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Abstract

We present a novel method to realistically puppeteer and

animate a face from a single RGB image using a source

video sequence. We begin by fitting a multilinear PCA

model to obtain the 3D geometry and a single texture of

the target face. In order for the animation to be realistic,

however, we need dynamic per-frame textures that capture

subtle wrinkles and deformations corresponding to the ani-

mated facial expressions. This problem is highly undercon-

strained, as dynamic textures cannot be obtained directly

from a single image. Furthermore, if the target face has a

closed mouth, it is not possible to obtain actual images of

the mouth interior. To address this issue, we train a Deep

Generative Network that can infer realistic per-frame tex-

ture deformations, including the mouth interior, of the target

identity using the per-frame source textures and the single

target texture. By retargeting the PCA expression geometry

from the source, as well as using the newly inferred texture,

we can both animate the face and perform video face re-

placement on the source video using the target appearance.

1. Introduction

Many methods have been developed in recent years to

realistically render and animate faces that are then com-
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bined with real images. Such techniques have a variety of

applications, ranging from special effects for film and tele-

vision to the recent and controversial phenomenon of real

images and videos of prominent public figures being sur-

reptitiously modified to create “fake news.” Recent efforts

towards achieving such capabilities include, but are not lim-

ited to, video rewriting [2], face replacement [6], and real-

time video reenactment [35]. Though the aforementioned

works achieve many of their stated goals, they require a

video of the target subject whose face is to be modified

as input. Thus, they cannot be used for target subjects for

whom high resolution video sequences do not exist and are

unobtainable.

A naive approach would be to simply fit a 3D mesh to

the face of the target subject in the image, and animate it

using the expressions of another person (whom we call the

“driver”), using the static texture captured from the original

image for the entire animation. However, in this approach,

subtle wrinkles that do not appear in the initial image and

are too small to be represented by deformations in the 3D

mesh will not appear in the resulting animations. Realis-

tic animation requires these wrinkles to form and disappear

corresponding to the appearance of the target subject and

the expression that is being performed.

Our goal in this paper is to generate dynamic per-frame

facial textures that can represent details such as the inner

mouth and wrinkles from a single RGB image. Needless

to say, this problem is highly underconstrained. In fact, it

is impossible to perfectly solve for fine scale geometry, let

alone temporal facial deformations, from a single image.

For example, if the target image has a closed mouth, then

there is no way that we can actually know what the teeth,

tongue, or inner mouth look like. We must therefore infer

these details. Likewise, it is impossible to directly tell the

type of wrinkles that form under different expressions from
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looking at a single texture map from a neutral expression.

To address this, we employ deep learning to infer the

dynamic texture deformations necessary for a realistic an-

imation. In particular, we leverage the power of the re-

cently popularized Generative Adversarial Framework [15]

in order to infer realistic and high-resolution texture defor-

mations transferred from a sequence of source expression

textures to a target identity texture. These texture defor-

mations include the inference of the inner mouth and teeth,

which are included in the texture training data. After in-

ferring the mouth, we refine it using optical flow from the

source video’s mouth region.

After learning texture deformations, we are able to re-

render a face with realistic wrinkling, expressions, and teeth

using the source video, as well as compositing the newly

rendered appearance back onto the source video to replace

the original actor using the schema of [6]. This is, to the

best of our knowledge, the first time realistic animation and

video compositing has been achieved using only a single

target image. Our contributions are summarized as follows:

1. We propose a novel framework to generate realistic dy-

namic textures using a conditional generative adver-

sarial network to infer detailed deformations in texture

space such as blinking, teeth, tongue, wrinkles, and lip

motion from a single image.

2. Our system can composite the target face image onto

the faces in the source videos with new realistic ap-

pearances.

3. We introduce a dataset of synchronized, high-

resolution (1920x1080) videos of captured subjects

with varying facial appearances saying the Harvard

Sentences [16] and making a set of facial expressions

based on the Facial Action Coding System (FACS) [8].

We plan to release this dataset to the public in the fu-

ture.

2. Related Work

2.1. Facial Retargetting and Enactment

Recent advances in capture technology such as [3, 35,

21] have been able to capture faces with high-fidelity using

only monocular input. [29] uses a head-mounted rig and

a mouth-camera to regress model PCA expression coeffi-

cients for high-fidelity speech animation.

[35] reenacts a video sequence by using multiple frames

of the target video sequence to construct a geometric iden-

tity of the target. Similarly, [2] adopts a multi-scale ap-

proach to replace a face from one video sequence with the

appearance from a different video sequence. The limitation

here is that the animated face’s identity is fixed - the system

cannot puppeteer an arbitrary person from an image. To

address this issue, [6] switches the appearance of one per-

son’s face onto another in a realistic fashion. In [26], the

authors compute a nonlinear temporal synchronization be-

tween two videos of the same actor that can be blended for

a novel performance. The work of [10] can replace the face

of the actor in a target video with the face of a source video.

The authors of [12] are able to reconstruct detailed 3D fa-

cial geometry from a monocular video. However, all these

methods require a video of the target in order to do photo-

realistic facial retargetting, rather than using only a single

target image as in our method.

[32] learns a controllable model of a face from an image

collection that can be puppeteered. Though it does not re-

quire video, it does require many different images to work.

[19] uses a deep network to swap faces between two images.

2.2. Capturing and Retargeting Photorealistic
Mouth Interior

Capturing and modeling the mouth region has always

been a challenge. Existing works include [5, 36, 33, 9, 7],

which use audio input to render the mouth region. [37]

fits a 3D model to reconstruct a teeth model from a pho-

tograph as input. [11] and [34] improve the photorealism of

their 3D teeth models with 3D textured teeth proxies. These

works are not well suited for photo-realistic teeth retarget-

ing because they only track the mouth of the source image

and do not consider a target image at all. In their recent

work, [35] fills in the inner mouth region by searching for

similar mouth frames in a target video. In contrast with

previous work, we do not need a target video to infer photo-

realistic teeth texture. Instead, we only need a single RGB

image of the target image that does not necessarily contain

teeth and use a conditional GAN to infer contents in the

mouth which are further upsampled and refined by flowing

the pixels from the source video.

2.3. Deep Generative Model for Texture Synthesis

The rise of deep learning has brought many advances in

image synthesis. Generative Adversarial Models [15] have

proved especially capable of generating sharp and realistic

images. More specifically, we use a conditional GAN [27]

to enable end-to-end synthesis of high-resolution facial tex-

tures conditioned on the target identity and source facial ex-

pressions. While conditional GANs have been used for a

wide range of applications such as image-to-image trans-

lation [17], face image generation [13], image inpainting

[30, 38], and style transfer [22], to our knowledge condi-

tional generative adversarial models have never been used

for the purpose of generating high-detailed textures.

Previous facial synthesis works that do not use con-

ditional GANs include [23], which hallucinates high-

resolution faces from low-resolution images using a local

patch-based Markov network, and [28], which generates
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Figure 1. Overview of the pipeline.

novel face images by learning a probabilistic model from

a set of training faces. However, neither of these results are

realistic and artifact-free in high-resolution. [14] uses statis-

tical models to generate wrinkles and pores on facial geom-

etry, but cannot do so for textures. [31] uses a deep learning

framework to generate high resolution textures from a sin-

gle image, but they cannot infer details like wrinkles and

the inner mouth region on their textures for different ex-

pressions as we can.

3. Overview

Our pipeline consists of the following steps (illustrated

in Fig. 1):

1. Fit a 3D model to extract static albedo textures from

each frame in the source video sequence and the single

RGB target image (Section 4).

2. Infer dynamic textures and retarget the per-frame tex-

ture expressions from the source video frames onto

the target image texture using a generative adversarial

framework (Section 5).

3. Composite the target mesh with the generated dynamic

textures into each frame in the source video (Section

6).

4. Fitting the Face Model

We model the face shape S and albedo as a multilinear

PCA model with n = 53k vertices and 106k faces:

S(βid, βexp) = Ŝ +Bidβid +Bexpβexp (1)

I(αalb) = Î +Aalb · αalb (2)

The identity and expression are represented as a multi-

variate normal distribution with Bid ∈ R
3n×80, Bexp ∈

R
3n×29 and Aalb ∈ R

3n×80. The dimensions of the mean

shape are Ŝ = Ŝid + Ŝexp ∈ R
3n, and the mean albedo is

given by Î ∈ R
3n. The standard deviations are given by:

σid ∈ R
80, σexp ∈ R

29 and σalb ∈ R
80.

We use the Basel Face Model [1] for Bid, Aalb, Ŝ and

Î as well as FaceWarehouse [4] for Bexp. We model the

illumination using second order Spherical Harmonics and

assume Lambertian surface reflectance. We denote the illu-

mination as L ∈ R
27.

Following the optimization scheme of [35], we jointly

solve for all the unknowns Y = {S, I, R, t, P, L} lever-

aging the Gauss-Newton method applied to iteratively re-

weighted least squares with three levels of image pyramid,

where P are the camera parameters. One can refer to [35]

for details of this optimization. In short, our objective func-

tion is:

E(Y) = wcolEcol(Y)+wlanElan(Y)+wregEreg(Y) (3)

We use energy weights wcol = 1, wlan = 10 and wreg =
2.5× 10−5. The photo-consistency term is given by

Ecol(Y) =
1

|M |

∑

p∈M

||Cgt(p)− Crender(p)||2 (4)

where Cgt is the input image and Crender is the synthesized

image. p ∈ M denotes pixel visibility in the source image.

The landmark term is given by:

Elan(Y) =
1

|F |

∑

fi∈F

||fi −ΠP (RSi + t)||22 (5)

where fi ∈ F is a 2D facial feature following the method

presented in [18]. The regularization Ereg term ensures

that faces stay close to the normal distribution. This term

prevents degenerative faces when performing the fitting:

Ereg(Y) =
80∑

i=1

[(
βid,i

σid,i

)2 + (
αalb,i

σalb,i

)2] +
29∑

i=1

(
βexp,i

σexp,i

)2 (6)

5. Dynamic Texture Synthesis

5.1. Deep Learning Framework

The core of our dynamic texture synthesis pipeline for

inferring fine details is a Conditional Generative Adversar-

ial Network used to infer deformations from a source tex-

ture onto a target texture. Broadly speaking, a Generative
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Figure 2. The network architecture. The encoder takes as input the identity texture and the expression texture, and the decoder outputs the

dynamic texture. The adversarial discriminator is used during training to judge whether the output texture looks real or not.

Adversarial Network (GAN) G is a function which pro-

duces “realistic” output from a noise vector. That is, given

a distribution M , a variable z ∼ M , and a set of ground

truth “real” examples X , we would like G(z) to be indis-

tinguishable between any x ∼ X . Formally, by indistin-

guishable we mean to say that the generator function fools

as best as possible a discriminator function, D, trained pre-

cisely to separate the generated output G(z) from the real

output drawn from X . A conditional GAN, on the other

hand, takes as input both the noise vector z, along with ad-

ditional input y in order to produce the output x. Notice that

y and x are not necessarily from the same set.

In our setting, we attempt to learn a target texture defor-

mation given a source texture deformation. That is, given

a source texture Usource that encodes a given expression,

we would like to transfer this expression to a neutral-pose

target texture Ntarget. For example, the source texture ex-

pression might contain a wrinkle on the left cheek that we

would like to synthesize onto the target neutral texture. In

this case, the output is Utarget, the target texture with the

wrinkle, and we are conditioning on Usource and Ntarget.

Note that neural networks are inclined to be heavily af-

fected by noise and variation within the training corpus. For

this reason, we work in the UV texture space of the captured

facial albedos. This provides many benefits during training.

First of all, it minimizes variations in the input due to fac-

tors such as lighting, image background and head pose. In

UV space, the mouth, eyes, and nose are in the exact same

location in each image - the only thing that changes is the

content of those locations. Working in this space makes

it possible to retarget mouth motion, blinking, scrunching,

and various other skin deformations that would be much

harder to learn otherwise.

5.2. Loss Function

The energy function we minimize is given by

LcGAN (G,D) = Ex,y∼pdata(x,y),z∼pzz[logD(x, y)]

+ Ex,y∼pdata(x),z∼pz(z)[log(1−D(G(x, z)))]

(7)

In our formulation, x is the pair (Usource, Ntarget) and y

is given by Utarget. In addition to this energy, the generator

G also attempts to minimize the reconstruction loss to the

target y in the ℓ1 sense.

That is, Lℓ1(G) = E[‖ y −G(x, z) ‖1] [17].

G attempts to minimize this objective while D at-

tempts to maximize it. In other words: Gopt =
argminG maxD LcGAN (G,D) + λLℓ1(G), where λ en-

codes the relative weighting of the different errors [17].

In our implementation of the conditional GAN, we do not

input any noise during generation, but otherwise the opti-

mization program is accurate. We set λ = 0.001 in all ex-

periments. This parameter can be viewed as a balancing

between the need to reconstruct accurate wrinkles with the

need to have the final texture remain ”realistic”.

5.3. Network Architecture

We use a similar architecture as [17]. First, we concate-

nate the driver expression and the neutral target identity,

(Usource, Ntarget), along their color-channel dimension as

input. The generator output is the target expression y, which

is the expression transferred from the source to target tex-

ture.

Second, we use a masked prior to define the ℓ1 and ad-

versarial loss. The mask is applied on the ℓ1 loss such

that the the loss around the mouth and eye regions is ten

times higher than in other areas - we do this because wrin-

kles, blinking, and most texture deformations are a lot more

prevalent in these areas. For the discriminator, we adopt a

Markovian Discriminator (PatchGAN) with patch size set

to 70× 70. We found that adding skip connections between

encoder layers and decoder layers, skipping around the code

layer, greatly reduces noise in the output image. The param-

eters are optimized using ADAM with back-propagation.

Our input and output resolution are 256× 256.

5.4. Mouth Synthesis

We model the mouth interior region as a part of the UV

texture. When the mouth is closed, the area between the lips
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Target	teeth

Result	teethSource	teeth

Optical	flow

Figure 3. Visualization of flow-upsampling from source mouth to

low-resolution inferred mouth. Left is source mouth, top is target

mouth, bottom is flow field, right is final result.

get projected onto this area to make a pink color. When the

mouth is open, the mouth interior, including the teeth and

tongue, are projected to this region (Fig. 3).

Using our deep-learning framework, we are able to trans-

fer open-mouth expressions onto the closed-mouth neutral

target textures and infer the inner mouth region. However,

due to lack of training data for the mouth interior, the in-

ferred texture here tends to be of rather low resolution. In

order to improve this area, we use SIFT-Flow [25] to redraw

the target mouth using the source mouth for each frame. In

particular, after computing SIFT features at the pixel level,

we perform matching based on the following energy term:

E(w) =
∑

p

min(||s1(p)− s2(p+ w(p))||1, t)

+
∑

η(|u(p)|+ |v(p)|)

+
∑

(p,q)∈ǫ

min(α|u(p)− u(q)|, d) +min(α|v(p)− v(q)|, d)

(8)

The terms in the equation are, in order, the data term, the

small displacement term, and the spatial regularization term

[24], where w(p) = (u(p), v(p)) is the flow vector at a point

p = (x, y), and s1 and s2 are the sift features computed for

either image 1 or image 2 at the point p. The second and

third term regularize the matching by pushing nearby points

to get mapped to each other.

Inferring the inner mouth also has the added benefit of

improving the lip texture around the mouth during tracking

failure of the original video: tracking of tight-lipped ex-

pressions such as kissing often fail and the lip texture gets

projected to the interior region in UV space. During ren-

dering, this causes the lips to be thinner than they should

be, which gives an unnatural appearance. By inferring this

inner-mouth region, we are able to synthesize realistic kiss-

ing faces on the target even when lip tracking fails on the

source.

(a) (b)

(c) d

Figure 4. a) The input consists of the frames of the source video

(left) and the rendered retargeted mesh (right). b) Naively project-

ing all of the target mesh’s vertices onto the source frame results

in an unrealistic and incoherent result (left) when a more optimal

partition is outlined in red on the image on the right. c) The com-

position of the two images using the optimal scene. d) Linearly

blending the pixels along the seam gives a smooth and realistic

result.

6. Video Face Replacement via Blending

Once we have the per-frame textures and retargeted

mesh, we are also able to transfer the target appearance back

onto the source video sequence for a detailed and realistic

animation (Fig. 4). We use a graph-cut approach similar to

[6] in order to achieve this. In particular, for blending the

retargeted faces to the source video in a photorealistic man-

ner, we first find a graph-cut to partition each frame into two

regions, which determines whether a pixel comes from the

frame in the source video or the image of the rendered re-

targeted face model(Fig. 4a-c). We then linearly blend the

target and source regions of the images along the seam to

achieve a smooth and realistic result (Fig. 4d).

6.1. Graph-Cut

Similar to [6], we optimize the partition so as to en-

sure spatial coherence between neighboring pixel values

and temporal coherence between frames.

If we naively project the mesh back onto the frame of the

source video, as seen in the left-hand image of Fig 4b, the

result is not smooth or realistic. In order to maintain spatial

coherence across large variations in pose and expression,

we construct a graph-cut problem on each of the frames in

the source video and their corresponding retargeted mesh

as in [20]. For each frame, the graph cut algorithm labels

each vertex on the mesh as either a source vertex or target

vertex in a manner that minimizes the difference in pixel

values across neighboring vertices, as shown on the right-

hand image of Fig. 4b. We then project the seam of the

labeled mesh onto the image (Fig. 4c).

The nodes of the graph represent the vertices on the mesh

for each frame in the source video. Let each vertex be de-
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noted as Vt,i, where t refers to the tth frame, and i refers to

the ith vertex on the mesh.

In order to minimize the difference between source and

target pixels along the seam, for each frame, we set weights

on the graph for each edge between each pair of vertices

Vt,u and Vt,v that share an edge on the mesh as:

Wm(Vt,u, Vt,v) =‖Is(Vt,u)− Is(Vt,v)‖

+ ‖It(Vt,u)− It(Vt,v)‖
(9)

Isis the source image, Iw is the target image, Is(V ) is

the color at the pixel where V is projected onto the source

frame, and It(V ) is the color at the pixel V is projected

onto in the rendered target image. For temporal coherence,

we set edges between vertices Vt,i and Vt+1,i for all i and t,

with weight as:

Wf (Vt,i, Vt+1,i) = λ‖Is(Vt,i)− Is(Vt+1,i + 1)‖−1

+ ‖It(Vt,i)− It(Vt+1,i + 1)‖−1
(10)

After computing the seam, we can composite the target

appearance onto the source video and linearly blend the pix-

els across the seam for a realistic novel reenactment.

7. Experiments

7.1. Data Collection

In order to semantically transfer similar expressions

from one texture to another, the training data must be col-

lected in a way so that corresponding expression textures

across different individuals are aligned. To do this, we hired

actors to perform a series of 21 expressions based on the Fa-

cial Action Coding System (FACS) [8], and recite 20 Har-

vard Sentences [16]. We then hand cut, warped, and aligned

the sequences using video editors. Each FACS expression

was broken up and extended into two 24-frame sequences.

The first of these consisted of an individual starting on neu-

tral frame, then moving to the apex of the FACS expression.

The second 24-frame sequence was a different clip of the

face starting in the FACS expression and returning to neu-

tral. The sentences were aligned using dynamic time warp-

ing on the audio sequences to align the video sequences, as

was done in [29]. We plan to release this synchronized,

high-resolution dataset to the public in the future.

After aligning the sequences, we used a face-tracking

and texture extraction process based on the formulation of

[35], to compute a texture for each of the aligned video

frames. Our total dataset consists of a set of 15 identities,

each with 3107 frames. We use 12 of these for training our

network and withhold 3 for validation. We also captured

additional subjects used for generating the final results and

performing quantitative evaluation (see Results below).

7.2. Data Augmentation

In order to increase the generalization ability of our net-

work to subjects whose appearance varies significantly from

those in this dataset, we augment it by altering the skin tones

of the captured textures. Specifically, we extract lighting-

independent and expression-free albedos from the texture

images. We then perform PCA on the albedo images. To

each albedo image, we add multiples of the found princi-

pal components with magnitudes proportional to the cor-

responding eigenvalues multiplied with a random variable

drawn from a Gaussian with mean zero and standard devia-

tion 0.1. This results in a new series of albedo images that

differ from the original in their skin tone and local details.

These albedo textures, combined with the unmodified

captured albedo textures, are used as the training data for

our network. We generate 15 additional albedo textures

from each subject, giving us a total of 559,260 training im-

ages from the 12 training subjects.

7.3. Training and Testing

We divide the dataset into a training set and a testing

set. During training, we train the network in an end-to-

end fashion. On each iteration, we randomly sample a pair

consisting of a source expression frame and a target iden-

tity frame from the dataset as input. The corresponding

ground truth texture combining the given identity and ex-

pression is also sampled. The output will be synthesized

using a forward pass, and the loss is back-propagated us-

ing Adaptive Moment Estimation (ADAM). The images are

scaled to 256 × 256 and we set each batch to contain 64

images. We trained the networks on a Titan X GPU until

both the generative loss and discriminative loss converged,

which took roughly two days (the training and validation

loss diagrams can be found in the supplementary material).

We set the initial learning rate to lr = 2e−4 for the genera-

tor and lr = 2e−5 for the discriminator. The learning rate

is lowered several times during training. During testing, we

randomly sample a pair consisting of a source expression

frame and a target identity frame from the test set.

8. Results

As input our system takes a source video and a single

target image of a face. It generates a dynamic texture of the

target image for a 3D model and retargets the source mesh

onto the single input image, inferring details such as wrin-

kles and the inner mouth region. Our results can be seen

in Fig. 6. More results can be seen in the supplementary

material.

Reenactment: Comparison To Previous Works When

given only a single image as a target input, [35] can only
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generate static textures and does not capture any of the wrin-

kles or inner mouth details that our system captures as seen

in Fig. 6.

An example of methods like [35] that do not use our in-

ference model, thereby producing less detailed results when

there is only a single target image as input, can be seen in

Fig. 5.

Figure 5. Wrinkle animations from a single neutral target input im-

age. In each row, the pair of images on the left shows the facial

animation achieved using a static texture generated by a multilin-

ear fitting such as [35]. The pair of images on the right shows the

facial animation achieved using the dynamic texture generated by

our inference model. Note that the images on the right are capable

of generating detailed wrinkles and filling the inner mouth cavity.

Quantitative Evaluation To further validate our ap-

proach, we performed quantitative evaluation against an al-

ternative, more direct approach to dynamic texture synthe-

sis. Given an image of the source subject making a facial

expression and a and neutral frame of the same subject, we

apply the difference between these two images to the neu-

tral frame of the target subject. We performed this test for

20 expression sequences, each 900 frames long, in which

each of 5 test subjects are retargeted to one another. The

test sequences have been synchronized in the same manner

as the training data, thereby providing ground truth expres-

sions for each retargeted sequence. The results, shown in

Table 1, demonstrate that our method synthesizes textures

that are closer to the ground truth texture data. Furthermore,

we note that while this more naive approach to texture syn-

thesis (which we call “direct delta transfer”) is simpler to

implement and can synthesize wrinkles and other details on

the target subject, simply applying these differences to the

target subject does not account for geometric dissimilarity

in the faces of the subjects, and thus it typically generates

results that are far more uncanny and implausible than our

approach.

Method Mean L1 Loss Mean L2 Loss SSIM

Our result 1360 152 0.8730 dB

Direct delta transfer 1790 211 0.8150 dB

Table 1. Quantitative evaluation against a more direct texture syn-

thesis approach.

9. Discussion

We present a method to generate realistic video se-

quences of faces from a single photograph which can then

be used to replace the face of a source/driver video se-

quence. To the best of our knowledge, our method is the

first to leverage GANs to produce realistic, dynamic tex-

tures of a subject from a single target image.

Limitations and Future Work Though we are able to in-

fer dynamic textures, the input target face is assumed to be

without extreme specular lighting and/or pronounced shad-

owing. If present, these can cause the texture extraction

phase following [35] to produce artifacts. As fitting the fa-

cial geometry precisely from a single viewpoint is a highly

underconstrained problem, the extracted texture of the tar-

get subject may be improperly registered in extreme cases in

which this fitting is insufficiently accurate. Other issues re-

sulting from imperfect fitting include missing transient ex-

pressions, such as blinking.

The target image must be sufficiently high resolution to

generate appropriate details for the corresponding expres-

sions. If the target image is largely non-frontal or otherwise

occluded, the captured textures will be incomplete, which

causes artifacts in the synthesis. The source sequence, how-

ever, may be non-frontal, provided that the angle is not so

extreme that the face tracking method of [35] fails. Our

method produces reasonable results in non-occluded re-

gions, but cannot synthesize unseen parts. However, [31]

could be applied to infer the invisible face regions before

completing the detail transfer to deal with this. Our com-

positing process assumes that both the source and target are

front-facing, but additional non-frontal synthesis and retar-

geting results without compositing are in the supplementary

materials.

Limited appearance variation in the training corpus is

also an issue. Though the data augmentation mitigates

this, the generated wrinkles and deformations will not be

as sharp or as strong when the target’s appearance varies

greatly from those in our dataset. We believe that hav-

ing a larger dataset with even greater appearance variations

would resolve address this. Lastly, our method synthesizes

each frame independently, which in some cases results in

minor temporal incoherency. However, this could be ad-

dressed by solving for multiple frames simultaneously, or

by applying temporal smoothing as a post-processing step.
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input source video frame

output target animationinput target

output compositing video

input source video frame

output target animationinput target

output compositing video

Figure 6. Two sample results of our method. Top row of each example shows the source video sequence. Middle row shows the target

single-frame input and the animated retargeted faces. Bottom row shows the compositing result.
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