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Abstract

We propose a method for geometric calibration of multi-

focus plenoptic cameras using raw images. Multi-focus

plenoptic cameras feature several types of micro-lenses spa-

tially aligned in front of the camera sensor to generate

micro-images at different magnifications. This multi-lens

arrangement provides computational-photography benefits

but complicates calibration. Our methodology achieves

the detection of the type of micro-lenses, the retrieval of

their spatial arrangement, and the estimation of intrinsic

and extrinsic camera parameters therefore fully character-

ising this specialised camera class. Motivated from clas-

sic pinhole camera calibration, our algorithm operates on

a checker-board’s corners, retrieved by a custom micro-

image corner detector. This approach enables the intro-

duction of a reprojection error that is used in a minimi-

sation framework. Our algorithm compares favourably to

the state-of-the-art, as demonstrated by controlled and free-

hand experiments, making it a first step towards accurate

3D reconstruction and Structure-from-Motion.

1. Introduction

Classic pinhole cameras project the multi-dimensional

information of the light flowing through a scene into a sin-

gle 2D snapshot. This projection limits the information that

can be reconstructed from the 2D acquisition. Plenoptic (or

light-field) cameras, on the other hand, capture a 4D slice

of the plenoptic function [1], termed the “light-field”. These

cameras provide both spatial and angular information on the

light flowing through a scene; multiple views are captured

in a single photographic exposure [1].

Adelson and Wang [2] used a lenticular array placed in

front of the sensor of a traditional pinhole camera to cre-

ate one of the first plenoptic cameras. Micro-manufacturing

and computing advances allowed Ng to replace the lentic-

Figure 1: Illustration of a multi-focus plenoptic camera

from RaytrixTM and a raw plenoptic image.

ular array with a micro-lens array positioned at the main

lens’ focal length (unfocused plenoptic camera), resulting

in the first hand-held light-field camera [21]. Designs that

balance the trade-off between angular and spatial resolution

place the micro-lenses behind the focal plane of the main

lens (Keplerian) [20], or in front (Galilean) [23, 10].

The multi-dimensional acquisitions of plenoptic cam-

eras facilitate the recovery of 3D information. Using the

encoded light-ray directions, images can be digitally refo-

cused [21], while single-shot depth maps can be obtained

by combining defocus and multiple-view cues [28]. There-

fore, plenoptic cameras are increasingly considered in com-

puter vision [23, 30, 16, 29, 18, 19], robotics [7, 5], and

even life-sciences [24] and medical imaging [3, 26].

Using well-calibrated cameras will improve application

and algorithm performance. As newer plenoptic cam-

eras feature not a single but several different types of

micro-lenses (multi-focus plenoptic cameras), calibrating

the imaging system geometrically, i.e. end-to-end from 3D

points to 2D image points, becomes critical.

Related Work: Johannsen et al. presented metric cali-

bration and distortion correction for multi-focus plenoptic

957



cameras using a grid of circular patterns [17]. The thin-

lens model [14] was used to project virtual depth values1

from image space onto 3D space. Neither end-to-end image

formation nor different micro-lens types were considered.

Heinze et al. extended the work to include the tilt/shift of the

main lens, accounting for micro-lens types [15] but without

considering end-to-end image formation.

Strobl et al. utilized total focus2 and virtual depth images

in a calibration framework for multi-focus plenoptic cam-

eras [27]. As total focus images implicitly rely on the esti-

mated depth, this approach suffers from a causality dilemma

between depth and calibration parameters. Further, the

pixel size was assumed to be known. The paper concluded

with the need for a calibration that uses raw plenoptic im-

ages while considering different micro-lens types.

Dansereau et al. in [6] were the first to deliver end-to-

end geometric calibration for Keplerian light-field cameras

with a single type of micro-lenses (LytroTM). The pixel-to-

ray correspondences were modelled using a thin-lens model

(representing the main lens) and pinhole cameras (repre-

senting micro-lenses). Corners extracted from the sub-

aperture images3 of a checker-board (the calibration target)

were used to obtain a 4D intrinsic camera parameter ma-

trix. The limitation of this approach, also highlighted in [4],

is that obtaining sub-aperture images (from different types

of micro-lenses) assumes a calibrated camera.

The state-of-the-art in geometric calibration for light-

field cameras using raw images with a single type of micro-

lenses (LytroTM and IllumTM), [4], is based on the thin-lens-

and-pinhole model of [6]. Line features, representing the

edges of the checkers of the calibration target are extracted

and used to obtain a solution for the intrinsic and extrinsic

camera matrices. It was argued that line features are re-

quired because the resolution of micro-images in light-field

cameras is not suitable for corner detection.

Different types of micro-lenses,i.e. multi-focus plenoptic

cameras, cannot be handled in [4], which was, in addition,

not developed for Galilean cameras. Further, even though

lines are abundant in the raw images acquired by LytroTM/

IllumTM, this is contrary to those acquired by multi-focus

plenoptic cameras, such as RaytrixTM, that have a higher

spatial (micro-image) resolution at the expense of lower

angular resolution (micro-lens-array cardinality) [23]. Fi-

nally, corner-based calibration overperforms line-based ca-

libration as it enables the introduction of a 3D-to-2D repro-

jection error that is a representative performance measure

of end-to-end imaging-system models.

Contributions: This manuscript considers the calibra-

tion of multi-focus plenoptic cameras, namely RaytrixTM,

1Virtual depth refers to relative depth values obtained from disparity.
2The total focus image is synthesized from the raw image provided the

virtual depth. It corresponds to an all-in focus image of the scene [23].
3Each sub-aperture image displays light incident on the sensor from a

small region of the aperture [21].

using raw images. The contributions are:
• Algorithm for corner-detection in micro-images of

checker-boards.

• Micro-lens classification and spatial-arrangement re-

trieval based on focus measures.

• The equivalence of Galilean and Keplerian plenoptic

camera models.

• Corner-based geometric calibration of all micro-lens

types in a plenoptic camera.
Improving the state-of-the-art, our method minimizes the

reprojection error in the raw plenoptic image. Further, we

address the unsolved problem of multi-focus plenoptic cam-

era calibration. We demonstrate precise calibration with a

small number of images and validate the recovered extrin-

sics against known camera motion. Code is provided4.

2. 3D-to-2D Corner Matching

A crucial step in any calibration algorithm is to pair 3D

points on the calibration grid with their corresponding 2D

image points. In a pinhole camera, a single 3D point cor-

responds to a single 2D point. Further, the spatial arrange-

ment of checker-board corners in 3D space is assumed for

the 2D corners on the image as well. In plenoptic images, a

single 3D corner on the checker-board corresponds to mul-

tiple 2D projected corners, see Fig. 1.

Assuming that each micro-image contains at most one

2D corner, i.e. the checkers are sufficiently large, and that

neighbouring micro-images contain 2D projections of the

same 3D corner, we extract 3D-to-2D feature matches by:
1. Estimating micro-lens centres and micro-images.

2. Detecting corners in micro-images.

3. Retrieving 3D-to-2D correspondences.
Following correspondence retrieval, 2D corners are used to

classify micro-lenses and retrieve their spatial arrangement

prior to geometric camera calibration.

Micro-lens centre detection uses correlation methods

such as in [6]. Given the centres, the vignetting caused

by each micro-lens in the raw plenoptic image guides the

segmentation into micro-images. The pixels contained in

the square circumscribed to the circle delimited by the vi-

gnetting define the micro-image to be extracted. Hereafter,

we assume retrieved micro-lens centres and micro-images.

2.1. Robust Corner Detection in Micro­Images

Early experimentation indicated that existing detectors

cannot reliably identify checker-board corners in micro-

images or report their absence, as they examine local

patches that may contain strong gradient changes due to

noise but do not necessarily represent corners.

We developed a dedicated corner detector. When a cor-

ner exists in a micro-image, it will be found at a “sad-

dle/minimax” point in the intensity domain. The two axes,

4https://github.com/sotnousias/plenoptic-camera-calibration.git
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Figure 2: Retrieval of corners, (a)-(c), or their absence (d).

not necessarily orthogonal, centred at the corner, define the

directions of the saddle. Our algorithm relies on the obser-

vation that these two directions are lines5 of maximum and

minimum accumulated intensity traversing the image, e.g.

black and white dotted lines in Fig. 2. Retrieval of these

lines identifies two potential saddle axes, with the corner

lying at their intersection.

More specifically, we assume the line is of the form ρ =
cos(θ)x+ sin(θ)y, where ρ is the distance between the line

and the origin, and θ is the angle between the line and the

y (vertical) axis (see Fig. 2a). The algorithm operates on a

K×K micro-image I : [1,K]× [1,K] → [0, 1] as follows.

Sets P,Θ of equidistant values ρ ∈ {0, · · · ,K
√
2} and

θ ∈ {0, · · · , π} are created with ρdisc, and θdisc, discretisa-

tion steps, respectively.

Combinations L = (Pi,Θj) ∈ P × Θ generate a set

of lines L, sorted by accumulated intensities for all pixels

along the line:

v(L, I) =

K∑

x=1

{Ixy|Ixy ≥ th} −
K∑

x=1

{Ixy|Ixy ≤ tl}, (1)

where Ixy is the image intensity at (x, y), y is given from the

equation of the line when x, Pi,Θj , are known and th, tl,

are respectively maximum and minimum intensity thresh-

olds. Equation (1) maximises the number of high intensity

pixels along the line, while minimising the number of low

intensity pixels.

For the line L1 with the highest accumulated inten-

sity, a set L̃ of intersecting lines with parameters ρ ∈
{0, · · · ,K

√
2} and θ = (θL1

+ π/2 + β), β ∈
{−π/5, · · · , π/5}, (discretised by ρdisc and θdisc) is sorted

by increasing v(L̃, 1 − I). L̃1 has the minimum accumu-

lated intensity in the original micro-image I .

Then, the intersection of L1 and L̃1 constitutes a valid

corner if it is within the image and:
∣∣∣∣∣

v(L1, I)

v(L̃1, 1− I)
− 1

∣∣∣∣∣ ≤ vthresh. (2)

Figures 2a-2c show corners found in exemplary micro-

images. No corner is found in Fig. 2d where (2) is violated.

The black and white lines are L1, and L̃1, respectively.

We compared our detector to Harris [12], FAST [25],

Förstner [8] and Hough-lines intersection on 5014 micro-

images containing manually annotated corners. Our

5The term “line” does not imply an edge or a “Hough line”.

Method Mean ± Std Maximum Minimum

Proposed 1.16± 1.54 6.97 0.001
Harris [12] 3.14± 2.56 8.99 0.001
FAST [25] 6.19± 2.26 9.99 0.187
Förstner [8] 7.9± 3.66 16.8 0.19
Hough based 4.5± 3.52 14.4 0.02

Table 1: Error [in pixels] of corner detectors.

method, for th = 0.7, tl = 0.3, vthresh = 1, ρdisc =
0.25, θdisc = π/50, detected 3187 corners, Harris 2807,

FAST 1094, Förstner 3343 and intersection of Hough lines

3783. The detection precision, see Table 1, shows that our

algorithm finds the most corners and has the best perfor-

mance. Our parameters are empirically tuned but remain

constant throughout the experiments. Perturbing the se-

lected values by up to 20% increases the estimation error

by up to 0.283 pixels, still outperforming other detectors.

2.2. 3D­to­2D Corner Correspondence Assignment

The corners in the raw plenoptic image are now de-

tected, but the correspondence between each corner and a

3D point is still unknown. In this section, we demonstrate

how to identify which micro-lens observes which corner of

the checker-board using the central sub-aperture image.

This image is obtained by sampling the central pixel of

each micro-image. It resembles one acquired by a pinhole

camera, making it possible to extract corners using an off-

the-shelf detector [9]. Each 2D corner corresponds to a sin-

gle 3D corner and their spatial arrangement is retained.

Given the relationship between pixels and micro-images,

the detected corners should approximately fall at the cen-

tre of their corresponding micro-images. Since neighbour-

ing micro-lenses observe the 3D scene from multiple but

closely related viewpoints, we can assume that if a 2D cor-

ner, detected in the sub-aperture image, belongs to micro-

image under micro-lens (i, j), then N micro-lenses sur-

rounding (i, j) also observe it.

This observation provides an estimate of the number of

2D corners that each 3D corner corresponds to, and allows

the pairing of the 3D checker-board corners with the 2D

corners detected in the previous step. By examining a large

number of neighbouring micro-lenses and relying on the

corner detection’s results, the number of examined micro-

images is refined to those only containing detected corners.

3. Micro-Lens Type/Arrangement Retrieval

Multi-focus plenoptic cameras contain micro-lenses of

multiple focal lengths. The proposed classification is based

on extracting focus measures from the micro-images and

linking together the ones that present similar focus charac-

teristics. The algorithm’s input is a single plenoptic image
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Figure 3: Micro-lens classification accuracy with 4 different

metrics using (a) full micro-images, and (b) corner regions.

of the calibration target and the detected 2D corners along

with the corresponding micro-image centres. In the follow-

ing, only micro-images containing corners are considered.

3.1. Micro­Lens Classification

Since each 3D corner point lies on a single depth, only

one micro-lens type generates in-focus micro-images. The

remaining micro-lenses generate micro-images with vary-

ing degrees of defocus. Therefore, the degree of focus of

each micro-image can be used to classify the micro-lenses

into types. Classification is performed on sets of micro-

images that view the same 3D corner, as they are grouped

via the 3D-to-2D correspondences already obtained.

A circular region of radius r is extracted around the de-

tected corner in each micro-image of the set under exami-

nation. The focus score of each region is computed relying

on metrics presented in [22] and indicated in the legend of

Fig. 3. The score is used to cluster micro-images into k = 3
types (made public by the manufacturer) with k-means al-

gorithm. Such clustering method is reliable and robust, but

alternative approaches that do no require the knowledge of

the number of groups may be employed.

A comparison of focus metrics and their effect on clas-

sification is shown in Fig. 3 based on 330 clusters of 19
micro-lenses each. The Tenenbaum Gradient was the most

robust focus metric. “Gradient” methods, in general, yield

more correct classifications than “decomposition” methods,

perhaps because they are less affected by the small resolu-

tion of the examined micro-image region.

Figure 3a and Fig. 3b highlight the importance of only

considering a region around the detected 2D corner for clas-

sification. Assigning a single focus measure to the entire

micro-image is sub-optimal because of vignetting. Further,

when the checker-board corner is observed off-centre and

obliquely, the black/white regions over the entire micro-

image are imbalanced and affect the robustness of the focus

metric. When using the entire micro-image, the interclass

variance is small and leads to misclassifications.

3.2. Spatial Arrangement Retrieval

Assume N sets of micro-lenses, each set observing a

different 3D corner. As labelling into types is performed

locally, and different types of micro-lenses come into and

out of focus depending on the checker-board’s pose, the as-

signed types/labels are not consistent among the N exam-

ined sets. Also, there may be misclassified micro-lenses, as,

for example, when all micro-images are in-focus.

A rectification strategy is implemented to compensate

for the misclassifications and locality of labelling by iden-

tifying the classification that is the most consistent over the

N sets under micro-lens label permutations. First, the lat-

tices that represent the local micro-lens type arrangement

are computed for every set. Second, the lattices are ex-

tended to create N candidate global grids that cover the

entire micro-lens array. Third, a global configuration, the

candidate grid is randomly chosen and compared against

the N−1 remaining ones and their label permutations. This

candidate grid receives a single vote for every other configu-

ration that it matches, and these matched configurations are

now “fused” with the candidate grid. The process repeats

considering only the unmatched grids as candidates, until

no unmatched grids remain. The highest-voted candidate

grid (most matches) is the global configuration.

An estimated spatial arrangement is illustrated in Fig. 1,

where coloured circles represent different micro-lens types.

4. Projection Model and Calibration

Here, the plenoptic projection model for Galilean cam-

eras is derived and used in calibration. The main lens is

modelled as a thin lens and the micro-lenses as pinhole cam-

eras [6, 4]. We do not consider radial distortion, which is

absent from our images due to small field-of-view and high

quality of lenses, but could be introduced according to [31].

4.1. Forward Projection Function

With reference to Fig. 4, the (red solid/dashed) rays re-

fracted by the main lens converge to a 3D point that is be-

hind the image sensor. In other words, the main lens creates

a virtual image. This virtual image is then reprojected by the

micro-lenses onto the image sensor. This is a unique char-

acteristic of the Galilean camera model [17, 15] and, as dis-

cussed, is contrary to the Keplerian camera model wherein

the main lens’ focus is in front of the micro-lens array. In

this section, the 3D point that the rays converge to is termed

“image” (see Fig. 4). Since a multi-focus plenoptic camera

contains a number of micro-lens types, it can be assumed

that the model comprises an equal number of different pin-

hole cameras, three in our case. The following analysis is

applied to each type of micro-lens independently, and our

experiments will show that the approach provides different

intrinsic parameters but the same extrinsics.
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Figure 4: Geometric camera model indicating the main lens

(thin lens), micro-lens array, virtual image, and acquired

image (adapted from [4] for the Galilean design). Projected

locations lie in the normalized coordinate system.

Following the notation of Bok et al., the origin, and the

z-axis of the camera coordinate system, are the centre, and

the optical axis of the main lens, respectively. The relation-

ship between the 3D point
−→
Q = (Xc, Yc, Zc) and its image−→

Q′ = (X,Y, Z) is derived from the thin lens equation [14]:


X
Y
Z


 =

F

F − Zc



Xc

Yc

Zc


 , (3)

where F is the focal length of the main lens. As the micro-

lenses are approximated as pinhole cameras, the projected

location of
−→
Q′ on the sensor,

−→
Q′′, can be found as the in-

tersection of the sensor and a ray passing the micro-lens

centre. This ray is called the “principal ray” of the micro-

lens. With reference to Fig. 4,
−→
Q′′ is the intersection of the

solid red ray and the solid black sensor. The ray is not high-

lighted after its intersection with the sensor, because it does

not exist in reality, hence the term “virtual”.

The micro-lenses’, and sensor’s, location in the camera

coordinate system are Lm, and Lc, respectively. The micro-

lens’ real location in the camera coordinate system,
−→
x r, is

computed via its projected location
−→
x c = (xc, yc):

−→
x r ≡



xr

yr
Lm


 = Lm



xc

yc
1


 . (4)

Projected locations are expressed in a normalised coordi-

nate system, i.e. z = 1. Similarly, the location of the pro-

jected point in the camera coordinate system,
−→
x i, is:

−→
x i ≡



xi

yi
Lc


 = Lc



x
y
1


 . (5)

Since the micro-lens centre
−→
x r, the projected point

−→
Q′,

and the image point
−→
Q′′ are collinear, Thales theorem gives:

xi − xr

X − xi

≡ Lcx− xr

X − Lcx
=

Lc − Lm

Z − Lc

. (6)

Inserting the physical micro-lens centre location, xr, (4), in

(6) and solving for the projected point location x:

x =
Lm − Lc

(Lm − Z)Lc

X +
Lm(Lc − Z)

(Lm − Z)Lc

xc. (7)

Normalised coordinates are used for x. Then, for the

Galilean system we are examining:
[
x
y

]
=

1

(Lm − Z)Lc

[
(Lm−Lc)X + Lm(Lc−Z)xc

(Lm−Lc)Y + Lm(Lc−Z)yc

]
, (8)

which is identical to the projection equation for the Keple-

rian system examined in [4] proving the geometric equiva-

lence of the two camera models.

The relation between normalised coordinates, (x, y),
(xc, yc) and the image coordinates (u, v), (uc, vc) for the

micro-lens pinhole camera is given by a 2× 3 matrix [13]:

[
u
v

]
=

[
fx 0 cx
0 fy cy

]

x
y
1


 , (9)

where skew is assumed zero, fx, fy , are the focal lengths

along the x−, and y− axes, respectively, and cx, cy are the

principal points. Combining (8) with (9) leads to the 3D-to-

2D projection model:

[
u−cx
v−cy

]
=




fx(Lm−Lc)X+Lm(Lc−Z)(uc − cx)

(Lm − Z)Lc

fy(Lm−Lc)Y +Lm(Lc−Z)(vc − cy)

(Lm − Z)Lc


 .

(10)

Next, we discuss retrieving the equation’s parameters.

4.2. Calibration

The 3D corners
−→
Xw = (Xw, Yw, Zw) of the calibration

checker-board are co-planar and, without loss of generality,

Zw = 0 can be assumed.
−→
Xw is expressed in the global

coordinate frame, and is transformed to
−→
Q in the camera

coordinate frame through an Euclidean transformation of

rotation R ∈ SO(3) and translation
−→
t ∈ R

3×1:

−→
Q = R

−→
Xw +

−→
t . (11)

In the following, we assume that the transformed 3D cor-

ners
−→
Q have been matched with 2D corners (u, v).

4.2.1 Initial Solution

For an initial solution of the camera parameters, let

(cx, cy) ≡ (0, 0), and fx ≡ fy ≡ f . By subtracting the

imaged micro-lens centre,
−→
u c, and substituting (3) in (10),

we obtain as in [4]:
[
∆u
∆v

]
≡
[
u− uc

v − vc

]
=

1

K1Zc +K2

[
fXc − Zcuc

fYc − Zcvc

]
, (12)
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where:

K1= − (Lm + F )Lc

(Lm − Lc)F
, (13)

K2=
LmLc

Lm − Lc

. (14)

Inserting (11) in (12) and rearranging, we obtain the system

A
−→x = 0:



−
−→̃
X w

−→
0 1×3

−→̃
X wuc

−→̃
X w∆u

−→
0 1×3 −

−→̃
X w

−→̃
X wvc

−→̃
X w∆v







fr11
fr12
ft1
fr21
fr22
ft2
r31
r32
t3

K1r31
K1r32

K1t3 +K2




= 0

(15)

where
−→̃
X w =

[
Xw Yw 1

]
. The terms rij refer to the

j-th element of i-th row of the rotation matrix R.

Each 2D corner creates two constraints. Stacking all cor-

respondences into matrix A, the initial solution is the right

singular vector, namely −→ν , corresponding to the smallest

singular value. Imposing the orthogonality constraint on the

columns of R, the initial parameters are:

f =

√
−ν1ν2 − ν4ν5

ν7ν8
, (16)

λ =
√

(ν1/f)2 + (ν4/f)2 + ν2
7
, (17)

−→r 1 =
1

λf

[
ν1 ν4 fν7

]T
, (18)

−→r 3 =
−→r 1 ×

[
ν2 ν5 fν8

]T

‖−→r 1 ×
[
ν2 ν5 fν8

]T ‖
, (19)

−→r 2 = −→r 1 ×−→r 3, (20)

−→
t =

1

λf

[
ν3 ν6 fν9

]T
, (21)

K1 =
ν10 + ν11

λ(r31 + r32)
, (22)

K2 =
ν12
λ

−K1t3. (23)

4.2.2 Non-Linear Optimisation

Following the estimation of the camera parameters assum-

ing common micro-lens focal length f , and zero principal

points, Levenberg-Marquardt optimisation minimises the

reprojection error from 3D corners to 2D correspondences

Parameter Type 1 Type 2 Type 3

K1 −21.625 −17.556 −14.805

K2 1.2593× 10
4

1.1313× 10
4

9963.38

fx [pix] 2.3770× 10
4

2.3738× 10
4

2.3825× 10
4

fy [pix] 2.3769× 10
4

2.3727× 10
4

2.3825× 10
4

cx [pix] 1920.22 1923.27 1921.94

cy [pix] 1079.93 1080.64 1080.71

Table 2: Plenoptic camera calibration: intrinsic parameters.

to retrieve fx, fy, cx, cy (9) and refine K1, K2 (22) - (23),

and the extrinsic parameters R,
−→
t . The reprojection error

is minimised independently for each type of micro-lens:

f(Ki
1,2, f

i
x,y, c

i
x,y,R,

−→
t ) =

∑
‖−→u − π(

−→
Xw)‖2, (24)

where the superscript i refers to the different type of micro-

lenses, and −→u , π(
−→
Xw), are the detected corner in the micro-

lens image, and the projection of the 3D point, respectively.

After optimisation, different extrinsics are obtained per

micro-lens type. As our experiments will demonstrate, the

extrinsics are sufficiently close, indicating a single camera

body, whose representative extrinsics are calculated by av-

eraging the extrinsics of the individual types [11].

5. Experiments and Results

We used RaytrixTM R8 with a 50mm lens from KowaTM.

The size of the raw plenoptic images is 3840 × 2160 pix-

els. The lens/camera system has field-of-view and depth-

of-field of approximately 9 cm×7 cm, and 19.5 cm, respec-

tively. First, we calculate the intrinsics via free-hand cali-

bration of two checker-boards with different checker sizes,

demonstrate algorithm convergence, and compare with [4].

Then, knowing the intrinsics, we recover a known checker-

board motion, demonstrating the accuracy of the extrinsics.

5.1. Free­Hand Calibration

A checker-board with checker dimensions of 4mm×
4mm was used. Ten images of the checker-board under var-

ious poses were captured; typical raw images can be seen in

Fig. 1. The corner detection identified 11321 features to

be used for calibration across all images. Nineteen micro-

images per 3D corner were considered for the 3D-to-2D

correspondences. Using the 2D corners, the type and spatial

alignment of the micro-lenses were obtained. The calibra-

tion parameters calculated by the initial linear solution were

refined by non-linear optimisation. The reconstructed poses

of the ten images used for calibration are shown in Fig. 7a.

From [15], different intrinsic calibration parameters per

micro-lens type are expected. Indeed, Table 2 shows that

every micro-lens type has unique K1 and K2, (22) - (23).

These refer to the internal configuration of the multi-focus
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Figure 5: Parameter convergence for sets of different number of images. Behaviour of: (a) K1, (b) K2, (c) fx, and (d) cx.

plenoptic camera, as they directly depend on Lm, Lc, and

F . Practically, this implies that each micro-lens type has a

different distance from the image sensor, as also reported in

[15]. Therefore, calibration retrieves this camera detail.

As discussed, the extrinsic parameters of each micro-

lens type are first calculated independently. The exper-

iments showed that, for all checker-board poses, almost

identical extrinsic parameters were estimated for the micro-

lens types. The average Euclidean distance for the types’

translation is 1.42 ± 0.90mm, corresponding to 0.3% of

the distance to the checker-board. The difference in rota-

tion is 0.14◦ ± 0.09◦ solid angle. Achieving similar ex-

trinsics through a per-micro-lens-type optimisation supports

the fact that the multi-focus plenoptic camera encompasses

different types of micro-lenses within a single camera body.

Figure 6 gives the average reprojection error for each im-

age and micro-lens type. The errors are consistently small,

with an average value of approximately 0.83 pixels.

Next, we estimated the precision/variance in the esti-

mated parameters when different number of images are

used. Calibration was performed using k-combinations

from a set of 10 images, with k = 1, · · · , 10. Even if ca-

libration can be performed with a single image, this exper-

iment provides a rule-of-thumb on the number of images

required for precise (in terms of standard deviation) cali-

bration. The obtained average values and standard deviation

for K1, K2, fx, cx are shown in Fig. 5, which illustrates that

6− 8 images are required for precise parameter estimation.

Comparison with the state-of-the-art: We compared

our method with [4]. The first observation was that [4] was

not able to detect a sufficient number of lines on a checker-

board with 4mm checkers. The second observation was

that that calibration method was not converging if all micro-

lenses were treated as of the same type, i.e. without clas-

sification. The proposed micro-lens classifier is necessary

regardless of the calibration algorithm used. Thus, for a fair

comparison, we used a checker-board with 8mm checkers

and adapted [4] to treat each micro-lens type separately.

Seven checker-board images were used. Table 3 depicts

(a) (b) (c)

Figure 6: Mean reprojection errors (MREs) for micro-

lenses of (a) Type 1, (b) Type 2, and (c) Type 3. The red

line indicates the mean error across all images.

the intrinsic parameters estimated from both algorithms for

the 8mm checker-board. The intrinsics retrieved by our al-

gorithm are consistent with the ones from the free-hand cali-

bration (smaller checkers), shown in Table 2, within approx-

imately 10% difference. This implies that the retrieved pa-

rameters accurately describe the 3D-to-2D image-formation

process, and, further, that our method is less restrictive in

terms of checker size. On the contrary, the principal points

obtained by [4] demonstrate a large discrepancy as they are

estimated at approximately 350 pixels away from the image

centre. Even if this can be explained for consumer systems

such as LytroTM and IllumTM that may contain misalign-

ments in the optical system, it is unrealistic for systems such

as RaytrixTM that are manufactured for industrial metrology.

The extrinsic camera parameters were extracted by

both algorithms. Table 4 shows the maximum transla-

tion/rotation difference among the extrinsics for different

types of micro-lenses for all checker-board poses. The

translation difference among types i, j, is tij , while aij
is the rotation difference (solid angle). In our case, the

maximum difference in translation is 5.9mm, whereas it is

32.1mm for [4]. When the proposed calibration is used, the

rotation difference has a maximum of 0.2◦, which is an or-

der of magnitude less than the 2.5◦ obtained with [4].

5.2. Controlled Motion Experiment

To further evaluate our calibration method, we used the

already calculated intrinsics to estimate a known motion
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Proposed method Bok et al. [4]

Parameter Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

K1 −21.161 −17.239 −12.206 −17.684 −15.755 −16.102

K2 1.4590× 10
4

1.2424× 10
4

9418.57 1.2198× 10
4

1.1231× 10
4

1.2405× 10
4

fx 2.3841× 10
4

2.3803× 10
4

2.4221× 10
4

2.4014× 10
4

2.3964× 10
4

2.422× 10
4

fy 2.3840× 10
4

2.3802× 10
4

2.4223× 10
4

2.4488× 10
4

2.4615× 10
4

2.4762× 10
4

cx 1920.33 1920.9 1922.13 2264.52 2306.76 2234.58

cy 1080.14 1080.5 1080.23 1703.58 2047.48 1621.52

Table 3: Comparison with state-of-the-art: intrinsics.

Transl. difference (mm) Rot. difference (◦)

Proposed [4] Proposed [4]

# t12 t13 t12 t13 α12 α13 α12 α13

1 2.2 3.8 27.8 29.4 0.04 0.03 2.3 2.5

2 2.5 3.6 27.6 28.9 0.2 0.02 2.3 2.4

3 1.5 5.9 30.7 32.1 0.1 0.07 2.2 2.5

4 1.5 2.8 25.9 27.1 0.2 0.1 2.3 2.2

5 2.2 2.6 27.9 28.6 0.07 0.1 2.4 2.5

6 1.9 3.5 29.4 31.0 0.07 0.08 2.4 2.5

7 1.1 3.0 25.9 27.2 0.1 0.2 2.3 2.2

Table 4: Comparison with state-of-the-art: extrinsics.
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Figure 7: (a) Free-hand motion, and (b) Controlled motion.

of the checker-board. If the relative checker-board/camera

motion can be reconstructed using the calculated intrinsics,

then the camera has been correctly calibrated. The extrin-

sic parameters were obtained by rearranging (15) to use the

known intrinsics, and then refined via (24).

We performed a known checker-board motion and cap-

tured a sequence of 8 images. The motion was controlled

via a rotary and a micro-manipulation stage from Thorlabs

Gmbh, DE (see Fig. 1). The motion profile was: a) incre-

mental rotation by 20◦ around the y-axis for frames 2−4; b)

translation by 25.0mm along the positive z-axis, i.e. mov-

ing away from the camera, in frame 5; c) −20◦ incremental

rotation along the y-axis for frames 6− 8.

The first frame is the reference frame. The relative frame

i to frame j transformations, Tij , are shown in Table 5. It

can be seen that rotation around the y-axis is approximately

20◦ for frames 2 − 4, 6 − 8, while frame 5 exhibits 23mm

translation. Compared to the ground-truth motion incre-

Rot. (x, y, z in degrees) Transl. (x, y, z in mm)

T12 1.2 20.5 1.4 1.6 0.4 −4.0

T23 −0.5 19.0 1.4 0.4 0.5 −2.6

T34 −0.9 20.7 1.4 −0.9 0.5 −2.5

T45 0.5 0.07 −0.09 −3.0 −3.0 22.7

T56 0.4 −20.4 −1.4 1.0 −0.6 2.4

T67 0.3 −18.5 −1.3 −0.3 −0.5 2.6

T78 −0.9 −20.1 −1.3 −1.5 −0.4 3.7

Table 5: Extracted relative motion parameters.

ments, the mean error in rotation is 0.65◦, 0.6◦, and 1.16o,

along the x, y, and z axes, respectively. The mean errors

in translation are 1.25mm, 0.86mm, and 2.87mm. There-

fore, the motion is reconstructed successfully. Figure 7b il-

lustrates the obtained motion, assuming for illustration pur-

poses that the checker-board was stationary.

6. Conclusions and Discussion

We proposed a method for geometric calibration of

multi-focus plenoptic cameras using the raw images. Our

method considers the different type of micro-lenses of the

camera and obtains their type and spatial arrangement using

focus metric. A novel micro-image corner detector enables

the use of a 3D-to-2D reprojection-error metric across many

raw images. The obtained intrinsics are consistent among

different datasets, and are validated through a controlled-

camera-motion experiment.

Our approach bridges pinhole camera and multi-focus

plenoptic camera calibration. It allows treating the latter

as a generalized camera, i.e. assigning a ray to each pixel.

We believe that this opens up exciting research directions in

3D reconstruction and Structure-from-Motion using multi-

focus plenoptic cameras.
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[9] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster. Automatic

camera and range sensor calibration using a single shot. In

IEEE Int. Conf. Robotics and Automation, pages 3936–3943,

2012. 3

[10] T. Georgiev and A. Lumsdaine. Depth of Field in Plenoptic

Cameras. Eurographics, (1):5–8, 2009. 1

[11] C. Gramkow. On averaging rotations. Int. J. of Computer

Vision, 42(1-2):7–16, 2001. 6

[12] C. Harris and M. Stephens. A combined corner and edge

detector. In Alvey Vision Conference, volume 15, pages 147–

151, 1988. 3

[13] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press,, second

edition, 2004. 5

[14] E. Hecht. Optics. San Francisco, CA, Addison Wesley,

fourth edition, 2002. 2, 5

[15] C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass.

Automated Robust Metric Calibration Algorithm for Multi-

focus Plenoptic Cameras. In IEEE Int. Conf. Instrumentation

and Measurement Technology, pages 2038–2043, 2015. 2, 4,

6, 7

[16] H.-G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y.-W. Tai, and

I. So Kweon. Accurate depth map estimation from a lenslet

light field camera. In IEEE Int. Conf. Computer Vision and

Pattern Recognition, pages 1547–1555, 2015. 1

[17] O. Johannsen, C. Heinze, B. Goldluecke, and C. Perwaß. On

the calibration of focused plenoptic cameras. In GCPR Work-

shop on Imaging New Modalities, 2013. 2, 4

[18] O. Johannsen, A. Sulc, and B. Goldluecke. On linear struc-

ture from motion for light field cameras. In IEEE Int. Conf.

Computer Vision, pages 720–728, 2015. 1

[19] N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu. Saliency detection on

light field. In IEEE Int. Conf. Computer Vision and Pattern

Recognition, 2014. 1

[20] A. Lumsdaine and T. Georgiev. The focused plenoptic cam-

era. In IEEE Int. Conf. Computational Photography, pages

1–8, 2009. 1

[21] R. Ng. Digital light field photography. PhD thesis, Stanford,

2006. 1, 2

[22] S. Pertuz, D. Puig, and M. A. Garcia. Analysis of focus mea-

sure operators for shape-from-focus. Pattern Recognition,

46(5):1415–1432, 2013. 4

[23] C. Perwaß and L. Wietzke. Single lens 3D-camera with ex-

tended depth-of-field. In Proceedings of SPIE, volume 8291,

2012. 1, 2

[24] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wet-
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