks via image deblur-

ring examples.
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