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Abstract

The Mapillary Vistas Dataset is a novel, large-

scale street-level image dataset containing 25 000 high-

resolution images annotated into 66 object categories with

additional, instance-specific labels for 37 classes. Annota-

tion is performed in a dense and fine-grained style by using

polygons for delineating individual objects. Our dataset

is 5× larger than the total amount of fine annotations for

Cityscapes and contains images from all around the world,

captured at various conditions regarding weather, season

and daytime. Images come from different imaging devices

(mobile phones, tablets, action cameras, professional cap-

turing rigs) and differently experienced photographers. In

such a way, our dataset has been designed and compiled

to cover diversity, richness of detail and geographic extent.

As default benchmark tasks, we define semantic image seg-

mentation and instance-specific image segmentation, aim-

ing to significantly further the development of state-of-the-

art methods for visual road-scene understanding.

1. Introduction

Visual scene understanding [19] belongs to the most fun-

damental and challenging goals in computer vision. It com-

prises many different levels of abstraction and a large body

of research groups have recently contributed to significantly

pushing the state of the art in the field. Scene recogni-

tion puts the emphasis on providing a global description of

a scene, typically summarized at a single scene category

level [41, 64]. Object detection focuses on finding object

instances and their categories within a scene, typically lo-

calized using bounding-boxes [13, 14, 34, 43, 44]. Seman-

tic segmentation emphasizes on providing a finer-grained

prediction of the semantic category each pixels belongs

to [5, 28, 36, 37, 50, 62], while instance-specific seman-

tic segmentation adds the difficulty of identifying the pixels

that compose each object instance, thus integrating seman-

tic segmentation with fine-grained object detection [9, 25].

In the last few years the computer vision field has been

undergoing a revolution, mainly driven by the big successes

of deep learning [22]. Indeed, most top-performing al-

gorithms for visual scene understanding are nowadays de-

veloped using deep learning. However, it is well-known

that training of deep learning models requires a substantial

amount of (annotated) data and computational resources.

Accordingly, the availability of large-scale datasets such as

ImageNet [48], Places [63], PASCAL VOC [10], PASCAL-

Context [39], Microsoft COCO [30], ADE20K [65] and

YouTube-8M [1] is of major importance for both, the sci-

entific and industrial communities. Another recent trend in-

volves integrating synthetically-rendered data from sources

like the Grand Theft Auto V engine [45], Synthia [46] or

semantic instance labeling via 3D to 2D label transfer [56].

An application field that currently attracts a lot of inter-

est from both, the industrial and scientific community is that

of self-driving vehicles, where the decision-making compo-

nent is mostly based on visual data analysis and requires

reliable, real-time semantic image understanding. E.g., au-

tonomously driving vehicles or navigating robots need to

comprehend street-level images in terms of relevant object

categories, being able to precisely locate and enumerate

them. To gain deeper understanding of the complex interac-

tions between e.g. traffic participants in street-level images,

a lot of research efforts and investments have recently gone

into designing and creating datasets which were used to

train deep models for this specific task, such as CamVid [3],

the KITTI Vision Benchmark Suite [12], Leuven [23], Daim-

ler Urban Segmentation [49] and Cityscapes [6].

As opposed to datasets addressing more general tasks,

datasets for semantic street scene understanding are often
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limited in their total number of fine-grained annotated im-

ages, the overall number of object categories, are restricted

to specific capturing areas, or urban scenes, thus strongly

biasing the appearance of the elements to be analysed. In

addition, such datasets may suffer from a bias towards spe-

cific capturing modalities due to the usage of a sole imag-

ing sensor and therefore not properly covering the spectrum

of available sensor noise or overly strict specifications on

camera mounting. In essence, neglecting such real world

conditions impairs the overall amount of a datasets expres-

siveness and restrains the diversity.

Contributions. Our contribution is a new dataset for

semantic segmentation of urban, countryside and off-road

scenes comprising 25 000 densely-annotated street level im-

ages into 66 object categories, featuring locations from all

around the world, and taken from a diverse source of im-

age capturing devices. Images are annoted in a fine-grained

style by using polygons for annotation and contain instance-

specific object annotations for 37 object categories. This

dataset is 5× larger than Cityscapes [6] (in terms of fine-

grained annotations) and exhibits a significantly larger vari-

ability in terms of geographic origins and number of object

categories. The image data is extracted from Mapillary1

and visually covers parts of Europe, North and South Amer-

ica, Asia, Africa and Oceania (see, Fig. 4), consequently

addressing the global spectrum of possible object appear-

ances. In addition, we are proposing a statistical protocol

for quality assurance (QA), such that targeted annotation

accuracies for precision and recall can be monitored and

verified. The dataset is also available as commercial edi-

tion with annotations for 100 object classes (with instance-

specific annotations for 58 classes), providing more detailed

semantics for autonomous driving specific categories.

2. The Mapillary Vistas Dataset

The proposed dataset is built upon images extracted from

www.mapillary.com . Mapillary is a community-led ser-

vice for people who collaboratively want to visualize the

world with street-level photos. Anyone can contribute with

photos of any place and the data is available for anyone to

explore under a CC-BY-SA license agreement.

The proposed dataset is designed to capture the broad

range of outdoor scenes available around the world. While

such design choices primarily affect the image content, a

broader interpretation of sampling data from around the

world also includes the data recording modality and the

sensing equipment. In what follows, we try to character-

ize our dataset according to the targeted distributions for

geographical and seasonal distribution, weather conditions,

viewing perspectives, capturing time, image resolution, i.e.

the diversity of images taken in the wild.

1 www.mapillary.com/app

The following characteristics describe the dataset prop-

erties for the complete dataset in terms of training and val-

idation data (18 000 + 2 000 images, respectively). The re-

maining 5 000 test images are sampled proportionally to the

geographic training data distribution and their annotation

characteristics remain undisclosed for fair comparisons be-

tween novel methods on our benchmark server2.

2.1. Dataset Compilation Process

The prime motivations for designing and introducing this

dataset were diversity, richness of detail and geographic ex-

tent of street-level data. Given these requirements, the goal

was to compile a dataset with reduced bias towards highly

developed countries and instead reflect the heterogeneous

compositions in appearance that can be found on a street

level perspective around the globe. To achieve this goal, we

deployed and followed a three-fold process:

1. From a large pool of available images (we were able to

browse from a repository of ≈140 million images), the

initial selection process was made according to criteria

defined in Sect. 2.1.1.

2. An image approved for annotation was segmented by

one of 69 annotators in a dense, polygon-based and

instance-specific manner as described in Sect. 2.1.2

3. Each annotated image was followed by a single-stage

quality assurance (QA) process. In order to guarantee

high annotation accuracy, an external annotation party

was stochastically used for a second QA phase in order

to maximize both, precision and recall rates. The QA

processes are discussed in Sect. 2.1.3.

2.1.1 Image and Category Selection

In order to accept an image for the semantic annotation pro-

cess, several criteria have to be met. First, the image resolu-

tion has to be at least full HD, i.e. a minimum width/height

of 1920× 1080 was imposed. Additionally, ≈ 90% of the

images should be selected from road/sidewalk views in ur-

ban areas and the remaining ones from highways, rural ar-

eas3 and off-road. Given these constraints, the database was

queried in a way to randomly present potential candidates to

a human for further evaluation and selection as follows.

Images with strong wide-angle view (focal length below

10mm) or 360◦ images were removed. Degraded images

exhibiting strong motion blur, rolling shutter artifacts, in-

terlacing artifacts, major windshield reflections or contain-

ing dominant image parts from the capturing vehicle/device

(like car hood, camera mount or wipers) were removed as

well. However, a small amount of distortion for motion blur

was accepted, as long as individual objects could still be

2 http://eval-vistas.mapillary.com/
3Via GPS-based feedback from http://www.geonames.org/
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recognized and precisely annotated. Since Mapillary im-

ages can belong to a sequence (i.e. a series of images taken

with either manual, pre-fixed or distance-depending capture

rate), we restrict to selecting images with unique views on

a scene to avoid redundant labeling of image content.

In order to satisfy diversity criteria, images were se-

lected to cover seasonal variability on both, northern and

southern hemispheres and different weather showing sunny,

rainy, cloudy, foggy or snowy conditions as well as vary-

ing lighting conditions like at dawn, dusk or even at night

(see, Fig. 6). Moreover, images are taken from all con-

tinents (North and South America, Europe, Africa, Asia,

Wider Geographic Oceania) except for Antarctica. An im-

age was counted to belong to a city area when their popula-

tion number was ≥50 000 and to a rural area otherwise.

Images are preferably selected for annotation in case

they contain i) multiple object categories, ii) multiple in-

stances of particular object categories and/or iii) rarely ap-

pearing object categories (according to histogram visualiza-

tion in Fig. 1. In addition, objects appearing in the images

should be reasonably close to the camera center instead of

being only far away. Another way to select images for anno-

tation is to run a segmentation model on a large number of

previously unseen data (from the global image pool), after

training it on the already available data and manually check

for images with qualitatively lowest performance. In princi-

ple, we however tried to select images without introducing

a bias towards specific machine annotations.

Categories. We distinguish between 66 visual object cat-

egories, mostly pertaining to a street-level scene domain.

The categories are organized into 7 root-level groups (see,

Fig. 1), namely object, construction, human, marking, na-

ture, void and animal. Each root-level group is organized

into different macro-groups. A subset of 37/66 categories

are additionally annotated in an instance-specific way. E.g.,

classes like cars, pedestrians, cyclists are labeled on the ba-

sis of individual objects and are therefore individually ac-

cessible within an image.

The criteria to add categories to the annotation pro-

cess were driven by several factors. Inspired by earlier

works like Cityscapes [6] and SIFT Flow [31], we used

the street-level and nature categories therein. In addition,

taking a closer look at open map initiatives like www.

openstreetmap.org inspired many of class selections in

root- and macro-categories object, barrier and flat. To help

with recognition tasks in research for autonomous driving,

special emphasis was put on properly annotating different

classes within macro-groups vehicle or traffic sign.

2.1.2 Image Annotation

Image annotation was conducted by a team of 69 profes-

sional image annotators, delivering an average rate of ≈ 5.1
images per annotator and day. Consequently, the average

annotation time is at around 94 minutes per image, which

is in line with what is reported in [6]. From the pool of an-

notators, 11 people are performing an internal round of first

level quality assurance (QA, see description in next sub-

section; takes approximately 15 minutes per image and is

included in 94 minutes), i.e. for each team of 5 annotators,

one person is performing a 100% check of annotations.

The image annotation process was inspired by the one re-

ported for Cityscapes [6]. Each annotator is encouraged to

start with annotating the images with object categories from

back to front, i.e. annotation is typically started with sky

(the most distant category to the camera center) and gradu-

ally works closer to the camera. In this way, a z-ordering for

individual object layers can be imposed, allowing to raster-

ize the final label images. Consequently, sky might be an-

notated with a single polygon despite showing several areas

in the image. Another positive aspect of such an annota-

tion protocol is that areas eventually getting overruled from

objects closer to the camera can be drawn faster and not

necessarily have to be corrected in case foreground objects

labels need to be refined.

Designing the annotation protocol for each object cate-

gory requires a well-defined object taxonomy and system-

atic instructions including fallback annotation solutions for

each object category (see, supplementary material for cat-

egory descriptions). In such a way and via regular feed-

back sessions with the annotation specialists, a commonly-

agreed and jointly-consistent protocol was developed.

For annotation, we implemented a tool with graphical

user interface, allowing annotators to seamlessly zoom to

the required level of detail, change the level of opacity,

quickly provide category selection and necessary toolboxes

for simple drawing and modifications functions for poly-

gons. In addition, the tool allows to sort objects in correct

z-order and provides a visualization bar, indicating minimal

object sizes to be annotated for a given zoom level.

2.1.3 Quality Assurance

We adopt a two-stage quality assurance (QA) process,

which is targeting instance-specific annotation accuracies

with ≥ 97% for both, precision and recall. The first round

of QA is applied to each image and is conducted as follow-

up step after annotation to correct potential mislabeling in

terms of precision and recall. The person conducting QA is

different from the annotator but reports back major issues

to the annotator for improving the initial annotation quality.

In order to further improve the final annotation quality,

we install a second QA process guided by a modified variant

of the four-eyes principle. To this end, a second (and there-

fore different) annotation provider revisits selected images

and is incentivized to spot errors measured by the weighted

intersection over union criterion as typically used to assess

the performance for instance-specific semantic segmenta-

4992

www.openstreetmap.org
www.openstreetmap.org


100

101

102

103

104

105

106
p
o
le

u
ti
li
ty
-p
o
le

tr
a
ff
ic
-s
ig
n
-f
ra
m
e

st
re
e
t-
li
g
h
t

b
il
lb
o
a
rd

tr
a
ff
ic
-l
ig
h
t

m
a
n
h
o
le

b
a
n
n
e
r

tr
a
sh

-c
a
n

ca
tc
h
-b
a
si
n

ju
n
ct
io
n
-b
o
x

cc
tv
-c
a
m
e
ra

fi
re
-h
yd

ra
n
t

b
e
n
ch

b
ik
e
-r
a
ck

m
a
il
b
o
x

p
o
th
o
le

p
h
o
n
e
-b
o
o
th

ca
r

tr
u
ck

b
ic
yc
le

m
o
to
rc
yc
le

b
u
s

o
th
e
r-
ve

h
ic
le

w
h
e
e
le
d
-s
lo
w

b
o
a
t

o
n
-r
a
il
s

tr
a
il
e
r

ca
ra
va

n

fr
o
n
t

b
a
ck

ro
a
d

si
d
e
w
a
lk

cu
rb
-c
u
t

cr
o
ss
w
a
lk
-p
la
in

p
a
rk
in
g

b
ik
e
-l
a
n
e

se
rv
ic
e
-l
a
n
e

ra
il
-t
ra
ck

p
e
d
e
st
ri
a
n
-a
re
a

cu
rb

fe
n
ce

w
a
ll

o
th
e
r-
b
a
rr
ie
r

g
u
a
rd
-r
a
il

b
u
il
d
in
g

b
ri
d
g
e

tu
n
n
e
l

p
e
rs
o
n

m
o
to
rc
yc
li
st

b
ic
yc
li
st

o
th
e
r-
ri
d
e
r

sk
y

ve
g
e
ta
ti
o
n

te
rr
a
in

m
o
u
n
ta
in

sn
o
w

w
a
te
r

sa
n
d

g
e
n
e
ra
l

cr
o
ss
w
a
lk
-z
e
b
ra

u
n
la
b
e
le
d

e
g
o
-v
e
h
ic
le

ca
r-
m
o
u
n
t

b
ir
d

g
ro
u
n
d
-a
n
im

a
l

su
p
p
o
rt vehicle

tr
a
ff
ic
-s
ig
n flat

b
a
rr
ie
r

st
ru
ct
u
re

ri
d
e
r

d
is
cr
e
te

object construction

h
u
m
a
n nature

m
a
rk
in
g

vo
id

a
n
im

a
l

Figure 1. Illustration of number of labeled instances per category and corresponding macro- and root-level class.

tion [15]. Next, we describe how we determine the sample

size for the second round of QA in order to probabilistically

validate the anticipated annotation accuracy.

QA Protocol. Let X be the set of true object instances of a

specific category among the dataset and let q : X → {0, 1}
be a deterministic function that checks if the quality of the

segmentation provided by the annotator for the specific ob-

ject instance is good-enough (i.e. q(x) = 1) or not (i.e.

q(x) = 0). E.g., the quality function in our case is q(x) = 1
if and only if both precision and recall of the segmentation

are ≥ 97%. Let Sn = {x1, . . . , xn} be a uniform ran-

dom sample from X and let qi = q(xi) be the binary out-

come from the segmentation quality assessment on instance

xi. Also, let s =
∑

x∈X
q(x) be the unknown number of

correctly annotated images over the entire dataset, and let

N = |X | be the population size. Following a Bayesian set-

ting, the posterior distribution of s after observing quality

assessments for the n object instances in Sn under Jeffrey’s,

non-informative prior4 is beta-binomial(a, b,N) with beta

parameters a = sn + 1

2
and b = n− sn + 1

2
and number of

trials N , where sn =
∑

n

i=1
q(xi) is the empirical number

of correctly labelled instances that we observe for instances

in Sn. We fix an accepted tolerance s0 about the annota-

tors’ accuracy to s0 = 0.99N correctly annotated images,

i.e. the annotator should correctly segment at least 99% of

the instances in X according to the quality criterion q or, in

other terms, we want s ≥ s0 to be satisfied. Next, we want

to determine the smallest interval ln ≤ s0 ≤ un around

the tolerance s0 ensuring the following two conditions: (i)

p(s > s0|sn ≤ ln) ≤ α and (ii) p(s < s0|sn ≥ un) ≤ α,

where 1 − α = 99% is our confidence level. The values

of ln and un depend on the sample size n and the larger n
the smaller this interval will be. If no value of ln satisfies

4If we had prior knowledge about the annotator’s performance, this

could be encoded into the prior.

property (i) then we set ln = −∞, while if no value of un

satisfies (ii) then we set un = ∞. The goal here is to de-

termine, with confidence level 1−α, whether the annotator

succeeded, or failed, in annotating the entire set with accu-

racy ≥ 99%. We want to take this decision based on the ob-

servation of the number of successful segmentations sn that

were assessed by the quality checker from the small sample

set Sn. By definition of ln and un, we achieve this goal by

simply checking whether sn ≥ un or sn ≤ ln, respectively.

If none of the conditions is satisfied, i.e. if ln < sn < un,

then we need more evidence to draw a conclusion with the

desired level of confidence from the Bayesian perspective.

To give a practical example, which is the one we imple-

ment, assume that we provide the quality checker with 400
images to check, which corresponds on average to about

n = 344 instances per category. Assume also that the pop-

ulation size corresponds to the dataset size, i.e. N = 25 000,

and that our targets in terms of minimum accuracy and con-

fidence level are as described above, i.e. 99%. Given this

setting, we obtain ln = 335 (i.e. ≈ 97.38%n) and un = n.

The quality check assesses that sn images out of n are cor-

rectly labelled. Now, if sn ≤ ln then with a level of confi-

dence of 99% the annotator will fail to deliver an annotation

accuracy ≥ 99% for the entire dataset. If this happens we

inform the annotator by showing typical error scenarios in

order to induce an improvement in the quality of the anno-

tations. Viceversa, if sn ≥ un then under the same level of

confidence we can assume that the entire dataset will be an-

notated with the desired quality target and we can interrupt

further quality assessments. In the specific numerical ex-

ample, this is true only if the annotator committed no error

in annotating the instances in Sn, for un = n. Otherwise, if

ln < sn < un, we need to continue the quality assessment

procedure on other sampled instances, because we can draw

no conclusion under the given confidence level.
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To conclude, with the given QA protocol, we will guar-

antee with a confidence level of 99% that at least 99% of the

instances in the dataset will have an instance-level segmen-

tation with precision and recall ≥ 97%, under the assump-

tion that the quality assessment will stop in the positive case

sn ≥ un, given an available budget for QA.

2.2. Dataset Splitting

Similar to Cityscapes [6], PASCAL VOC [10], Microsoft

COCO [30] or ADE20K [65], we decided to have a fixed

dataset splitting into training, validation and test sets. We

provide the labels for training and validation data and with-

hold the labels for the test data. Training and validation data

comprise 18 000 and 2 000 images, respectively and the re-

maining 5 000 images form the test set. Each of the sets is

compiled in a way to represent the characteristics described

in Sect. 2.1.1. Each of the sets is additionally grouped by

geographical regions. In such a way, segmentation assess-

ment can be performed on more regional levels, potentially

revealing classifier discrepancies e.g. when comparing re-

sults on images from North America to Asia.

3. Statistical Analysis

In this section we provide statistical analyses about the

Mapillary Vistas dataset and put some aspects on the distri-

bution of classes, volume of annotation, and complexity of

the scene in relation to other standard benchmark datasets.

3.1. Image Varieties

The set of images that populate the dataset are diverse in

terms of image resolution, focal length, and camera model.

In Fig. 2, top-left, we report the distribution of the im-

age resolution across the dataset. All images are at least

FullHD, but we have images with more than 22 Mpixels.

Most pictures are in landscape orientation. The dominant

aspect ratio is 4:3, followed by 16:9, but also other ratios

are represented (mean ratio is 1.38). In Fig. 2, top-right, we

provide the distribution of the focal length, which is mostly

concentrated in the 25-35mm range, but we find also images

taken with a wide-angle with focal length ranging between

15-20mm. Finally, in Fig. 2, bottom, we report the distribu-

tion of the camera brands used to capture the images. We

see that there is a predominance of mobile devices from Ap-

ple and Samsung, but in general the dataset spans a wide

range of different camera types, also head- or car-mounted

ones like Garmin and GoPro. All those statistics show that

the Mapillary Vistas dataset is rich in terms of variability

of the image acquisition sensors and settings. As opposed

to benchmark datasets like Cityscapes [6] or CamVid [3]

having a unique, ad-hoc acquisition system, images in our

dataset better match the real-world distribution of possible

capturing scenarios.

Figure 2. Top-left. Distribution of image resolution. Minimum

size is fixed at Full HD (bottom left) and maximum image resolu-

tion is >22MPixels. Top-right. Focal length distribution. Bottom.

Distribution of camera sensors/devices used for image capturing.

In Fig. 3 we characterize the level of expertise of users

that indirectly contributed images to our dataset, in terms of

their activity on Mapillary. Specifically, we show for a given

number of contributed images to Mapillary, how many users

have also contributed at least one image used in Mapillary

Vistas dataset. As we can see, the distribution ranges from

very active users, who uploaded up to 10M images, to users

that uploaded around 30 images. The mode of the distri-

bution is at about 35 000 uploaded images with 50 users.

This is a weak indication that the majority of the pictures

that form the Mapillary Vistas dataset were probably taken

by experienced users and, in general, there is also a large

variability of humans taking pictures.

102 103 104 105 106 107

Images per user

0

10

20

30

40

50

U
se

rs

Figure 3. Histogram of totally committed images to Mapillary for

user IDs behind images selected for annotation.
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Finally, in Fig. 4 we characterize also the distribution

of images in terms of their position in the world. To this

end, we provide a geo-localized histogram superimposed

on a map of the world. As we can see the Mapillary Vis-

tas dataset spans all the continents excepting the Antarctic.

This is a strong indication that the images in the Mapillary

Vistas dataset are very diverse in terms of appearance of the

different categories that are annotated, which is a distinctive

feature of the proposed benchmark.

Figure 4. Distribution of image recordings.

3.2. Distribution of Instances and Comparisons

We report in Fig. 1 the total number of actual instances

per class that have been segmented by an annotator. Each

group is sorted in decreasing order of number of instances

per class and coded with a different color. The root- and

macro-level class object encompasses the majority of the

instances and illustrates the broad number of separately an-

notated categories. Given such fine-grained annotations,

a large number of additional attributes can be inferred to

hopefully strengthen the research community towards de-

velopment of better models for street scene understanding.

In Fig. 5, left, we compare the frequency of images

with a fixed number of annotated objects in the Mapillary

Vistas dataset and Cityscapes [6]. Cityscapes [6] is the

largest dataset focused on urban street views, which con-

tains 5 000 finely-annotated and 20 000 coarsely-annotated

images, with instance segments covering 30 object cate-

gories (19 publicly available). It is the dataset that most re-

sembles ours in terms of scene domain. As we can see, the

Mapillary Vistas dataset surpasses Cityscapes [6] in terms

of density of object instances per image, with some images

exhibiting over 280 instances, and in general the distribu-

tion of images covers mostly dense scenes. Cityscapes [6]

covers a smaller spectrum of object densities and is slightly

biased towards small-density images, with at most 20 ob-

ject instances. It has to be mentioned that the statistics for

Cityscapes [6] cover the finely-annotated images.

A more specific analysis is given in Fig. 5, middle, where

we report the frequency of images with a certain number

of traffic regulation objects (i.e. traffic signs, traffic lights,

poles, pole groups, and guardrail). Also in this restricted

group of typical traffic elements our dataset is in general

richer in terms of object instances than Cityscapes [6], the

Downsampling
category level < macro-level < root-level

factor

2 98.00 98.23 98.54

4 96.24 96.67 97.28

8 92.90 93.71 94.87

16 87.12 88.43 90.54

32 77.80 80.11 83.69

64 65.29 69.10 74.48

128 50.67 56.53 63.85

Table 1. Control experiments to estimate upper bounds for se-

mantic segmentation results, assessed by Intersection-over-Union

(IoU, in %) scores for different grouping levels.

latter exhibiting a slight bias in terms of image frequency

towards images where no such elements are present.

In Fig. 5, right, we report a comparison about the dis-

tribution of images with respect to the density of traf-

fic participants. In addition to Cityscapes [6], this com-

parison has been extended also to other datasets like Mi-

crosoft COCO [30] and PASCAL VOC [10], which con-

tain street scenes despite not begin focused on them, and

to KITTI [12], which addresses tasks including semantic

segmentation and object detection.5 We can see that both

Cityscapes [6] and the Mapillary Vistas dataset cover a

larger variety of scene complexities in terms of traffic par-

ticipants compared to the other datasets, and both exhibit a

larger portion of densely-populated images.

4. Semantic Segmentation

Semantic segmentation is the first task defined on the

Mapillary Vistas dataset and consists in assigning a seman-

tic category to each pixel of the image. If multiple instances

from the same category, e.g. cars, are present in the scene,

their pixels will be assigned the same label car.

State Of The Art. The state-of-the-art approaches for se-

mantic segmentation are based on deep learning and benefit

from large-scale semantic segmentation datasets (or com-

binations thereof) such as Microsoft COCO [30], Pascal-

Context [39], Cityscapes [6], or ADE20K [65]. A line of

successful approaches have been inspired by the Fully Con-

volutional Network (FCN) [37], which has shown that ef-

fective semantic segmentation networks can be obtained

from state-of-the-art architectures for image classification

such as VGG [52], GoogleNet [53], ResNet [18], Wider

ResNet [58], etc., pre-trained on ImageNet [48] and/or

Places2 [63], by turning fully-connected layers into convo-

lutional layers. Some works [5, 28, 36, 50, 62] combine

FCNs with Conditional Random Fields (CRFs). Others,

shape the architecture to explicitly integrate global context

in the pixelwise classifier, or ensemble features at multiple

scales, either through CNNs [2, 35, 38, 40, 51, 57, 61] or

5No pixel-wise annotations are provided in KITTI [12] but several in-

dependent groups contributed to the annotation of about 700 frames.
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Figure 5. Comparative statistics of the frequency of images with a fixed number of: Left) annotated object instances per image (compared

to Cityscapes [6] finer-grained images); Middle) annotated traffic regulation objects, i.e. traffic signs, traffic lights, poles, pole group and

guard rail (compared to Cityscapes [6] finer-grained images); Right) traffic participants instances (compared to Cityscapes [6] fine-grained,

KITTI [12], PASCAL VOC [10] and Microsoft COCO [30]).

Recurrent Neural Networks (RNNs) [4, 42]. Further works

have focused on relaxing the level of supervision in FCNs

by considering bounding boxes [7], scribbles [27], or image

class labels [20, 21] as sources of weak supervision.

Goal and Metrics. The semantic segmentation algorithm

provides a category for each pixel in a test image. The

learner is trained on all non-void categories and ignores pix-

els belonging to void during inference. To assess the perfor-

mance of the semantic segmentation we adopt the standard

Jaccard Index, a.k.a. the PASCAL VOC intersection-over-

union IoU metric [11], which is given by IoU = TP

TP+FP+FN
,

where TP, FP and FN denote true positive, false positive and

false negative pixels, respectively, obtained over the test set.

The IoU is computed for each category separately and the

outcome is averaged, yielding IoUclass.

In Tab. 1, we provide some control experiments where

we estimate the upper bounds for the IoU scores for given

downsampling factors 2–128. We first downscale a label

image by a given factor (i.e. simulating processing at re-

duced size input) and then upsample it to the original image

size for evaluation of average IoU at original scale. The re-

ported numbers are an indication of the highest obtainable

scores. We provide detailed numbers for category-, macro-

and root-level labels, confirming that low-resolution pro-

cessing is significantly contributing to overall degradation

of segmentation results.

Baseline Results. In Tab. 2 we present baseline re-

sults using a Wider Network (ResNet38) [55] architecture

with cross-entropy loss as well as imbalance correction via

loss max-pooling and/or alternative minibatch compilation

strategies as described in [47].

Moreover, we list results from the winning submission of

the 2017 Large Scale Scene Understanding (LSUN) chal-

lenge on semantic segmentation, which was based on our

Mapillary Vistas dataset. The winning team PSPNET [60]

built upon [61], extending the basic ResNet 101 (pre-

trained on ImageNet and Cityscapes, though Cityscapes

contribution was negligible) architecture with the follow-

ing features: i) Modifying the res4b module according

to the hybrid dilation convolution (HDC) approach intro-

Method mean IoU validation mean IoU test

Single model & test scale

Wider Network [55]

uniform sampling, cross entropy loss 41.12 40.79

[55] + loss max-pooling [47]

uniform sampling 43.78 42.98

balanced class sampling 47.72 44.84

LSUN’17 segmentation challenge winner

PSPNet [61] (single model & scale) 49.76 –

+ HDC + aux. loss 50.28 –

+ class reweighting 51.50 –

+ Cityscapes pre-training 51.59 –

+ multi-scale test (6 scales) 53.51 –

4 model ensemble 53.85 52.41

Table 2. Semantic segmentation results for different network ar-

chitectures and extensions.

duced in [54]. In this module, 4 blocks are grouped to-

gether, setting dilation rates to 1, 2, 5, 9 for the first 3 blocks

and 1, 2, 5 for the last block. In module res5b, dilation

rates are set to 5, 9, 17. ii) Imbalance correction of train-

ing data by applying an inverse frequency weighting strat-

egy, thus raising the importance of underrepresented ob-

ject categories during loss computation. iii) An auxiliary

loss layer was added after res4b22 residual block, weighted

by 0.4. iv) Batch normalization parameters were adapted

during fine-tuning, using 16 crops of size 713 × 713. Fi-

nally, training images were resized to 1000 pixels at the

shorter side before cropping, and random horizontal flip-

ping and resizing between 0.5 − 2 was applied as training

data augmentation. During inference, significant improve-

ments were obtained by applying multi-scale testing at 6

scales (0.5, 0.75, 1.0, 1.25, 1.5, 1.75). Finally, a 4-model

ensemble of networks exploiting all of the above yielded the

final mean IoU scores of 53.85%/52.41% on validation/test

data as shown in the break-down in Tab. 26.

5. Instance-specific Semantic Segmentation

The second task of the Mapillary Vistas dataset intro-

duces an additional degree of difficulty to the semantic seg-

mentation task described in Sect. 4, because it requires to

6Additional information will be made available on https://
github.com/hszhao/PSPNet
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Figure 6. Qualitative labeling examples showing four pairs of orig-

inal images with corresponding, overlaid color-coded labels. Pre-

sented examples show images from different geographical regions

and with diverse lighting and weather conditions.

segment also different instances from the same semantic

category. In other terms, it combines semantic segmenta-

tion and object detection at the pixel level. As a result, each

pixel belonging to a category, admitting different instances

(e.g. cars, persons, but not sky), should be assigned besides

the semantic category also an instance identifier.

State Of The Art. The approaches for instance-specific

semantic segmentation typically distinguish two sub-tasks,

i.e. object segmentation and classification. In some works,

the two tasks are trained separately: the segmentation task

exploits segment proposal methods, which are subsequently

classified with region-based methods [13, 14, 44]. Sev-

eral state-of-the-art approaches fall within this category

such as SDS [15], Hypercolumn [16], CFM [8], MNC [9],

MultiPathNet [59] and the iterative approach in [24]. In

FCIS [25], i.e. the winner of the Microsoft COCO [30] 2016

segmentation competition, the two tasks are trained jointly

by sharing features between the two sub-tasks. Finally,

Mask R-CNN [17] is an extension of Faster R-CNN [44],

adding a prediction branch for instance segmentations and

obtaining state-of-the-art results on Microsoft COCO [30]

at the time of preparing the final version of this document.

The works in [26, 33] try to adapt FCNs to instance-

specific semantic segmentation by applying some sort of

clustering to the FCNs’ representations. However, those ap-

proaches are typically not end-to-end trainable, and rely on

hand-crafted post-processing steps.

Goal and Metrics. An instance-specific semantic seg-

mentation algorithm delivers a set of detections of object

instances in terms of pixel-level segmentation masks, each

with an associated confidence score. We evaluate the qual-

ity of instance-specific segmentations akin to [30] by com-

puting for each class the average precision (AP) at the re-

gion level [16] for multiple overlap thresholds (from 0.5
to 0.95 with step 0.05), and average the obtained scores to

avoid a bias towards a specific value. The overlap coincides

with IoU computed on a single instance. Each ground-truth

instance is matched to the most confident, suitable predic-

tion, while other potential matches are regarded as false

positive. In addition to the class-specific APs, we report

the mean AP value obtained over the different classes.

Baseline Results. We present the winning submission

of the LSUN challenge on instance-specific semantic seg-

mentation, which was based on an extension of Mask R-

CNN [17] and submitted from team UCenter [32]. Their ap-

proach extended the original architecture as follows: i) Us-

ing two pre-trained ResNet50 models with Feature Pyramid

Network [29] structures for the region proposal network,

pretrained on COCO data, using additional and smaller

anchors, ii) Using two Inception ResNet 50 models, pre-

trained on ImageNet. The ResNet 50 models are used

due to preference of larger image inputs (max. image size

1900) over deeper feature extractors. Also, all models were

trained using step-based learning rate updates instead of

polynomial decay. The final mask AP (mAP @ 0.5) results

on validation data are 22.8%(42.5%) and 23.7%(43.5%)
for single model RPN-based model and ensemble of above

models, respectively. Finally, the LSUN winner’s perfor-

mance of the ensemble on test data is 24.8%(44.2%).

6. Conclusion and Outlook

We have introduced the Mapillary Vistas Dataset - a

novel, large-scale dataset of street-level images for the tasks

of semantic segmentation and instance-specific semantic

segmentation. Given the significantly raised interest for au-

tonomously acting cars and robotic agents in general, we

hope that our dataset can help to significantly push the state-

of-the-art. The evaluation server for the Mapillary Vis-

tas Dataset will remain live and accept submissions of re-

sults from novel algorithms, which will then be ranked in a

leaderboard (visit research.mapillary.com ).
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