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Abstract

Users like sharing personal photos with others through

social media. At the same time, they might want to make

automatic identification in such photos difficult or even im-

possible. Classic obfuscation methods such as blurring are

not only unpleasant but also not as effective as one would

expect [28, 37, 18]. Recent studies on adversarial image

perturbations (AIP) suggest that it is possible to confuse re-

cognition systems effectively without unpleasant artifacts.

However, in the presence of counter measures against AIPs

[7], it is unclear how effective AIP would be in particu-

lar when the choice of counter measure is unknown. Game

theory provides tools for studying the interaction between

agents with uncertainties in the strategies. We introduce a

general game theoretical framework for the user-recogniser

dynamics, and present a case study that involves current

state of the art AIP and person recognition techniques. We

derive the optimal strategy for the user that assures an up-

per bound on the recognition rate independent of the re-

cogniser’s counter measure. Code is available at https:

//goo.gl/hgvbNK.

1. Introduction

People nowadays share massive amounts of personal photos

through social media. Personal photos contain rich private

information, e.g. about family members, travel destinations,

and political activities. Together with recent developments

in computer vision techniques [4, 11, 8, 27, 34], this res-

ults in increasing concerns that malicious entities employ-

ing computer vision technologies could extract private in-

formation from visual data.

Classical obfuscation techniques, such as face blurring

and pixellisation, is not only unpleasant but also ineffective

against convnet-based recognisers [28, 37, 18].

There have been recent studies on adversarial image per-

turbations (AIP): carefully crafted additive perturbations on

the image that confuses a convnet while being nearly invis-

Figure 1: A game between a social media user and a re-

cogniser over a photo. The user perturbs the image using

orange strategy, trying to confuse the recogniser. The re-

cogniser chooses blue strategy as a counter measure. They

do not know which strategy is picked by the other.

ible to human eyes [36, 6, 21, 20]. AIPs are indeed prom-

ising as obfuscation techniques.

However, it remains a question whether AIPs are still

effective when counter measures are taken. For example,

[7] proposed simple image processing tactics to counter the

AIP effects (e.g. blurring by small amount). If furthermore

the particular choice of counter measure is unknown, the

best strategy is not obvious for the user.

Game theory provides useful tools for analysis when

there exist uncertainties in the strategies for each player.

We present a game theoretical framework to describe a sys-

tem in which the user and recogniser strive for antagonistic

goals: dis-/enabling recognition. This framework makes it

possible to derive guarantees on the user’s level of privacy,

independent of the recogniser’s counter measure, from an

explicitly formulated set of assumptions. We include a case

study of a person identification game, deriving the user’s

privacy guarantee with respect to the current state of the art

AIP and person recognition methods.

This paper showcases the utility of game theory in un-

derstanding the user-recogniser dynamics. The framework

can be extended beyond the particular settings considered.

We believe this framework will further aid user-recogniser

analyses in more diverse tasks and setups.
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We list our contributions as follows:

• A game theoretic framework for studying the user-

recogniser dynamics.

• Application of adversarial image perturbation (AIP)

as an effective and aesthetic technique for person ob-

fuscation.

• Novel robust and recogniser-selective AIPs.

• An empirical case study of the game theoretic frame-

work, leading to the privacy guarantees for the user.

2. Related Work

Privacy and computer vision. While there exists a bulk

of research on user privacy traditionally led by the security

community [22, 39, 23, 19], studies on private content in

visual data began only recently [37, 28, 18].

Wilber et al. [37] studied the performance of a commer-

cial face detector under multiple face obfuscation methods

(blur, darkening, camouflage glasses, etc.). Oh et al. [28]

and McPherson et al. [18] studied the face recognition per-

formance. In particular, [28] showed that current recog-

nisers can adapt to obfuscation patterns. Above works con-

clude that recognisers can be robust against simple obfus-

cation methods like face blurring. In this work, we study a

stronger obfuscation type: adversarial image perturbations.

Adversarial image perturbation (AIP). Szegedy et al.

[36] first studied the phenomenon of adversarial instabil-

ity of convnets: it is possible to generate invisible addit-

ive perturbations that completely fool a recogniser. The

initial crafting algorithm was based on the L-BFGS [36];

more efficient first-order algorithms have been proposed

[6, 31, 21, 12]. We review existing AIP algorithms and our

novel variants conceptually and empirically.

Robust classification against AIPs. Some pre-convnet

works considered enhancing general robustness of classi-

fiers by training on adversarial data. Lanckriet et al. [13]

trained a linear classifier on adversarial data constrained to

a fixed mean and covariance for each class. Brückner et

al. [3] introduced game theoretic concepts to formalise the

adversarial training procedure. However, they limited their

attention to simpler models: linear [13] or convex [3]. This

work builds on a game theoretic framework which accom-

modates state of the art convnet models.

Since the advent of effective convnets [11] and corres-

ponding AIP algorithms [36], some works [6, 10] have con-

sidered training convnets with AIPs, achieving robustness

against AIPs to some extent. On the other hand, Graese et

al. [7] argued that simple test time image processing, such

as translation, Gaussian noise, blurring, and re-sizing, can

equally neutralise the effect of AIPs, without having to re-

train the convnet. In our case study, we include those image

processing methods in the recogniser’s strategy space.

Robust AIPs against classifiers. Sharif et al. [32] pro-

posed a method for robustification by optimising an AIP

against a set of images, rather than a single image. This ap-

proach was also suggested by Moosavi et al. [20] for gen-

erating universal perturbations. In our work, we consider

optimising the AIP against a set of jittered versions of the

target input. We will show empirically that this enables a

targetted defense against image processing strategies.

AIP for identity obfuscation. This paper advocates the

AIP as an effective and aesthetic means for disabling recog-

nition. Previously Sharif et al. [32] also used adversarial

optimisation to fool a person recogniser. Compared to their

limited setup (fixed pose, fixed recognition strategy), our

case study covers a large-scale social media setup with user-

recogniser dynamics.

Person recognition task. Our case study considers the per-

son recognition task in social media setup [5, 38, 27], as op-

posed to face recognition [9] (frontal faces, good lighting)

or pedestrian re-identification [2, 1] (low resolution, fixed

context). Social media photos capture subjects appearing in

diverse range of viewpoints, poses, clothings, and events.

Zhang et al. introduced PIPA [38], the first large-scale so-

cial media person recognition dataset and benchmark. Our

empirical studies are built upon this dataset.

Person recognition models. Multiple researchers have

proposed person recognition techniques in social media

photos. Zhang et al. [38] proposed to combine cues from

multiple body parts obtained by poselet detections. Oh et

al. [27] greatly simplified [38] while achieving the state of

the art performance. We build our recogniser model upon

[27], possibly with more advanced network architectures. A

concurrent work by Liu et al. [17] claims to have improved

the method via metric learning objective. There exist other

works [14, 28, 15], which exploit social media metadata.

3. User-Recogniser Game

This section provides a general framework for studying

user-recogniser games. The framework provides a tool for

systemising the path from a set of explicit assumptions on

the players to game theoretical conclusions.

Our user-recogniser game framework is visualised in fig-

ure 2. The user U perturbs the original image x according

to a strategy i ∈ Θu, aiming to thwart recognition. The re-

cogniser R processes the perturbed image ri(x) according

to a strategy j ∈ Θr, aiming to neutralise the effect of im-

age perturbation. The resulting image nj(ri(x)) is passed to

the model f to make a prediction. The game arises from the

fact that each player does not know the opponent’s strategy,

although they do know each other’s strategy space.

We introduce relevant game theoretical concepts and key

theoretical results in §3.1 to help formalise the framework

in §3.2. We discuss possible extensions in §3.3.
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Figure 2: User-recogniser game on a single photo. Each player does not know the opponent’s strategy. Orange (blue) arrows

indicate actions taken by the user (recogniser). Information in the orange (blue) box is only available to the user (recogniser).

3.1. Two­Person Constant­Sum Games

We describe our system as a two-person game [26] con-

sisting of two players, the user U and the recogniser R with

designated strategy spaces, Θu and Θr.

As a result of each player committing to strategies i ∈
Θu and j ∈ Θr respectively, R receives a payoff of pij , the

recognition rate; U then receives a payoff of 1 − pij , the

mis-recognition rate.

Game theory suggests that it is sometimes better to ran-

domise the strategies. U can adopt a mixed (random)

strategy θu = (θui )i∈Θu , defined as a distribution over

the strategy space Θu, and similarly for R. With abuse

of notation we write p(θu, θr) :=
∑

i,j

θui θ
r
jpij for the ex-

pected payoff for R when the mixed strategies θu and θr

are taken. The payoff for U is derived and defined as
∑

i,j

θui θ
r
j (1− pij) = 1− p(θu, θr) =: p′(θu, θr).

We say that a two-person game is a constant-sum game

if the players’ payoffs sum to a constant β independent

of the strategies. In our case, the recognition and mis-

recognition rates always sum to one (β = 1). A game is

finite if the strategy spaces are finite. We have the follow-

ing optimality theorem.

Theorem 1 (von Neumann [26], 1928). For a finite

constant-sum game, there exist optimal or minimax mixed

strategies θu⋆ and θr⋆ such that

p(θu⋆, θr) ≤ p(θu⋆, θr⋆) ≤ p(θu, θr⋆) ∀ θu, θr (1)

where v := p(θu⋆, θr⋆) is the value of the game.

Equation 1 implies that when R plays θr⋆, R is guaranteed

to have a payoff of at least v, regardless of U ’s strategy; if U
plays θu⋆, U is guaranteed to have a payoff of 1− v. In our

scenario, this means that U ’s optimal strategy guarantees a

certain mis-recognition rate, regardless of R’s strategy.

U ’s optimal strategies can be obtained efficiently via lin-

ear programming that solves the following (R’s optimal

strategy can be found by swapping min and max):

argmin
θu

max
θr

∑

i,j

θui θ
r
jpij s.t. θu, θr are distributions.

(2)

If U has knowledge on R’s strategy θ̄r, then U can

take advantage of this knowledge. U can optimise her

strategy given θ̄r to attain a payoff of max
θu

p′(θu, θ̄r) ≥

p′(θu⋆, θ̄r) ≥ p′(θu⋆, θr⋆) = 1 − v, a potentially better

payoff than the no-knowledge scenario 1 − v. However, if

R’s strategy is optimal θ̄r = θr⋆, then the knowledge does

not bring improvement for U : max
θu

p′(θu, θr⋆) = 1− v.

In reality, not all players play optimally either due to the

lack of knowledge (e.g. on the opponent’s strategy space),

or due to pure irrationality. We refer to such a player as an

irrational player. Our discussion above implies:

Corollary 1. If U knows R’s strategy θ̄r, and if it is subop-

timal, then U can enjoy a better payoff than 1− v.

3.2. Components of the User­Recogniser Game

We specify the payoffs, strategy spaces, and information al-

lowed for the user U and the recogniser R.

Test data. We assume that the test data are distributed ac-

cording to (x̂, ŷ) ∼ D. This dataset is the source of private

information that the two players compete for.

Fixed model. We assume that U and R use a fixed model

f (e.g. a publicly available model). This is a reasonable

assumption, as U and R often would not have resources to

train modern convnets.

Known model. Each player is aware that the opponent uses

f . This may be unrealistic, but provides a good starting

point. Relaxation of this assumption is discussed in §3.3.

Payoff. When the players commit to strategies i ∈ Θu and

j ∈ Θr, R’s payoff is the recognition rate on the test set:

pij = P
(x̂,ŷ)∼D

[

argmax
y

fy (nj (ri (x̂))) = ŷ

]

(3)
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where fy denotes the model prediction score for class y. U
receives the payoff 1− pij , the mis-recognition rate.

User’s strategy space Θu. We consider additive perturba-

tions such that for an input x,

ri (x) = x+ t(x), ||t(x)||2 ≤ ǫ (4)

for some constant ǫ > 0. When ǫ is small enough, the per-

turbation is nearly invisible to human eyes (see figure 3).

These perturbations are frequently referred to as adversarial

image perturbations (AIPs). We discuss existing AIPs and

our novel variants in §4.

Recogniser’s strategy space Θr. R aims to neutralise the

adversarial effect of AIPs. Although some works have sug-

gested re-training the model with AIPs, demonstrating cer-

tain degree of robustification [6, 10], Graese et al. [7] has

argued that simple image processing can already neutralise

the AIP effects cheaply and effectively. They have demon-

strated that on MNIST, translation (T), Gaussian additive

noise (N), blurring (B), and cropping & re-sizing (C) have

improved the recognition rate from 0% (post-AIP) to 68%,

58%, 65%, and 76%, respectively. In our case study, we

will include these transformations in Θr. In §3.3, we will

discuss about expanding strategy spaces.

Known strategy spaces. The strategy spaces for each

player (Θu and Θr) are known to each other, while the

chosen strategies are not known.

Multiple recognisers. U may encounter a set of recog-

nisers not all of which are malicious. For example, U up-

loads her personal photos to a cloud service with a recogni-

tion system R1; she wants an AIP that enables a successful

recognition by R1 but disables recognition by a malicious

system R2. We propose an approach for generating select-

ive AIPs in §4.2 and confirm their existence in §5.5. From

a theoretical standpoint, the existence of selective AIPs at-

test to the diversity of possible AIP patterns, in line with the

existence of universal perturbations [20].

3.3. Extensions

In the previous section, we have introduced the user-

recogniser game framework with particular assumptions ex-

plored in this paper. In this section, we show that the frame-

work can be extended beyond this setup.

Unknown models. Many AIP techniques assume a full

knowledge on the model f , but the computation of black-

box AIPs is another active research field [29, 30, 24, 16]; U
can potentially adopt these methods.

Non-constant sum. If U and R assign different weights to

different test samples, then the payoffs may not sum to 1.

For such non-constant sum games, there exist Nash equilib-

rium strategies for each player [25]. The optimal strategy

and payoff analyses are still possible.

Non-additive AIPs. The framework allows ri to be any

function that induces invisible changes on the image. Cur-

rent restriction to equation 4 rules out e.g. one-pixel trans-

lation of the whole image. Most, if not all, prior work on

AIP is done in the additive setup. Crafting non-additive AIP

would be interesting future work.

Non-fixed models. R with enough computational re-

sources may re-train the model f with AIPs. One option

to expand our framework to such a setup would be to incor-

porate the model parameters in Θr. Brückner et al. [3] have

studied this setup, but have assumed convex loss functions.

Understanding games with continuous strategy spaces and

non-convex payoffs (e.g. convnet losses) is an open ques-

tion both for computer vision and game theory research.

Unknown strategy spaces. The exact possible set of

strategies may not be known to the opponent. With improv-

ing technologies, the respective strategy spaces may even

grow over time. The framework cannot do much about the

unknown strategies, but can adaptively expand the strategy

spaces according to technological developments.

4. Adversarial Image Perturbation Strategies

This section reviews existing adversarial image perturbation

(AIP) algorithms that use first-order optimisation schemes,

and proposes our novel variants.

We compute AIPs as additive transformations with L2

norm constraints (equation 4). Computation of AIP can be

formulated as a loss maximisation problem

max
t

L (f (x+ t) , y) s.t. ||t||2 ≤ ǫ (5)

where x is the input image and y is the ground truth label;

the loss function L is to be specified.

4.1. Existing AIP methods

Depending on the loss function L and the optimisation al-

gorithm, we recover most of the existing AIP methods such

as Fast Gradient Vector [31], Fast Gradient Sign [6], Basic

Iterative [12], and DeepFool [21]. The universal perturb-

ations introduced by Moosavi et al. [20] can also be seen

as a special case of equation 5 where the loss is computed

over the entire test set and the perturbation t is shared across

images. See table 1 for the summary.

Fast Gradient Vector (FGV) [31]. FGV adopts the softmax-

log loss L = − log f̂y in equation 5, solving it via one-step

gradient ascent: t⋆ = −γ∇L(x) for some constant γ > 0.

Fast Gradient Sign (FGS) [6]. FGS is identical to FGV, ex-

cept that ∇L(x) is replaced with sign (∇L(x)).

Gradient Ascent (GA). This is a multi-step variant of FGV.

Perturbation is initialised at t(0) = 0. Gradient ascent is

performed on the loss function iteratively: t(m+1) = t(m)−
γ∇L(x+ t(m)) for m = 0, · · · ,K for some fixed step size

γ > 0 and maximal number of iterations K ≥ 1.
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Variants Loss L
Stopping

Step size
condition

FGS[6] − log f̂y 1 iteration Fixed

FGV[31] − log f̂y 1 iteration Fixed

BI[12] − log f̂y K iterations Fixed

GA − log f̂y K iterations Fixed

DF[21] fyc

− fy K it.∨ fooled Adaptive

GAMAN fy⋆

− fy K iterations Fixed

Table 1: Conceptual differences among AIP methods. fy′

is

the model score for class y′, and f̂ denotes the softmax out-

put of f . y is the ground truth label, and y⋆ is the most likely

label among wrong ones. yc is the label with the closest lin-

earised decision boundary.

Basic Iterative (BI) [12]. BI is identical to GA, except that

∇L(x) is replaced with sign (∇L(x)).

DeepFool (DF) [21]. DF algorithm solves the objective:

min
t

||t||2 s.t. argmax
y

fy (x+ t) 6= y (6)

which finds the minimal perturbation such that the pre-

diction is wrong. Although the objective is different, we

show that the DF algorithm can also be seen as a first-order

method solving equation 5 for some loss function.

DF first finds the class with the nearest decision hyper-

plane, denoted by c. To simplify the search, c is found on

the linear approximation of f around x (tangent function).

The normal vector to the decision hyperplane is given by

∇f c −∇fy . At each iteration, the algorithm computes the

minimal step size along this direction to reach the decision

hyperplane. Since f is not linear, the algorithm may need

more than one iterations to cross the decision hyperplane.

We observe that if we set the loss function as L =
f c − fy the gradient ascent direction matches the DF step

directions ∇f c −∇fy . We thus regard DF as a gradient as-

cent algorithm with each step size minimised to just induce

a wrong prediction.

Projection and clipping. The norm constraint || · ||2 ≤ ǫ as

well as RGB value constraint to [0, 255] must be enforced

on the solution. [16, 12] suggest applying projections after

each iteration. We follow this practice. For BW images, we

average the gradients for each RGB channel.

4.2. Our AIP methods

As we will demonstrate in §5.2, the above approaches are

fragile to simple image processing techniques. We propose

novel AIP approaches here, focusing on robustness.

1Gaman is a Zen Buddhist term for endurance.

Gradient Ascent – Maximal Among Non-GT (GAMAN1).

Even if the prediction label is changed by the AIP, this

would not be robust if the perturbed input is still close to

the decision boundary. DeepFool (DF) is not expected to be

robust, as it stops iterations as soon as the decision boundary

is reached. On the other hand, DF guides the solution to the

closest decision boundary; if we let DF iterate beyond the

decision boundary with a fixed step size with fixed number

of iterations, the solution is likely to proceed more deeply

into the territory of the wrong label, improving robustness.

This motivates our GAMAN variant. Instead of the costly

computation of c at each iteration, we approximate c ≈
y⋆ := argmin

y′ 6=y

fy′

, the most likely prediction among wrong

labels. We set the loss function as L = fy⋆

− fy , and

perform gradient ascent with a fixed step size γ for K itera-

tions. This approach is similar but different from the imper-

sonation AIPs previously considered [32, 16], which drive

the solution to a fixed impersonation target ȳ. In contrast,

y⋆ may change during the iterations.

Vaccination against image processing. The above meth-

ods maximise classification loss functions with respect to a

fixed recogniser. For countering an AIP-neutralising image

processing technique nj , we consider including the image

processing step in the loss function: L(nj(x + t)). Any

first-order method considered above can be used, as long as

nj is differentiable. If the processing function is random,

we average the gradients from multiple samples. We refer

to this technique as vaccination. Note that this technique is

complimentary to the above mentioned methods.

Selective AIPs. We present another complimentary tech-

nique for generating AIPs targetted to a selected subset of

recognisers. To avoid recognition from M while author-

ising B to recognise, we propose to maximise a mixed loss

∑

k∈M

λkLk −
∑

k′∈B

λk′Lk′ (7)

with λk, λk′ > 0.

5. Empirical Studies

We have set up a game theoretical framework to study the

dynamics between the user U and the recogniser R. In par-

ticular, previous adversarial image perturbation (AIP) tech-

niques are studied, and new variants are proposed.

In this section, we present a case study of the framework

on person recognition. Before presenting the game the-

oretical analysis, we evaluate the performance of existing

and newly proposed AIP techniques (§5.2), and the effect-

iveness of R’s image processing strategies Θr (§5.3). The

full game is introduced (§5.4) after specifying U ’s strategy

space; we study this system in depth. Finally, we show res-

ults on the recogniser-selective AIPs (§5.5).
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Perturbation AlexNet VGG Google ResNet

None 83.8 86.1 87.8 91.1

Im
ag

e

P
ro

c.

Noise ≥83 ≥85 ≥87 ≥90

Blur ≥82 ≥85 ≥86 ≥90

Eye Bar ≥81 ≥84 ≥84 ≥87

1
-I

te
r.

A
IP

FGS[6] 23.6 16.0 5.9 20.2

FGV[31] 13.3 11.5 4.6 20.0

K
-I

te
r.

A
IP

BI[12] 1.2 0.5 0.0 0.0

GA 0.2 0.0 0.0 0.0

DF[21] 0.0 0.0 0.0 0.0

GAMAN 0.0 0.0 0.0 0.0

Table 2: Recognition rates after image perturbation. In all

methods, the perturbation is restricted to || · ||2 ≤ 1000. For

the baseline image processing perturbations, we only report

lower bounds (denoted ≥ · ).

5.1. Dataset and Experimental Setup

Dataset. We build our analysis upon the PIPA (People In

Photo Albums) [38], a large-scale dataset of social me-

dia photos crawled from Flickr. We use the val1 sub-

set of PIPA, consisting of 4820 instances of 366 identities

(val-original split1 in [27] terminology) as the test set.

We assume that the user uploads cropped head images to so-

cial media; PIPA provides the GT head boxes.

Person recogniser. The person recognition model f is built

on a state of the art framework [27]. It first trains a con-

vnet for the person recognition task on a large database of

random identities; it then tunes the final classification layer

to the test identities using about ten examples per identity.

In our case, we have used the val0, which is of the same

size and set of identities as as val1. While [27] only con-

sidered AlexNet [11], we also consider VGG [33], Google-

Net [35], and ResNet152 [8]. They show better recognition

rates (table 2).

Evaluation. We evaluate payoffs for R in terms of the ratio

of correctly identified instances in the test set. The payoff

for U is 1 minus R’s payoff. In all the tables, R is the

column player and U is the row player. For each column

(row), U ’s (R’s) optimal strategy is marked orange (blue).

5.2. Comparison of Perturbation Methods

AIP parameters. We set ǫ = 1000 in all our experiments,

unless stated otherwise. For GoogleNet input 224 × 224,

this corresponds to 2% of pixels perturbed by 1/256. For

Gradient Ascent (GA) and Basic Iterative (BI) the step size

γ is set to 104; for GAMAN, 5×103. We set the maximal num-

ber of iterations K = 100, determined such that the norm

reaches ǫ = 1000 in K iterations for most test samples.

Baseline perturbation methods. We consider three com-

monly used obfuscation types: noise, blur, and eye bar.

Noise adds iid Gaussian noise of variance σn; blur performs

convolution with a Gaussian kernel of size σb; eye bar puts a

gray horizontal bar of thickness σe on the upper 1
3 location.

They incur large L2 distances (> 1000) from the original

image even with small σn, σb, and σe. In table 2, we report

the lower bounds on the recognition rates at || · ||2 = 1000
by computing the rates at some || · ||2 > 1000.

AIP performance. We first evaluate all the considered AIP

methods against all network variants. Table 2 shows the res-

ults. We observe that noise, blur, and eye bar have nearly

no impact on the recognition performance for small L2 per-

turbations. AIP variants show better obfuscation perform-

ances. Vanilla gradient overall gives better obfuscation than

signed versions; on AlexNet Fast Gradient Vector (FGV) re-

duces the recognition rate to 13.3, compared to 23.6 for Fast

Gradient Sign (FGS); the multi-iteration analogues show

similar behaviours with Gradient Ascent (GA) achieving 0.2

compared to 1.2 by Basic Iterative (BI). Finally, we observe

that the DeepFool (DF) and GAMAN (§4.2) are very effective,

pushing the recognition rates down to zero.

Network performance. Comparing architectures, we ob-

serve that AlexNet is surprisingly robust to AIPs compared

to more recent architectures. GoogleNet, for example, per-

forms better than Alexnet without AIPs (83.8 vs 87.8);

when FGS is used, AlexNet performs 23.6 while Google-

Net performs 5.9. When multi-iteration AIPs are used, the

architectural choice does not have a significant impact. We

opt for GoogleNet in the next experiments; it is reasonably

performant, while being much faster than ResNet.

5.3. Robustness of AIPs

Basic processing Proc. Even before R’s image processing

strategies take place, the perturbed image needs to be (1)

re-sized to the original image (from the network input sizes)

and (2) quantised to integer values (e.g. 24-bit true color).

We denote the above two basic processing steps as Proc.

Image processing strateges Θr. We fully specify R’s

strategy space for our case study. Following Graese et al.

[7], we consider Θr = {Proc, T, N, B, C, TNBC}. Proc

is the basic processing described above, and all the other

strategies are applied over Proc. T is translation by a ran-

dom offset within 10% of the image side lengths. N adds iid

Gaussian noise with variance σ2 = 102. B blurs with Gaus-

sian kernel of width chosen from {1, 3, 5, 7, 9} uniformly at

random. C crops with a random offset within 10% of the

image side lengths and re-sizes back to the original. For

each strategy, the recogniser ensembles the scores from five

random samples. We also consider the combination of all

four (TNBC). It runs the model four times on each pro-

cessed image and once on the original; the scores are then

averaged.
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Perturb ∅ Proc T N B C TNBC

None 87.8 87.8 87.6 64.0 81.2 85.4 87.3

BI[12] 0.0 8.3 15.8 16.8 28.6 27.4 17.6

GA 0.0 8.6 13.2 14.1 28.4 23.7 16.4

DF[21] 0.0 51.8 75.6 56.5 72.5 76.9 75.5

GAMAN 0.0 4.0 6.6 15.0 22.2 16.7 9.9

Table 3: Robustness analysis of AIPs on GoogleNet. AIPs

are restricted to to || · ||2 ≤ 1000. Proc indicates the re-

sizing and quantisation needed to convert AIP outputs to

image files. (T,N,B,C) = (Translate, Noise, Blur, Crop).

Robustness of AIPs. Table 3 shows the recognition rates

for the GoogleNet when R’s processing strategies are

present. While the multi-iteration AIPs induce zero re-

cognition rates without any processing, Proc already ex-

hibits powerful neutralisation effects: recognition rates for

Gradient Ascent (GA) and DeepFool (DF) jump from zero to

8.6 and 51.8, respectively. The instability of DF is due to

early stopping (§4.1). The processing strategies by R fur-

ther increase recognition rates. Blurring B and cropping C

strategies prove to be more harmful to AIPs than translation

T and noise N in general. Comparing AIP-wise, we show

that our novel variant GAMAN (§4.2) dominates other meth-

ods against all processing strategies but N; GA performs bet-

ter in that case, but only by a small amount (14.1 versus

15.0). Subsequent analyses are built on GAMAN.

Qualitative. Qualitative examples of the methods are

shown in figure 3. The images and the prediction results

are after Proc. GA and GAMAN reliably induces misidentific-

ation without sacrificing aesthetics compared to blurring.

5.4. User­Recogniser Games

Vaccination strategies Θu. In response to the processing

strategies by the recogniser R, the user U may vaccinate the

AIP against expected processing types (§4.2). We consider

six variants Θu = {GAMAN, /T, /N, /B, /C, /TNBC}. We use

slash / to indicate vaccination on GAMAN. For /T, /N, /B, /C,

gradients from 5 random function samples are averaged at

each iteration. The combination strategy /TNBC averages 4

gradients from individual methods and 1 original gradient,

resulting in the same number of gradient computations for

all vaccination variants.

Is vaccination helpful? Table 4 shows the recognition

rates of GoogleNet for combinations of discussed pro-

cessing and vaccination strategies. We observe indeed that

each vaccination type makes the vanilla AIP GAMAN more

robust against the respective processing type: for B the rate

drops from 22.2 to 5.8. /B is the most effective strategy for

U against all processing strategies except for N. For N, the

corresponding vaccination /N yields the best payoff for U .

Recogniser Θr

User Θu
Proc T N B C TNBC

GAMAN 4.0 6.6 15.0 22.2 16.7 9.9

/T 2.5 2.3 11.6 18.5 7.2 4.9

/N 5.8 7.6 4.6 23.6 16.6 9.1

/B 0.4 0.8 8.6 5.8 3.1 1.4

/C 2.6 2.2 11.8 18.1 3.4 4.3

/TNBC 0.7 0.9 5.2 9.5 3.2 2.0

Table 4: Recogniser’s payoff table pij , i ∈ Θu and j ∈ Θr.

The user’s payoff is given by 100− pij .

We conjecture this is because the noise N results in high fre-

quency patterns while the others smooth the output. We ob-

serve, finally, that the combined vaccination /TNBC cannot

prepare AIP against all processing types most effectively;

given a budget on the number of gradient computations, it

is hard to be good at everything.

Optimal deterministic strategy. We can regard table 4

as the payoff table pij for R for strategies i ∈ Θu and

j ∈ Θr. Let’s first assume that the players only choose

fixed strategies. Then, solving equation 2 with determinism

constraints θui , θ
r
j ∈ {0, 1} yields U ’s optimal strategy as

/B with a privacy guarantee of at most 8.6 recognition rate.

Optimal random strategy. Game theory suggests that it is

sometimes better to randomise strategies. Solving equation

2 without the integral constraints yield the optimal solutions

for U and R as θu⋆ = (/B : 61%, /TNBC : 39%) and θr⋆ =
(N : 52%,B : 48%), respectively. Playing θu⋆ guarantees

U to allow at most 7.3 recognition rate, an improved privacy

guarantee than the deterministic case, 8.6.

Knowledge on R’s strategy. As discussed in §3.1, having

knowledge on R’s strategy can improve the payoff bound

for U , if R does not play the optimal strategy. Let us con-

sider two possible non-optimal strategies played by R. (1)

If R commits to B, U ’s optimal strategy is the minimal row

in the column B: /B, with recognition rate 5.8. (2) If R
randomises uniformly over Θr, U ’s optimal strategy is the

minimal row over the column average: /B with recognition

rate 3.4. In both cases, U enjoys lower recognition rates.

Limited knowledge on Θr. Assume that U is not aware of

all possible technologies that R has at hand. For example,

the strategy N is not known to U . Then, U ’s apparent op-

timal solution is (/B : 100%), which she thinks will guar-

antee her at most 5.8 recognition rate. R can then attack U
with N, incurring 8.6 recognition rate. Limited knowledge

on the opponent’s strategy space does hurt.

5.5. Selective AIPs

We assume that U wants to avoid identification by a set of

malicious recognisers M, while authorising identification
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Original Blur GA DF[21] GAMAN GAMAN

L2 = 0 L2 = 4107 L2 = 1000 L2 = 119 L2 = 1000 L2 = 2000

L2 = 0 L2 = 5666 L2 = 1000 L2 = 173 L2 = 1000 L2 = 2000

Figure 3: Perturbed images after Proc and the corresponding predictions (green for correct, red for wrong). GA and GAMAN

reliably confuse the classifier at almost no cost on the aesthetics. At L2 = 2000, GAMAN does show small artifacts.

Setup M averaged B averaged

M B L2 w/o AIP w/ AIP w/o AIP w/ AIP

{G} ∅ 1000 87.8 4.0 - -

{G} {A} 1000 87.8 8.7 83.8 97.9

{A,R} {V,G} 1000 87.4 17.7 87.0 97.7

{A,R} {V,G} 2000 87.4 3.8 87.0 97.8

Table 5: Selective AIPs. AIPs are crafted to confuse M
leaving B intact. [A,V,G,R] = [AlexNet, VGG, GoogleNet,

ResNet152]. GAMAN has been used in all experiments. Re-

ported performances are after Proc.

by benign ones B. We set up the experiments in table 5. We

include the GAMAN performance on GoogleNet as a baseline

(first row). We solve equation 7 with λk = 1 for all k ∈
M∪ B to generate selective AIPs.

When M = {GoogleNet} and B = {AlexNet}, the

generated AIP incurs mere 8.7 identification for M (after

Proc), while allowing B to identify 97.9 percent. We thus

confirm the selectivity. However, this comes at the cost of

increased recognition rate for M (8.7), compared to when

AIP only had to confuse M (4.0).

We also consider the multi-M, multi-B case given by

M = {AlexNet, ResNet} and B = {VGG, GoogleNet}.

The average performance is 17.7 for M, and 97.7 for B,

post Proc. Selectivity thus works for multiple models, but

again the recognition rates for M are quite high (17.7). We

remark that by increasing the budget on perturbation size

from 1000 to 2000, we can still attain a lower rate: 3.8.

The existence of selective AIPs is not only of practical

but also of theoretical interest. They show that the space of

AIPs is diverse enough to accommodate patterns that sim-

ultaneously hamper and assist recognition.

6. Discussion & Conclusion

Game theoretical approach. Game theory is a tool for

wading through uncertainties in players’ choices, providing

payoff guarantees independent of the opponent’s strategies.

Game theory also suggests that if there is no single techno-

logy which best copes with all possible adversarial techno-

logies, it is better to randomise existing techniques.

As discussed in §3.3, the game theoretical framework

introduced in this paper can be extended to other setups,

where less resource constraints are placed on each player.

This paper serves as a first step towards the promising re-

search direction of analysing the user-recogniser dynamics.

Conclusion. In this work, we have constructed a game the-

oretical framework to study a system with two players, user

U and recogniser R, with antagonistic goals (dis-/enable re-

cognition). We have examined existing and new adversarial

image perturbation (AIP) techniques for U . As a case study

of the framework, we have presented a game theoretical

analysis of the privacy guarantees for a social media user,

assuming strategy spaces that include the state of the art

AIPs and person recognition techniques.
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