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Abstract

We propose an attentive local feature descriptor suitable

for large-scale image retrieval, referred to as DELF (DEep

Local Feature). The new feature is based on convolutional

neural networks, which are trained only with image-level

annotations on a landmark image dataset. To identify seman-

tically useful local features for image retrieval, we also pro-

pose an attention mechanism for keypoint selection, which

shares most network layers with the descriptor. This frame-

work can be used for image retrieval as a drop-in replace-

ment for other keypoint detectors and descriptors, enabling

more accurate feature matching and geometric verification.

Our system produces reliable confidence scores to reject false

positives—in particular, it is robust against queries that have

no correct match in the database. To evaluate the proposed

descriptor, we introduce a new large-scale dataset, referred

to as Google-Landmarks dataset, which involves challenges

in both database and query such as background clutter, par-

tial occlusion, multiple landmarks, objects in variable scales,

etc. We show that DELF outperforms the state-of-the-art

global and local descriptors in the large-scale setting by

significant margins.

1. Introduction

Large-scale image retrieval is a fundamental task in com-

puter vision, since it is directly related to various practical

applications, e.g., object detection, visual place recognition,

and product recognition. The last decades have witnessed

tremendous advances in image retrieval systems—from hand-

crafted features and indexing algorithms [22, 33, 27, 16] to,

more recently, methods based on convolutional neural net-

works (CNNs) for global descriptor learning [2, 29, 11].

Despite the recent advances in CNN-based global descrip-

tors for image retrieval in small or medium-size datasets [27,

28], their performance may be hindered by a wide variety

of challenging conditions observed in large-scale datasets,

such as clutter, occlusion, and variations in viewpoint and

illumination. Global descriptors lack the ability to find patch-
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Figure 1: Overall architecture of our image retrieval system, us-

ing DEep Local Features (DELF) and attention-based keypoint

selection. On the left, we illustrate the pipeline for extraction and

selection of DELF. The portion highlighted in yellow represents an

attention mechanism that is trained to assign high scores to relevant

features and select the features with the highest scores. Feature

extraction and selection can be performed with a single forward

pass using our model. On the right, we illustrate our large-scale

feature-based retrieval pipeline. DELF for database images are

indexed offline. The index supports querying by retrieving nearest

neighbor (NN) features, which can be used to rank database images

based on geometrically verified matches.

level matches between images. As a result, it is difficult to

retrieve images based on partial matching in the presence of

occlusion and background clutter. In a recent trend, CNN-

based local features are proposed for patch-level matching

[12, 42, 40]. However, these techniques are not optimized

specifically for image retrieval since they lack the ability to

detect semantically meaningful features, and show limited

accuracy in practice.

Most existing image retrieval algorithms have been evalu-

ated in small to medium-size datasets with few query images,

i.e., only 55 in [27, 28] and 500 in [16], and the images in

the datasets have limited diversity in terms of landmark lo-

cations and types. Therefore, we believe that the image

retrieval community can benefit from a large-scale dataset,

comprising more comprehensive and challenging examples,

to improve algorithm performance and evaluation methodol-

3456



ogy by deriving more statistically meaningful results.

The main goal of this work is to develop a large-scale

image retrieval system based on a novel CNN-based feature

descriptor. To this end, we first introduce a new large-scale

dataset, Google-Landmarks, which contains more than 1M

landmark images from almost 13K unique landmarks. This

dataset covers a wide area in the world, and is consequently

more diverse and comprehensive than existing ones. The

query set is composed of an extra 100K images with diverse

characteristics; in particular, we include images that have

no match in the database, which makes our dataset more

challenging. This allows to assess the robustness of retrieval

systems when queries do not necessarily depict landmarks.

We then propose a CNN-based local feature with atten-

tion, which is trained with weak supervision using image-

level class labels only, without the need of object- and patch-

level annotations. This new feature descriptor is referred to

as DELF (DEep Local Feature), and Fig. 1 illustrates the

overall procedure of feature extraction and image retrieval.

In our approach, the attention model is tightly coupled with

the proposed descriptor; it reuses the same CNN architecture

and generates feature scores using very little extra computa-

tion (in the spirit of recent advances in object detection [30]).

This enables the extraction of both local descriptors and key-

points via one forward pass over the network. We show that

our image retrieval system based on DELF achieves the state-

of-the-art performance with significant margins compared to

methods based on existing global and local descriptors.

2. Related Work

There are standard datasets commonly used for the eval-

uation of image retrieval techniques. Oxford5k [27] has

5,062 building images captured in Oxford with 55 query

images. Paris6k [28] is composed of 6,412 images of land-

marks in Paris, and also has 55 query images. These two

datasets are often augmented with 100K distractor images

from Flickr100k dataset [27], which constructs Oxford105k

and Paris106k datasets, respectively. On the other hand, Holi-

days dataset [16] provides 1,491 images including 500 query

images, which are from personal holiday photos. All these

three datasets are fairly small, especially having a very small

number of query images, which makes it difficult to gen-

eralize the performance tested in these datasets. Although

Pitts250k [35] is larger, it is specialized to visual places with

repetitive patterns and may not be appropriate for the general

image retrieval task.

Instance retrieval has been a popular research problem for

more than a decade. See [43] for a recent survey. Early sys-

tems rely on hand-crafted local features [22, 5, 8], coupled

with approximate nearest neighbor search methods using KD

trees or vocabulary trees [6, 25]. Still today, such feature-

based techniques combined with geometric re-ranking pro-

vide strong performance when retrieval systems need to

operate with high precision.

More recently, many works have focused on aggregation

methods of local features, which include popular techniques

such as VLAD [18] and Fisher Vector (FV) [19]. The main

advantage of such global descriptors is the ability to provide

high-performance image retrieval with a compact index.

In the past few years, several global descriptors based

on CNNs have been proposed to use pretrained [4, 34] or

learned networks [2, 29, 11]. These global descriptors are

most commonly trained with a triplet loss, in order to pre-

serve the ranking between relevant and irrelevant images.

Some retrieval algorithms using these CNN-based global

descriptors make use of deep local features as a drop-in re-

placement for hand-crafted features in conventional aggrega-

tion techniques such as VLAD or FV [24, 36]. Other works

have re-evaluated and proposed different feature aggregation

methods using such deep local features [3, 21].

CNNs have also been used to detect, represent and com-

pare local image features. Verdie et al. [37] learned a regres-

sor for repeatable keypoint detection. Yi et al. [41] proposed

a generic CNN-based technique to estimate the canonical

orientation of a local feature and successfully deployed it to

several different descriptors. MatchNet [12] and DeepCom-

pare [42] have been proposed to jointly learn patch repre-

sentations and associated metrics. Recently, LIFT [40] pro-

posed an end-to-end framework to detect keypoints, estimate

orientation, and compute descriptors. Different from our

work, these techniques are not designed for image retrieval

applications since they do not learn to select semantically

meaningful features.

Many visual recognition problems employ visual atten-

tion based on deep neural networks, which include object

detection [45], semantic segmentation [14], image caption-

ing [38], visual question answering [39], etc. However, vi-

sual attention has not been explored actively to learn visual

features for image retrieval applications.

3. Google-Landmarks Dataset

Our dataset is constructed based on the algorithm de-

scribed in [44]. Compared to the existing datasets for image

retrieval [27, 28, 16], the new dataset is much larger, con-

tains diverse landmarks, and involves substantial challenges.

It contains 1, 060, 709 images from 12, 894 landmarks, and

111, 036 additional query images. The images in the dataset

are captured at various locations in the world, and each im-

age is associated with a GPS coordinate. Example images

and their geographic distribution are presented in Fig. 2

and Fig. 3, respectively. While most images in the existing

datasets are landmark-centric, which makes global feature

descriptors work well, our dataset contains more realistic im-

ages with wild variations including foreground/background

clutter, occlusion, partially out-of-view objects, etc. In par-

ticular, since our query images are collected from personal
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(a) Sample database images

(b) Sample query images

Figure 2: Example database and query images from Google-

Landmarks. They have a lot of variations and challenges including

background clutter, small objects, and multiple landmarks.

Figure 3: Image geolocation distribution of our Google-Landmarks

dataset. The landmarks are located in 4,872 cities in 187 countries.

photo repositories, some of them may not contain any land-

marks and should not retrieve any image from the database.

We call these query images distractors, which play a critical

role to evaluate robustness of algorithms to irrelevant and

noisy queries.

We use visual features and GPS coordinates for ground-

truth construction. All images in the database are clustered

using the two kinds of information, and we assign a land-

mark identifier to each cluster. If physical distance between

the location of a query image and the center of the cluster

associated with the retrieved image is less than a threshold,

we assume that the two images belong to the same landmark.

Note that ground-truth annotation is extremely challenging,

especially considering the facts that it is hard to predefine

what landmarks are, landmarks are not clearly noticeable

sometimes, and there might be multiple instances in a single

image. Obviously, this approach for ground-truth construc-

tion is noisy due to GPS errors. Also, photos can be captured

from a large distance for some landmarks (e.g., Eiffel Tower,

Golden Gate Bridge), and consequently the photo location

might be relatively far from the actual landmark location.

However, we found very few incorrect annotations with the

threshold of 25km when checking a subset of data manually.

Even though there are few minor errors, it is not problem-

atic, especially in relative evaluation, because algorithms are

unlikely to be confused between landmarks anyway if their

visual appearances are sufficiently discriminative.

4. Image Retrieval with DELF

Our large-scale retrieval system can be decomposed into

four main blocks: (i) dense localized feature extraction, (ii)

keypoint selection, (iii) dimensionality reduction and (iv)

indexing and retrieval. This section describes DELF feature

extraction and learning algorithm followed by our indexing

and retrieval procedure in detail.

4.1. Dense Localized Feature Extraction

We extract dense features from an image by applying a

fully convolutional network (FCN), which is constructed by

using the feature extraction layers of a CNN trained with

a classification loss. We employ an FCN taken from the

ResNet50 [13] model, using the output of the conv4 x con-

volutional block. To handle scale changes, we explicitly

construct an image pyramid and apply the FCN for each

level independently. The obtained feature maps are regarded

as a dense grid of local descriptors. Features are localized

based on their receptive fields, which can be computed by

considering the configuration of convolutional and pooling

layers of the FCN. We use the pixel coordinates of the center

of the receptive field as the feature location. The receptive

field size for the image at the original scale is 291 × 291.

Using the image pyramid, we obtain features that describe

image regions of different sizes.

We use the original ResNet50 model trained on Ima-

geNet [31] as a baseline, and fine-tune for enhancing the

discriminativeness of our local descriptors. Since we con-

sider a landmark recognition application, we employ anno-

tated datasets of landmark images [4] and train the network

with a standard cross-entropy loss for image classification as

illustrated in Fig. 4(a). The input images are initially center-

cropped to produce square images and rescaled to 250×250.

Random 224 × 224 crops are then used for training. As a

result of training, local descriptors implicitly learn repre-

sentations that are more relevant for the landmark retrieval
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Features

Attention Scores

Features

(a) Descriptor Fine-tuning (b) Attention-based Training

Figure 4: The network architectures used for training.

problem. In this manner, neither object- nor patch-level

labels are necessary to obtain improved local descriptors.

4.2. Attention­based Keypoint Selection

Instead of using densely extracted features directly for

image retrieval, we design a technique to effectively se-

lect a subset of the features. Since a substantial part of the

densely extracted features are irrelevant to our recognition

task and likely to add clutter, distracting the retrieval pro-

cess, keypoint selection is important for both accuracy and

computational efficiency of retrieval systems.

4.2.1 Learning with Weak Supervision

We propose to train a landmark classifier with attention to ex-

plicitly measure relevance scores for local feature descriptors.

To train the function, features are pooled by a weighted sum,

where the weights are predicted by the attention network.

The training procedure is similar to the one described in

Sec. 4.1 including the loss function and datasets, and is illus-

trated in Fig. 4(b), where the attention network is highlighted

in yellow. This generates an embedding for the whole input

image, which is then used to train a softmax-based landmark

classifier.

More precisely, we formulate the training as follows. De-

note by fn ∈ Rd, n = 1, ..., N the d-dimensional features

to be learned jointly with the attention model. Our goal is

to learn a score function α(fn; θ) for each feature, where θ

denotes the parameters of function α(·). The output logit y

of the network is generated by a weighted sum of the feature

vectors, which is given by

y = W

(

∑

n

α(fn; θ) · fn
)

, (1)

where W ∈ RM×d represents the weights of the final fully-

connected layer of the CNN trained to predict M classes.

For training, we use cross entropy loss, which is given by

L = −y∗ · log
(

exp (y)

1T exp (y)

)

, (2)

where y∗ is ground-truth in one-hot representation and 1 is

one vector. The parameters in the score function α(·) are

trained by backpropagation, where the gradient is given by

∂L
∂θ

=
∂L
∂y

∑

n

∂y

∂αn

∂αn

∂θ
=

∂L
∂y

∑

n

Wfn
∂αn

∂θ
, (3)

where the backpropagation of the output score αn ≡ α(fn; θ)
with respect to θ is same as the standard multi-layer percep-

tron.

We restrict α(·) to be non-negative, to prevent it from

learning negative weighting. The score function is designed

using a 2-layer CNN with a softplus [9] activation at the top.

For simplicity, we employ the convolutional filters of size

1×1, which work well in practice. Once the attention model

is trained, it can be used to assess the relevance of features

extracted by our model.

4.2.2 Training Attention

In the proposed framework, both the descriptors and the at-

tention model are implicitly learned with image-level labels.

Unfortunately, this poses some challenges to the learning

process. While the feature representation and the score func-

tion can be trained jointly by backpropagation, we found

that this setup generates weak models in practice. Therefore,

we employ a two-step training strategy. First, we learn de-

scriptors with fine-tuning as described in Sec. 4.1, and then

the score function is learned given the fixed descriptors.

Another improvement to our models is obtained by ran-

dom image rescaling during attention training process. This

is intuitive, as the attention model should be able to gener-

ate effective scores for features at different scales. In this

case, the input images are initially center-cropped to pro-

duce square images, and rescaled to 900 × 900. Random

720 × 720 crops are then extracted and finally randomly

scaled with a factor γ ≤ 1.

4.2.3 Characteristics

One unconventional aspect of our system is that keypoint

selection comes after descriptor extraction, which is different

from the existing techniques (e.g., SIFT [22] and LIFT [40]),

where keypoints are first detected and later described. Tradi-

tional keypoint detectors focus on detecting keypoints repeat-

ably under different imaging conditions, based only on their

low-level characteristics. However, for a high-level recogni-

tion task such as image retrieval, it is also critical to select

keypoints that discriminate different object instances. The

proposed pipeline achieves both goals by training a model
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that encodes higher level semantics in the feature map, and

learning to select discriminative features for the classifica-

tion task. This is in contrast to recently proposed techniques

for learning keypoint detectors, i.e., LIFT [40], which collect

training data based on SIFT matches. Although our model is

not constrained to learn invariances to pose and viewpoint,

it implicitly learns to do so—similar to CNN-based image

classification techniques.

4.3. Dimensionality Reduction

We reduce the dimensionality of selected features to ob-

tain improved retrieval accuracy, as common practice [15].

First, the selected features are L2 normalized, and their di-

mensionality is reduced to 40 by PCA, which presents a

good trade-off between compactness and discriminativeness.

Finally, the features once again undergo L2 normalization.

4.4. Image Retrieval System

We extract feature descriptors from query and database

images, where a predefined number of local features with the

highest attention scores per image are selected. Our image

retrieval system is based on nearest neighbor search, which

is implemented by a combination of KD-tree [7] and Product

Quantization (PQ) [17]. We encode each descriptor to a 50-

bit code using PQ, where each 40D feature descriptor is split

into 10 subvectors with equal dimensions, and we identify 25

centroids per subvector by k-means clustering to achieve 50-

bit encoding. We perform asymmetric distance calculation,

where the query descriptors are not encoded to improve

the accuracy of nearest neighbor retrieval. To speed up the

nearest neighbor search, we construct an inverted index for

descriptors, using a codebook of size 8K. To reduce encoding

errors, a KD-tree is used to partition each Voronoi cell, and

a Locally Optimized Product Quantizer [20] is employed for

each subtree with fewer than 30K features.

When a query is given, we perform approximate nearest

neighbor search for each local descriptor extracted from a

query image. Then for the top K nearest local descriptors

retrieved from the index, we aggregate all the matches per

database image. Finally, we perform geometric verification

using RANSAC [10] and employ the number of inliers as

the score for retrieved images. Many distractor queries are

rejected by this geometric verification step because features

from distractors may not be consistently matched with the

ones from landmark images.

This pipeline requires less than 8GB memory to index 1

billion descriptors, which is sufficient to handle our large-

scale landmark dataset. The latency of the nearest neighbor

search is less than 2 seconds using a single CPU under our

experiment setup, where we soft-assign 5 centroids to each

query and search up to 10K leaf nodes within each inverted

index tree.

5. Experiments

This section mainly discusses the performance of DELF

compared to existing global and local feature descriptors in

our dataset. In addition, we also show how DELF can be

employed to achieve good accuracy in the existing datasets.

5.1. Implementation Details

Multi-scale descriptor extraction We construct image

pyramids by using scales that are a
√
2 factor apart. For

the set of scales with range from 0.25 to 2.0, 7 different

scales are used. The size of receptive field is inversely pro-

portional to the scale; for example, for the 2.0 scale, the

receptive field of the network covers 146× 146 pixels.

Training We employed landmarks dataset [4] for fine-

tuning descriptors and training keypoint selection. In the

dataset, there are the “full” version, referred to as LF (after

removal of overlapping classes with Oxf5k/Par6k, by [11]),

containing 140,372 images from 586 landmarks, and the

“clean” version (LC) obtained by a SIFT-based matching

procedure [11], with 35,382 images of 586 landmarks. We

use LF to train our attention model, and LC is employed to

fine-tune the network for image retrieval.

Parameters We identify the top K(= 60) nearest neigh-

bors for each feature in a query and extract up to 1000 local

features from each image—each feature is 40-dimensional.

5.2. Compared Algorithms

DELF is compared with several recent global and local

descriptors. Although there are various research outcomes

related to image retrieval, we believe that the following

methods are either relevant to our algorithm or most critical

to evaluation due to their good performance.

Deep Image Retrieval (DIR) [11] This is a recent global

descriptor that achieves the state-of-the-art performance in

several existing datasets. DIR feature descriptors are 2, 048
dimensional and multi-resolution descriptors are used in all

cases. We also evaluate with query expansion (QE), which

typically improves accuracy in the standard datasets. We use

the released source code that implements the version with

ResNet101 [13]. For retrieval, a parallelized implementation

of brute-force search is employed to avoid penalization by

the error from approximate nearest neighbor search.

siaMAC [29] This is a recent global descriptor that obtains

high performance in existing datasets. We use the released

source code with parallelized implementation of brute-force

search. The CNN based on VGG16 [32] extracts 512 di-

mensional global descriptor. We also experiment with query

expansion (QE) as in DIR.

CONGAS [8, 23] CONGAS is a 40D hand-engineered

local feature, which has been widely used for instance-level
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image matching and retrieval [1, 44]. This feature descriptor

is extracted by collecting Gabor wavelet responses at the

detected keypoint scale and orientation, and is known to

have very similar performance and characteristic to other

gradient-based local descriptors like SIFT. A Laplacian-of-

Gaussian keypoint detector is used.

LIFT LIFT [40] is a recently proposed feature matching

pipeline, where keypoint detection, orientation estimation

and keypoint description are jointly learned. Features are

128 dimensional. We use the source code publicly available.

5.3. Evaluation

Image retrieval systems have typically been evaluated

based on mean average precision (mAP), which is com-

puted by sorting images in descending order of relevance per

query and averaging AP of individual queries. However, for

datasets with distractor queries, such evaluation method is

not representative since it is important to determine whether

each image is relevant to the query or not. In our case, the ab-

solute retrieval score is used to estimate the relevance of each

image. For performance evaluation, we employ a modified

version of precision (PRE) and recall (REC) by considering

all query images at the same time, which are given by

PRE =

∑

q |RTP
q |

∑

q |Rq|
and REC =

∑

q

|RTP
q |, (4)

where Rq denotes a set of retrieved images for query q given

a threshold, and RTP
q (⊆ Rq) is a set of true positives. This

is similar to the micro-AP metric introduced in [26]. We

prefer unnormalized recall values, which present the number

of retrieved true positives. Instead of summarizing our result

in a single number, we present a full precision-recall curve to

inspect operating points with different retrieval thresholds.

5.4. Quantitative Results

Fig. 5 presents the precision-recall curve of DELF (de-

noted by DELF+FT+ATT), compared to other methods. The

results of LIFT could not be shown because feature extrac-

tion is extremely slow and large-scale experiment is infeasi-

ble1. DELF clearly outperforms all other techniques signifi-

cantly. Global feature descriptors, such as DIR, suffer in our

challenging dataset. In particular, due to a large number of

distractors in the query set, DIR with QE degrades accuracy

significantly. CONGAS does a reasonably good job, but is

still worse than DELF with substantial margin.

To analyze the benefit of fine-tuning and attention for im-

age retrieval, we compare our full model (DELF+FT+ATT)

with its variations: DELF-noFT, DELF+FT and DELF-

noFT+ATT. DELF-noFT means that extracted features are

based on the pretrained CNN on ImageNet without fine-

tuning and attention learning. DELF+FT denotes the model

1LIFT feature extraction approximately takes 2 min/image using a GPU.

Figure 5: Precision-recall curve for the large-scale retrieval experi-

ment on the Google-Landmarks dataset, where recall is presented in

absolute terms, as in Eq. (4). DELF shows outstanding performance

compared with existing global and local features. Fine-tuning and

attention model in DELF are critical to performance improvement.

The accuracy of DIR drops significantly with query expansion, due

to many distractor queries in our dataset.

with fine-tuning but without attention modeling while DELF-

noFT+ATT corresponds to the model without fine-tuning

but using attention. As illustrated in Fig. 5, both fine-tuning

and attention modeling make substantial contributions to

performance improvement. In particular, note that the use

of attention is more important than fine-tuning. This demon-

strates that the proposed attention layers effectively learn to

select the most discriminative features for the retrieval task,

even if the features are simply pretrained on ImageNet.

In terms of memory requirement, DELF, CONGAS and

DIR are almost equally complex. DELF and CONGAS

adopt the same feature dimensionality and maximum number

of features per image; they require approximately 8GB of

memory. DIR descriptors need 8KB per image, summing up

to approximately 8GB to index the entire dataset.

5.5. Qualitative Results

We present qualitative results to illustrate performance

of DELF compared to two competitive algorithms based on

global and local features—DIR and CONGAS, respectively.

Also, we analyze our attention-based keypoint detection

algorithm by visualization.

DELF vs. DIR Fig. 6 shows retrieval results, where DELF

outperforms DIR. DELF obtains matches between specific

local regions in images, which helps significantly to find the

same object in different imaging conditions. Common fail-

ure cases of DIR happen when the database contains similar

objects or scenes, e.g., obelisks, mountains, harbors, as illus-

trated in Fig. 6. In many cases, DIR cannot distinguish these
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(a) (b) (c)

Figure 6: Examples where DELF+FT+ATT outperforms DIR: (a)

query image, (b) top-1 image of DELF+FT+ATT, (c) top-1 image

of DIR. The green borders denote correct results while the red ones

mean incorrect retrievals. Note that DELF deals with clutter in

query and database images and small landmarks effectively.

specific objects or scenes; although it finds semantically sim-

ilar images, they often do not correspond to the instance of

interest. Another weakness of DIR and other global descrip-

tors is that they are not good at identifying small objects of

interest. Fig. 7 shows the cases that DIR outperforms DELF.

While DELF is able to match localized patterns across dif-

ferent images, this leads to errors when the floor tiling or

vegetation is similar across different landmarks.

DELF vs. CONGAS The main advantage of DELF over

CONGAS is its recall; it retrieves more relevant landmarks

than CONGAS, which suggests that DELF descriptors are

more discriminative. We did not observe significant exam-

ples where CONGAS outperforms DELF. Fig. 8 shows pairs

of images from query and database, which are successfully

matched by DELF but missed by CONGAS, where feature

(a) (b) (c)

Figure 7: Examples where DIR outperforms DELF+FT+ATT: (a)

query image, (b) top-1 image of DELF+FT+ATT, (c) top-1 image

of DIR. The green and red borders denotes correct and incorrect

results, respectively.

correspondences are presented by connecting the center of

the receptive fields for matching features. Since the receptive

fields can be fairly large, some features seem to be localized

in undiscriminative regions, e.g., ocean or sky. However, in

these cases, the features take into account more discrimina-

tive regions in the neighborhood.

Analysis of keypoint detection methods Fig. 9 visualizes

three variations of keypoint detection, where the benefit of

our attention model is clearly illustrated qualitatively while

the L2 norm of fine-tuned features is marginally different

from the one without fine-tuning.

5.6. Results in Existing Datasets

We demonstrate the performance of DELF in existing

datasets such as Oxf5k, Par6k and their extensions, Oxf105k

and Par106k, for completeness. For this experiment, we sim-

ply obtain the score per image using the proposed method,

and make a late fusion with the score from DIR by comput-

ing a weighted mean of two normalized scores, where the

weight for DELF is set to 0.25. The results are presented in

Tab. 1. We present accuracy of existing methods in their orig-

inal papers and our reproductions using public source codes,

which are very close. DELF improves accuracy nontrivially

in the datasets when combined with DIR, although it does not

show the best performance by itself. This fact indicates that

DELF has capability to encode complementary information

that is not available in global feature descriptors.

6. Conclusion

We presented DELF, a new local feature descriptor that

is designed specifically for large-scale image retrieval ap-

3462



Figure 8: Visualization of feature correspondences between images in query and database using DELF+FT+ATT. For each pair, query and

database images are presented side-by-side. DELF successfully matches landmarks and objects in challenging environment including partial

occlusion, distracting objects, and background clutter. Both ends of the red lines denote the centers of matching features. Since the receptive

fields are fairly large, the centers may be located outside landmark object areas. For the same queries, CONGAS fails to retrieve any image.

(a) (b) (c) (d)

Figure 9: Comparison of keypoint selection methods. (a) Input

image (b) L2 norm scores using the pretrained model (DELF-

noFT) (c) L2 norm scores using fine-tuned descriptors (DELF+FT)

(d) Attention-based scores (DELF+FT+ATT). Our attention-based

model effectively disregards clutter compared to other options.

Table 1: Performance evaluation on existing datasets in mAP (%).

All results of existing methods are based on our reproduction using

public source codes. We tested LIFT only on Oxf5k and Par6k due

to its slow speed. (* denotes the results from the original papers.)

Dataset Oxf5k Oxf105k Par6k Par106k

DIR [11] 86.1 82.8 94.5 90.6

DIR+QE [11] 87.1 85.2 95.3 91.8

siaMAC [29] 77.1 69.5 83.9 76.3

siaMAC+QE [29] 81.7 76.6 86.2 79.8

CONGAS [8] 70.8 61.1 67.1 56.8

LIFT [40] 54.0 – 53.6 –

DIR+QE* [11] 89.0 87.8 93.8 90.5

siaMAC+QE* [29] 82.9 77.9 85.6 78.3

DELF+FT+ATT (ours) 83.8 82.6 85.0 81.7

DELF+FT+ATT+DIR+QE (ours) 90.0 88.5 95.7 92.8

plications. DELF is learned with weak supervision, using

image-level labels only, and is coupled with our new atten-

tion mechanism for semantic feature selection. In the pro-

posed CNN-based model, one forward pass over the network

is sufficient to obtain both keypoints and descriptors. To

properly evaluate performance of large-scale image retrieval

algorithm, we introduced Google-Landmarks dataset, which

consists of more than 1M database images, 13K unique land-

marks, and 100K query images. The evaluation in such a

large-scale setting shows that DELF outperforms existing

global and local descriptors by substantial margins. We also

present results on existing datasets, and show that DELF

achieves excellent performance when combined with global

descriptors.
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