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Abstract

We address the problem of dense visual-semantic embed-
ding that maps not only full sentences and whole images
but also phrases within sentences and salient regions within
images into a multimodal embedding space. Such dense
embeddings, when applied to the task of image captioning,
enable us to produce several region-oriented and detailed
phrases rather than just an overview sentence to describe
an image. Specifically, we present a hierarchical structured
recurrent neural network (RNN), namely Hierarchical Mul-
timodal LSTM (HM-LSTM). Compared with chain struc-
tured RNN, our proposed model exploits the hierarchical re-
lations between sentences and phrases, and between whole
images and image regions, to jointly establish their repre-
sentations. Without the need of any supervised labels, our
proposed model automatically learns the fine-grained cor-
respondences between phrases and image regions towards
the dense embedding. Extensive experiments on several
datasets validate the efficacy of our method, which com-
pares favorably with the state-of-the-art methods.

1. Introduction

Visual-semantic embedding is to map both images and
their captions into a common space, so that we can re-
trieve/rank captions given images or retrieve/rank images
given captions. Particularly, it has been broadly used for
image captioning which aims to describe images with sen-
tences. Recently, the advances in deep learning have made
significant progress on visual-semantic embedding. Gener-
ally, image representations are produced by Convolutional
Neural Networks (CNN), and caption representations are
produced by Recurrent Neural Networks (RNN). A rank-
ing loss is subsequently optimized to make the correspond-
ing representations as close as possible in the embedding
space [11] [6] [29] [15].

Most previous methods only map full sentences and
whole images into an embedding space. As a result, they are
only able to describe an image with a general and overview
sentence, i.e., coarsely and generally depict the image con-

General Image Captioning

* ‘A man is standing in front of towers.’

1

Region-oriented, detailed, and phrase-level Captioning:
* ‘a man with a blue hat and sunglasses’
| . ‘a girl in red jacket and black dress’
y ° ‘several white towers with golden spire’
Figure 1. Region-oriented, detailed, and phrase-level image cap-
tioning. It is desired to produce several region-oriented and de-
tailed phrases rather than just an overview sentence for describing
an image.

tent. However, different users may be interested in distinct
objects/regions in an image, and hence it is desired to indi-
vidually depict them with specific descriptions. As shown
in Fig. 1, some users may be interested in ‘the man with
sunglasses’ while others may be interested in ‘the girl in red
Jjacket’. Therefore, it is desired to produce several region-
oriented and detailed phrases (e.g., ‘a man with a blue hat
and sunglasses’) rather than just an overview sentence (e.g.,
‘A man is standing in front of towers’) to describe an image.

An intuitive solution is to map not only the full sentences
but also the phrases within the sentences into a common
space. As such, for a given image after detecting salient
image regions, detailed phrases can be retrieved to describe
those image regions. Since long sentences are decomposed
as short phrases, many diverse and subtle phrases could be
produced. Besides, since more diverse phrases are mapped
into the embedding space, we can learn a much denser em-
bedding space so that it is possible to find a better and more
expressive phrase to describe an image or an image region.

However, most previous methods cannot naturally rep-
resent the phrases within sentences, and hence cannot map
them into the embedding space. The main reason is that the
neural networks (e.g., RNN [10] [9]) adopted for building
sentence representations often have a chain structure, i.e., a
basic unit is unfolded one by one through a chain structure.
Therefore, the full sentences are naturally represented with
the last hidden state of the chain structured neural network
since it encodes all the words within the sentence. But it is
difficult to directly build representations for phrases within
sentences.
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Moreover, previous methods are only able to utilize the
correspondences between whole images and full sentences.
But there are many fine-grained correspondences between
image regions and short phrases, which can be utilized to
boost the learning of the embedding space [15]. As shown
in Fig. 2, besides the sentence-level correspondence be-
tween the sentence ‘a cat sat on a mat.” and the whole im-
age, there is a correspondence between the phrase ‘a cat’
and the corresponding image region, etc. Therefore, it is
beneficial to exploit and utilize those fine-grained ‘phrase-
region’ correspondences to boost the embedding learning.

To address the two problems above, we propose a Hi-
erarchical Multimodal LSTM (HM-LSTM) model. In par-
ticular, our HM-LSTM model has a hierarchical structure,
where the intermediate nodes represent phrases and regions,
while the root nodes represent the full sentences and whole
images, as shown in Fig. 4. Thus, our model can naturally
and jointly learn the embeddings of all sentences, phrases,
images and image regions. More importantly, there are hi-
erarchical relations between sentences and phrases, and be-
tween whole images and image regions. For example, a
‘parent’ phrase (e.g., ‘a cat sat on the mat’) is related to
its ‘children’ phrases (e.g., ‘a cat’ and ‘the mat’, mean-
while the ‘parent’ image region covers the two ‘children’
image regions. Since our model has a hierarchical structure,
we can explicitly exploit such hierarchical relations when
jointly learning their embeddings. Compared with previous
visual-semantic models, our model can map phrases as well
as image regions into the embedding space, and hence we
can learn a dense embedding space, as shown in Fig. 2.

When building representations for phrases, the syntax of
phrases is explicitly considered in our model. This is due
to that image descriptions often make frequent references to
objects, therefore noun phrases in a sentence are often more
important than the other phrases (e.g., verb phrases). There-
fore, noun phrases and the other phrases are distinctively
modeled in our HM-LSTM model, i.e., our HM-LSTM
model is a syntax-aware model, which is more suitable for
the image captioning task.

Note that the fine-grained ‘phrase-region’ correspon-
dences can be automatically established along with the em-
bedding learning. In other words, we conduct dense visual-
semantic embedding in an unsupervised fashion, i.e., with-
out the need of manually annotating the correspondences
between image regions and phrases. Recently, the Dense-
Cap [13] has been proposed for region-oriented captioning.
However, they address this problem in a supervised fash-
ion, i.e., the ‘phrase-region’ correspondences are given for
each training image. Obviously, it is much more expen-
sive to annotate such fine-grained correspondences espe-
cially for a large scale dataset. In addition, the phrases anno-
tated in the DenseCap are independent of the full sentences,
whereas there are relations among sentences and phrases in

A sentence An image

‘a cat sat on the mat.” <----- >
parsing

Sentence .
region proposals

Noun Verb Phrase
Phrase

A dense embedding space

Figure 2. Hierarchical Multimodal Embedding: each sentence is
decomposed as some phrases by a tree parser, meanwhile some
salient image regions are detected from the image. Then, all of full
sentences, phrases, whole images, and image regions are mapped
into a common space, resulting in a dense embedding space.

our method since the phrases are extracted from the given
sentences.

Besides, the experimental results turn out that the perfor-
mance of general image captioning can also be significantly
improved due to learning a dense embedding space. This
is attributed to the joint embedding of full sentences and
their phrases. Since there are hierarchical relations among
full sentences and their phrases, such relations could ben-
efit both their embedding learning when they are jointly
mapped into the embedding space.

Briefly, our contributions are three-fold:

1. A hierarchical multimodal LSTM model is proposed
for dense visual-semantic embedding, which is able
to jointly learn the embeddings of all the sentences,
phrases, images, and image regions. Moreover, the hi-
erarchical relations among them can be explicitly ex-
ploited in our model.

2. The fine-grained correspondences between phrases
and image regions can be automatically learned and
utilized to boost the learning of the embedding space.

3. Our model is a syntax-aware model where noun
phrases and the other phrases are distinctively modeled
towards the task of image captioning.

2. Related Work

Visual-semantic embedding is closely related to the im-
age captioning. Generally, the methods of image cap-
tioning can be roughly grouped into two categories: im-
age caption ranking and image caption generation. Visual-
semantic embedding is often regarded as a kind of meth-
ods for image caption ranking, i.e., to rank captions given
images [6] [29] [14] [15]. DeViSE [6] is a simple model
for image caption ranking, where sentences are represented
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as the mean of their word embeddings. After that, some
sophisticated models such as the SDT-RNN [29] are pro-
posed to learn sentence embedding representations. Re-
cently, Deep Structure-Preserving (DeepSP) [34] is pro-
posed for image-text embedding and achieves the state-of-
the-art performance.

For dense embedding, the most related works are the

DeepVS [14] and the DeFrag [15], which also align words
and short phrases within sentences to bounding boxes. In
DeepVS [14], in order to build phrase representations, they
additionally apply a Markov Random Field (MRF) to con-
nect neighboring words as a phrase. On the contrary, our
hierarchical model can naturally generate syntax-correct
phrases and naturally build their representations. In De-
Frag [15], although the tree parsing is leveraged for phrase
representation, the phrases are independently represented
and hence the tree structure is actually discarded in favor of
a simpler model. On the contrary, the hierarchical relations
among phrases can be explicitly modeled by our method.
Moreover, the phrases are jointly instead of independently
modeled in our approach.
Image Caption Generation. Many methods are proposed
for image caption generation [22] [17] [33] [5] [30]. They
aim to generate descriptions by sampling from conditional
neural language models. Particularly, an ‘encoder-decoder’
framework [17] [3] is often adopted by those methods,
where a CNN is used to represent an image, and an RNN
is used to generate descriptions conditioned on the image
representation.

3. Our Approach

We attempt to map all of full sentences, phrases, whole
images, and image regions into a common space. Therefore,
our approach needs not only to learn the phrase-level corre-
spondences (i.e., the correspondences between phrases and
image regions) but also to learn a multimodal embedding
space containing all the sentences, phrases, images, and im-
age regions.

Specifically, each sentence is first represented as a Con-
stituency Tree with the Stanford Parser [18], where each
intermediate node in the tree indicates a phrase while the
root node indicates the full sentence. Meanwhile, for
each image, the Region Convolutional Neural Network (R-
CNN) [7] is adopted to extract a feature representation for
the image region which is generated by using object pro-
posal methods [32].

Next, if the phrase-level correspondences are known, our
HM-LSTM model can utilize such correspondences to con-
duct the embedding learning. In particular, each loss layer
is introduced to connect a noun phrase node to an image
region, as shown in Fig. 4. At last, all the losses (includ-
ing ‘phrase—-region’ losses and ‘sentence-image’ losses) are
simultaneously minimized to learn the embedding space.

Input: the ‘sentence—image’ pairs in the dataset {(S4, Ia)}?_,

1. Initialization stage: coarse-grained embedding learning. Only
the known sentence-level correspondences are utilized to learn
a simplified HM-LSTM model. And then, the initial representa-
tions for phrases and image regions are estimated.

2. Loopfort=1,...,T"

(a) Phrase-level correspondences learning. Given
the learned representations of phrases and regions,
we establish some ‘phrase-region’ correspondences
{.(S.dyk‘, Id,k)}kK:dl for ‘each image by measuring their
similarity (refers to Section 3.3).

(b) Fine-grained embedding learning. Given the previous
phrase-level correspondences, the HM-LSTM model is
learned to update the phrase and region representations
(refers to Section 3.2.2).

Output: the representations of sentences, phrases, images, and image
. . h d=D k=K,
regions. i.e., { (A, v )} Ui o

Figure 3. The iterative learning procedure for the hierarchical mul-
timodal embedding.

However, only the sentence-level (rather than the phrase-
level) correspondences are known at the beginning. But if
we have the representations of all phrases and image re-
gions, it is easy to establish their correspondences, e.g.,
by measuring the similarities between their representations.
Thus, in our approach we take an alternative learning pro-
cedure for the embedding learning, i.e., to learn the multi-
modal embedding space and those phrase-level correspon-
dences alternatively.

In particular, we have an initial learning stage, where
only the ‘sentence—image’ losses are minimized to learn a
simplified HM-LSTM model. As a result, we are able to
produce the initial representations for all the phrases and
image regions, which can be further used to construct the
initial phrase-level correspondences. After that, a full ver-
sion of HM-LSTM model (both sentence-level and phrase-
level losses are minimized) is learned, and the embedding
learning and the correspondences learning can be conducted
iteratively, as shown in Fig. 3.

3.1. Images Embedding

We follow the work of [14] to represent images. In par-
ticular, some object proposals are extracted using the selec-
tive search method [32], and they are represented with an
R-CNN [7]. Following Karpathy et al. [14], we adopt the
top 19 detected locations in addition to the whole image,
and compute the representations based on the pixels [ in-
side each bounding box as follows:

U = Wi [CNNg, (I)] + b )

where CNN(/;) transforms the pixels inside the bounding
box I, into 4096-dimensional activations of the fully con-
nected layer immediately before the classifier.
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3.2. Hierarchical Multimodal Embedding

Given the phrase-level correspondences, our HM-LSTM
model is able to learn a dense embedding space contain-
ing all the sentences, phrases, images, and image regions.
In particular, we first review the Tree-LSTM model [31]
which was recently proposed for sentence embedding. Then
it is extended to a syntax-aware model, namely Hierarchi-
cal LSTM (H-LSTM) model, where noun phrases and the
other phrases are distinctively modeled. At last, our HM-
LSTM model is proposed based on the H-LSTM model,
which is a multimodal model for joint embedding of sen-
tences, phrases, images, and image regions.

3.2.1 Hierarchical LSTM

Recently, the Tree-LSTM model [31] has been proposed to
explicitly model the hierarchical structure of sentences. In
particular, a sentence is parsed as a tree, where the root in-
dicates the full sentence and the intermediate nodes indicate
the phrases within the sentence.

In Tree-LSTM, children nodes are equally treated when
connected to their parent node without considering their
syntax type — noun phrase children and the other phrase
children (e.g., verb phrase) are equally treated. However,
since our task mostly focuses on objects, noun phrases and
the other phrases are modeled with different emphasis, i.e.,
the noun phrase children should have larger contributions
than the other phrase children.

To this end, we extend the Tree-LSTM as a syntax-aware
model, namely Hierarchical LSTM (H-LSTM) model.
Specifically, each unit of H-LSTM (indexed by j) contains
an input gate 7;, an output gate o;, a memory cell ¢;, and a
hidden state h;. Suppose there are N (j) noun phrase chil-
dren for j, and N(j) the other phrase children for j, each
H-LSTM unit will have N (j) forget gates fjk, k € N(j)
and N (j) forget gates f]], I € N(5), asin Eq (3) and Eq (4).

For a parent node 7, the hidden state of its noun phrase
children hy, k € N(j) and the other phrase children h;, [ €
N(j) are respectively summed up (denoted as h and h; i)
before 1mpact1ng the parent node j, as in Eq (2). Further-
more, the h and h have different effects on the input gate

1; by using distinct parameters U () and U( ), as shown in
Eq (5). It is similar for the output gate o; and memory cell
¢;, as shown in Eq (6), and Eq (7). This allows the H-LSTM
to sufficiently consider the syntax type of children nodes.

Do hj= > M )

keN(5) 1eN(5)
Fir =Wz, + UDhy +60)), ke N@G) (3
Fi=oWWDa; + T 0 400),  1eNG) @

lossg,

; lose
<+— forward 1' dJO
€ backward thonet | e

sentence /50 \v'd o

S0 N

. two-branch-net L2- Norm

sat on the mat

Figure 4. The structure of our HM-LSTM. Each sentence is parsed
as a tree, where the intermediate nodes indicate the phrases within
the sentence. Some noun phrases (NP) hq i are associated to the
corresponding image regions vq, by specific loss layers l0ssq, .

i; =o(WOz; + U0, + TR + b ®)

OJ :O'(W(O)l‘j + ﬁ(o)ﬁ] + U(O)EJ + b(o)) (6)
Uj = tanh(W(“)xj + ﬁ(”)ﬁj =+ U(U)EJ + b(u))
cj =t; Ou; + Z J?jkck + Z ?jlcl @)

kEN(5) 1EN(5)
hj =o0; ® tanh(c;) (8)

As the standard LSTM, each H-LSTM leaf node takes an
input vector x;. In our applications, each x; is a vector rep-
resentation of a word, which is determined as x; = W, I,
where I[; is an indicator column vector that has a single one
at the index of the ¢-th word in a word vocabulary. The
weights W, specify a word embedding matrix that we ini-
tialize with 300-dimensional word2vec [24] weights and
keep fixed due to overfitting concerns. In addition, as the
Tree-LSTM model, the hidden state /; of node j is regarded
as the representation of the corresponding phrase.

3.2.2 Hierarchical Multimodal LSTM

Based on the H-LSTM, we propose a Hierarchical Multi-
modal LSTM (HM-LSTM) to jointly embed all of images,
image regions, sentences, and phrases into a common space.

Let I4 ) denote the k-th image region in the d-th im-
age, Sq 1 denote the corresponding phrase. And let Iy
denote the d-th full image, and Sy denote the corre-
sponding full sentence. If all the ‘phrase-region’ pairs
{(Sa,k Id,k)}dD:’Ifi:O are known, we learn the HM-LSTM
as follows: a H-LSTM model is first constructed for each
sentence, and for each ‘phrase-region’ pair (Sqx, I4r) a
loss layer lossq j, is introduced. Inspired by DeepSP [34],
we introduce a two-branch-network instead of a simple
loss layer for each ‘phrase-region’ pair. Specifically, each
branch is composed of one fully connected layers (W; for
text and W,,, for images), one Batch Normalization (BN)
layer [12], and one L2-normalization layer, as shown in
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Fig 4. Note that the batch normalization could accelerate
the training and also make gradient updates more stable.

Let vq, indicate the representation of the Iy, and hg j
indicate the representation of the S, ;. We can define a scor-
ing function s(vg k, ha,k) = Va k- ha,x to measure their sim-
ilarity. Therefore, for each ‘phrase-region’ pair (Sq i, La k).
we define a contrastive loss to measure the distance between
their representations, as the following,

lossqr = Zmam{o,m — 5(va, ks ha k) + s(Va i, hai)}
1

+>_maz{0,m — s(hak, vaxr) + $(har, vas)}
I
©)

where m is the margin, hq is a contrastive phrase for image
region vq , and vice-versa with vq ;.

Next, the total loss can be defined by the weighted sum
of all losses, as the following,

D Ky

Loss = Z Z W4, k10854, (10)

d=1k=0

where wg j; is the weight for the k-th ‘phrase-image region’
pair. The lossg,o indicates the loss at the root layer for the
d-th image, and lossq i, k = 1,..., K, indicates the loss at
the intermediate layer, as shown in Fig. 4.

The weight wg ;. can be determined from the learning of
phrase-level correspondences, e.g., the wq,j is determined
according to the confidence of the correspondence for the
k-th ‘phrase-region’ pair.

Note that our HM-LSTM model is learned with the
Back-propagation Through Structure (BPTS) algorithm [8],
where the errors of different loss functions are respectively
injected to the corresponding loss layers, and back propa-
gated from root node to leaf nodes along the tree structure.

3.3. Phrase-level Correspondences

Before the learning of the HM-LSTM, we need to ob-
tain the phrase-level correspondences. We can address this
problem by measuring the representation similarities among
phrase candidates and image region candidates.

Specifically, given the image region candidates (i.e., the
top-19 object proposals), their representations can be easily
obtained according to Eq (1). Meanwhile, each sentence is
parsed as a tree, where each intermediate node in the tree
represents a phrase. Due to that we are just interested in
objects in an image, only noun phrases are selected as the
phrase candidates. Such selection is trivial since the syntax
type of each phrase (i.e., noun phrase, verb phrase, adjective
phrase, efc.) is available after parsing.

Two people sitting on rocking
chairs on the deck.

N
t oo I 'tt'/\ .
wo people si mg/PK
on NP

7~

rocking chairs

©
<
o
<)
S

two people
rocking chairs

two people sitting on rocking chairs

Figure 5. Correspondences between phrases and image regions.

With those image region and phrase candidates, we can
establish the ‘phrase-region’ correspondences according to
their representations. In particular, we compute a matrix S
to measure the similarities of representations for those can-
didates, where each element s;; = v; - h; indicates the sim-
ilarity score between the image region v; and the phrase h;.
Therefore, for each phrase we select the best matched im-
age region, and thus we can establish those ‘phrase-image
region’ pairs, as shown in Fig 5. Besides, for each gener-
ated ‘phrase-region’ pair (v;, h;), their similarity score s;;
is regarded as the confidence of their correspondence, which
is used to determine the weight of this correspondence, as
shown in Eq (10).

3.4. Initialization and Optimization

Initialization. At the initial learning stage, the initial
representations for all of sentences, phrases, images, and
image regions are obtained by learning a simplified HM-
LSTM model — only the losses at the root {lossqo}l,
are minimized and the other losses {lOSSd,k}gjﬁ}Ic:l are
neglected. Obviously, only the sentence-level correspon-
dences are used to learn the simplified HM-LSTM.

Optimization. The CNN part of our model comes from
Karpathy et al. [14], which is pre-trained on ImageNet [4]
and fine tuned on the 200 classes of the ImageNet Detection
Challenge [28]. We use Adam [16] to optimize the HM-
LSTM with a learning rate of 8 x 1073, In particular, we
use mini-batches of 64 paired image-sentences for training.

4. Image Caption Ranking

With the learned hierarchical multimodal embedding
model, we can describe a new image with a full sentence,
i.e., image-sentence ranking. In particular, we first extract
image features by using the CNN and retrieve the near-
est sentence vector hg« g € {hao}2=P in the embedding
space, which is regarded as the caption for the image.

More importantly, our method can produce region-
oriented phrase-level description for a new image. In par-
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Table 1. Flickr8K experiments. R@K is Recall@K (high is good).
Med r is the median rank (low is good).

Table 2. Flickr30K experiments. R@K is Recall@K (high is
good). Med r is the median rank (low is good).

Flickr8K Flickr30K
Model Image Annotation Image Search Model Image Annotation Image Search
R@1 | R@10 | Medr | R@1 | R@10 | Medr R@1 | R@10 | Medr | R@1 | R@10 | Medr
Random 0.1 1.1 631 0.1 1.0 500 Random 0.1 1.1 631 0.1 1.0 500
SDT-RNN [29] 6.0 34.0 23 6.6 31.7 25 SDT-RNN [29] 9.6 41.1 16 8.9 41.1 16
DeViSE [6] 4.8 27.3 28 5.9 29.6 29 DeViSE [6] 4.5 29.2 26 6.7 32.7 25
DeFrag [15] 12.6 44.0 14 9.7 42.5 15 DeFrag [15] 14.2 51.3 10 10.2 44.2 14
SC-NLM [17] 13.5 45.7 13 10.4 43.7 14 SC-NLM [17] 14.8 50.9 10 11.8 46.3 13
DeepVS [14] 16.5 54.2 7.6 11.8 44.7 12.4 DeepVS [14] 22.2 61.4 4.8 15.2 50.5 9.2
m-RNN [22] 14.5 48.5 11 11.5 42.4 15 m-RNN [22] 18.4 50.9 10 12.6 41.5 16
NIC [33] 20 61 6 19 64 5 NIC [33] 17.0 56.0 7 17.0 57.0 7
HM-LSTM 27.7 68.6 5 24.4 68.1 4 m-RNN-vgg [23] | 35.4 73.7 3 22.8 63.1 5
DeepSP [34] 35.7 74.4 N/A 25.1 66.5 N/A
HM-LSTM 38.1 76.5 3 27.7 68.8 4

ticular, after detecting some salient image regions/object
proposals, we can extract the visual features from them,
and retrieve specific and detailed phrases to describe them,

namely region-phrase ranking in this paper. MS-COCO
Model Image Annotation Image Search
. R@1 | R@10 | Medr | R@1 | R@10 | Med r
3. Experlments Random 0.1 1.1 631 0.1 1.0 500
. . DeepVS [14] 36.4 80.9 3 28.1 76.1 3
We use the Flickr8K [1 1], ickr'}.‘OK [35] [25] and MS- m-RNN-veg [23] | 41.0 | 83.5 > 2.0 | 770 3
COCO [20] [2] datasets in our experiments. These datasets DeepSP [34] 40.7 85.3 N/A 33.5 83.2 N/A
contain 8,000, 31,000 and 123,000 images respectively HM-LSTM 43.9 87.8 2 36.1 86.7 3

and each is annotated with 5 sentences using AMT. For
Flickr8K and Flickr30K, we use 1,000 images for valida-
tion, 1,000 for testing and the rest for training, which is
consistent with [11][14]. For MS-COCO we follow [14] to
use 5, 000 images for both validation and testing.

5.1. Image-Sentence Ranking

We first evaluate the proposed method on the task of
image-sentence ranking. We adopt Recall@K as the met-
ric for evaluation, namely the mean number of images for
which the correct caption is ranked within the top-K re-
trieved results (and vice-versa for sentences).

We compare our method with some visual-semantic em-
bedding methods (i.e., ranking-based methods) including
DeViSE, SDT-RNN, and DeFrag. For DeViSE [6], sen-
tences are represented as the mean of their word embed-
dings. The recursive neural network is used to learn sen-
tence representations in SDT-RNN [29]. For DeFrag [15],
sentences are represented as a bag of dependency parses.

In addition, some generation-based methods are also in-
volved in comparison. The m-RNN [22] and m-RNN-
vgg [23] are methods that do not use a ranking loss
and instead optimizes the log-likelihood of predicting the
next word in a sequence conditioned on an image. The
DeepVS [14] is proposed to first learn an embedding space
with a bidirectional-RNN, and then train an RNN sen-
tence generator based on the embedding space. Simi-
larly, the NIC [33] is another method that provides the
visual input directly to the RNN model. Recently, Deep
Structure-Preserving (DeepSP) [34] is proposed for image-

Table 3. MS-COCO experiments. R@K is Recall@K (high is
good). Med r is the median rank (low is good).

text embedding and achieves the state-of-the-art perfor-
mance, where the captions for the same image are encour-
aged to be close to each other.

5.1.1 Results on Flickr8K and Flickr30K

We evaluate our approach on the Flickr8K and Flickr30K.
Particularly, the dimension of the embedding space is set as
512, i.e., h; and v; are 512-dimensional vectors.

The R@K and Med r of different methods are shown in
Table 1 and Table 2. Our model outperforms the ranking-
based methods by a large margin. Besides, our method also
compares favorably with the state-of-the-art methods.

The results of DeepSP [34] in Table 2 are based on the
mean vector representations, i.e., a sentence is represented
as the mean of their word embeddings. This is a fair com-
parison since both our model and this version of DeepSP
are based on the same word embeddings — word2vec repre-
sentation [24]. Note that if more sophisticated sentence rep-
resentations such as Fisher vector (FV) are utilized, the per-
formance of DeepSP could be further improved [34]. How-
ever, the memory cost is huge and hence it is not well-suited
to a large scale image-sentence ranking task.

5.1.2 Results on MS-COCO

On the dataset of MS-COCO, we follow the experimental
setting of [14] to randomly sample 1,000 images for test-
ing. Specifically, the dimension of the embedding space
is set as 512, and the Multiscale Combinatorial Grouping
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(MCQG) [1] is adopted to replace the R-CNN to generate ob-
ject proposals.

The results of the ranking tasks are shown in Table 3.
Obviously, we can see that our method significantly outper-
forms the ranking-based methods. Even for the state-of-the-
art methods such as m-RNN-vgg [23] and DeepSP [34], our
approach still compares favorably with them.

From the results of image-sentence ranking on all three
datasets, we have a conclusion that the performance of gen-
eral image captioning could be significantly improved by
learning a dense embedding space. This is attributed to the
joint embedding of full sentences and their phrases. Since
there are hierarchical relations among full sentences and
their phrases, such relations could benefit both their embed-
ding learning when they are jointly represented and mapped
into the embedding space.

5.2. Region-Phrase Ranking

Our method can produce region-oriented phrase-level
description for a new image. Generally, after detecting
some salient image regions/object proposals, our model can
retrieve subtle and detailed phrases to describe them. For
easier evaluation, the image regions are manually annotated
instead of being automatically detected in this experiments.

For quantitative evaluation, we publish a new dataset
based on the MS-COCO, namely MS-COCO-region
dataset. Specifically, 1000 images and corresponding sen-
tences are randomly selected from the MS-COCO valida-
tion set. And then, AMT workers [27] are asked to anno-
tate image regions in those images and associate them to
the phrases within the sentences. Although some phrase-
level captioning datasets such as Visual Genome [19] and
Flickr30k-Entities [26] have been proposed, their phrases
either are freely annotated by workers or have no relations
with the sentences. On the contrary, the phrases in MS-
COCO-region dataset are automatically extracted from the
given sentences, and there are hierarchical relations be-
tween sentences and phrases.

Specifically, for each sentence, 1 ~ 5 noun phrases are
automatically extracted by using Stanford Parser. For each
image, some AMT workers are asked to annotate 1 ~ 8 re-
gions and associate them to those extracted phrases. As are-
sult, 4467 salient regions and 18724 corresponding phrases
are collected in total.

For comparison, DeepVS and m-RNN-vgg are adopted
as baselines, where each region-phrase pair is indepen-
dently fed to those models to obtain their embeddings. The
results of region-phrase ranking are shown in Table 4. Obvi-
ously, our method outperforms both DeepVS and m-RNN-
vgg. It is mainly because (1) the relations among phrases
are better utilized due to the hierarchical structure of our
model, and (2) the chain structured RNN is good at repre-
senting long sequences (i.e., full sentences) instead of short

Table 4. Region-Phrase Ranking. R@K is Recall@K (high is
good). Med r is the median rank (low is good).

Region Annotation

Model R@1 | R@5 | R@10 | Med r
Random 002 | 0.12 | 024 | 3133
DeepVS [14] 72 | 181 | 268 64
m-RNN-vgg [23] | 8.1 | 20.6 | 282 56
HM-LSTM 108 | 226 | 307 2

(1) a white and gray ca:

(2) a close up of a cat laying next to a mouse
(3) a white and gray cat

(4) a cat with an intent look

(5) his cat below

(1) a cow standing in the grass with a tag in its ear
(2) a cow with a black face

(3) a cow staring into the camera

(4) mother cow laying next to her baby on the grass
(5) a close up of a black and white cow

(a) aregion of ‘cat’ (b) aregion of ‘cow’

Figure 6. Our approach can produce subtle and detailed descrip-
tions for an image region. Besides, many descriptions are diverse
so that they can describe different aspects of an object.

sequences (i.e., phrases). So we have a conclusion that our
model can jointly represent short phrases along with long
sentences, and better utilize their relations as well.

Qualitative results. Our method can describe image re-
gions with detailed and subtle phrases. For example, for the
Fig. 6(a) previous methods tend to describe it with a gen-
eral and overview description, e.g., ‘A cat sitting under an
umbrella’. In contrast, our method targets a salient image
region (e.g., which is marked by red box), and produce de-
tailed and subtle descriptions such as ‘a white and gray cat
with a strip tail’. Compared to the coarse description ‘a cat’,
our description is more informative and expressive.

In addition, our approach can produce some diverse de-
scriptions for a given image region. As shown in Fig. 6(b),
for the image region containing a ‘cow’, the top-5 retrieved
phrases diversely describe the ‘cow’, e.g., ‘a cow standing
in the grass with a tag in its ear’ focuses on the ear of the
cow, while ‘a cow staring into the camera’ focuses on the
action of the cow. In other words, our approach can di-
versely describe different aspects of an object of interest.

5.3. Discussion
5.3.1 Learned Embedding Space

To intuitively and qualitatively check the properties of the
learned embedding space, we visualize the learned embed-
ding vectors in a 2-D space by using t-SNE [21]. Specif-
ically, we randomly sample 60 images and corresponding
sentences from our MS-COCO testing dataset. And their
embedding vectors are visualized in a 2-D space, as shown
in Fig. 8. Particularly, we connect each image embedding to
5 corresponding sentence embeddings by lines. We can see
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An empty room containing a plant and a
painting on the wall.

Two people sitting on rocking chairs on the deck.

Modern kitchen with assortment of cooking and
food items on counter.

Two giraffes and a zebra in an outdoor zoo.

(2) rocking chairs || (3) the deck

(3) wall |

(1) two people ‘ (1) an empty room ‘ ‘ (2) a plant ‘

[(1) modern kitchen |[ @ food items ]

[ @) wo peaple sitting on rocking chairs | [@) apainting | [ (5) a plant and a painiing |

[ 3) cooking and food items | (1) wo giraffes | [ 2) azebra | [(3) outdoor zoo

(a) (b)

© (d)

Figure 7. Four examples of the learned correspondences between phrases and image regions. For image (a), we obtain 4 phrases after
sentence parsing: (1) ‘two people’, (2) ‘rocking chairs’, (3) ‘the deck’, and (4) ‘two people sitting on rocking chairs’, meanwhile some
salient image regions are obtained. The learned correspondences between phrases and image regions are indicated by their color, e.g., the
phrase ‘two people’ corresponds to the orange box. Obviously, our approach can learn correct correspondences in most cases. Note that
(d) is a failure example, it is mainly due to that the salient regions do not cover the objects mentioned in its caption.

Sample sentences

Embedding space

38: The black dog runs with a ball with two smaller
dogs behind it.

54: A dog has its head inside a red and green gift bag.

2: A brown dog drinks from a water botle.

47: A biker rides on a dirt road.

4: Rider jumps snowmobile high in rural area.

59: 4 person takes a drink of water while riding on a
bike.

30: The man and woman show off their matching skull
tattoos.

6: A man and a woman read a book while their friend
has a drink.

32: Tywo woman wearing similar shirts walk to the lefi.

9: A little girl in a red shirt holds on to a pole near a

street
28: The small girl in the red shirt pushes the little boy.

Figure 8. The visualization of the learned embedding space. Each
image is connected to 5 corresponding sentences by lines. Obvi-
ously, the image and the corresponding sentences are very close
to each other in most cases. Besides, images/sentences with sim-
ilar semantics are also close to each other, e.g., the 38-th, 54-th,
and 2-nd images are all related to ‘Dog’, and their embeddings are
exactly neighbors in the embedding space (within the red circle).

that the learned image embedding is very close to its sen-
tence embeddings in most cases, which demonstrates the
effectiveness of our approach.

Moreover, from Fig. 8 we can see that our model can
learn a semantic embedding space, where images/sentences
with similar semantics will be mapped close to each other.
For example, the 38-th, 54-th, and 2-th images are all related
to ‘Dog’ (as shown by their descriptions). And their learned
embedding vectors are exactly neighbors in the embedding
space (within the red circle).

5.3.2 Learned Phrase-level Correspondences

When learning the dense embedding space, our approach
can automatically find the ‘phrase-region’ correspondences
in the training data. We evaluate the quality of those learned
correspondences here. Since it is expensive to obtain the
ground truth phrase-level correspondences, we only make

an evaluation on a subset of training data. In practice,
we randomly sample 2000 ‘phrase-region’ pairs from all
learned phrase-level correspondences, and ask 10 users to
judge whether each pair is correct. After a majority voting
among those users, we find out that 82% learned correspon-
dences are correct.

Fig. 7 illustrates four examples of the learned correspon-
dences between phrases and image regions. In most cases,
our approach is able to find correct correspondences. More-
over, there are consistent mappings between the phrases’ as
well as the regions’ hierarchical structures, e.g., the phrase
‘two people sitting on rocking chairs’ is on top of two
phrases ‘two people’ and ‘rocking chairs’, meanwhile the
red box for ‘two people sitting on rocking chairs’ exactly
cover the orange box for ‘two people’ and the green box for
‘rocking chairs’, efc.

6. Conclusion

In this paper, a Hierarchical Multimodal LSTM model
is proposed for dense visual-semantic embedding, which
can jointly learn the embeddings of all the sentences, their
phrases, images, and salient image regions. Due to the hi-
erarchical structure, we can naturally build representations
for all phrases and image regions, and exploit their hierar-
chical relations as well. The experimental results turn out
that the performance of general image captioning can be
significantly improved due to learning a dense embedding
space. Bedsides, our method can produce detailed and di-
verse phrases to describe image salient regions.
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