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Abstract

In this paper, we propose a novel application of Gener-

ative Adversarial Networks (GAN) to the synthesis of cells

imaged by fluorescence microscopy. Compared to natural

images, cells tend to have a simpler and more geometric

global structure that facilitates image generation. However,

the correlation between the spatial pattern of different fluo-

rescent proteins reflects important biological functions, and

synthesized images have to capture these relationships to be

relevant for biological applications. We adapt GANs to the

task at hand and propose new models with casual depen-

dencies between image channels that can generate multi-

channel images, which would be impossible to obtain exper-

imentally. We evaluate our approach using two independent

techniques and compare it against sensible baselines. Fi-

nally, we demonstrate that by interpolating across the latent

space we can mimic the known changes in protein localiza-

tion that occur through time during the cell cycle, allowing

us to predict temporal evolution from static images.

1. Introduction

In the life sciences, the last 20 years saw the rise of light

fluorescence microscopy as a powerful way to probe biolog-

ical events in living cells and organisms with unprecedented

resolution. The need to analyze quantitatively this deluge of

data has given rise to the field of bioimage informatics [29]

and is the source of numerous interesting and novel data

analysis problems, which current machine learning devel-

opments could, in principle, help solve.

Generative models of natural images are among the most

long-standing and challenging goals in computer vision.

Recently, the community has made significant progress in

this task by adopting neural network machinery. Examples

of recent models include denoising autoencoders [2], vari-

ational autoencoders [20], PixelCNNs [44] and Generative

Adversarial Networks (GANs) [14].
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Figure 1. Real (left) and generated (right) images of fission yeast

cells with protein Bgs4 depicted in the red channel and 6 other

proteins depicted in the green channel. The synthetic images were

generated with our star-shaped GAN. The star-shaped model can

generate multiple green channels aligned with the same red chan-

nel whereas the training images have only one green channel.

GANs [14] are family of successful models, which have

recently received widespread attention. Unlike most other

generative models, GANs do not rely on training objectives

connected to the log likelihood. Instead, GAN training can

be seen as a minimax game between two models: the gener-

ator aims to output images similar to the training set given

random noise; while the discriminator aims to distinguish

the output of the generator from the training set.

Originally, GANs were applied to the MNIST dataset

of handwritten digits [21, 14]. The consequent DCGAN

model [38] was applied to the CelebA dataset [24] of hu-

man faces, the LSUN [52, 38] and ImageNet [7] datasets

of natural images. We are not aware of any works applying

GANs to biological images.

We work with a recently created bioimage dataset used

to extract functional relationships between proteins, called

the LIN dataset [9] comprising 170,000 fluorescence mi-

croscopy images of cells. In the LIN dataset, each im-

age corresponds to a cell and is composed of signals from

two independent fluorescence imaging channels (“red” and

“green”), corresponding to the two different proteins tagged

with red or green-emitting fluorophores, respectively.
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In the LIN dataset, the red channel signal always cor-

responds to a protein named Bgs4, which localizes to the

areas of active growth of cells. The green channel signal in-

stead corresponds to any of 41 different “polarity factors”,

that is proteins that mark specific areas of the cells’ cortex

that help define a cell’s geometry. Polarity factors include

proteins like Alp14, Arp3, Cki2, Mkh1, Sid2 or Tea1

(see Figure 1 for image examples), each of which controls

the same biological process “cellular polarity” albeit each

in a slightly different way. Each of the green-labeled po-

larity factors was imaged independently of the others. The

biological aim of the LIN study is to investigate how those

polarity factors (or proteins) interact with one another.

In this paper, we present a novel application of GANs to

generate biological images. Specifically, we want to tackle

two concrete limitations of large scale fluorescent imaging

screens: we want to use the common information contained

in the red channel to learn how to generate a cell with sev-

eral of the green-labeled proteins together. This would al-

low us to artificially predict how the localizations of those

(independently imaged) proteins might co-exist in cells if

they had been imaged together and circumvent the current

technical limitations of being able to only image a limited

number of signal channels at the same time. Second, taking

advantage of the relationship between Bgs4 and the cell

cycle stage, we want to study the dynamical changes in cel-

lular localization that proteins undergo through time as cells

grow and divide.

To accomplish this, we make several contributions. We

modify the standard DCGAN [38] architecture by substi-

tuting the interdependence of the channels with the causal

dependence of the green on the red, allowing us to observe

multiple modes of green signal for a single red setting. Ob-

serving the mode collapse effect of GANs [30, 42] for our

separable architecture, we incorporate the recent Wasser-

stein GAN (WGAN-GP) objective [1, 15]. We propose

two approaches to generate multi-channel images: regular

WGAN-GP trained on multi-channel images, where extra

channels for training are mined by nearest neighbor search

in the training set, and a novel star-shaped generator trained

directly one the two-channel images. We carefully evalu-

ate our models using two quantitative techniques: the neu-

ral network two-sample test (combining ideas from [26]

and [15]) and by reconstructing samples in a held out test set

with the optimization approach of [30]. For reproducibility,

we make the source code and data available online.1

This paper is organized as follows. In Section 2, we dis-

cuss related works. Section 3 reviews the relevant biologi-

cal background for our application. In Section 4, we review

GANs and present our modeling contributions. We present

the experimental evaluation in Section 5 and conclude in

Section 6.

1https://github.com/aosokin/biogans

2. Related Work

Generative Adversarial networks (GANs). Since the

seminal paper by Goodfellow et al. [14] of 2014 (see

also [13] for a detailed review), GANs are becoming an in-

creasingly popular model for learning to generate with the

loss functions learned jointly with the model itself. Mod-

els with adversarial losses have been used in a wide range

of applications, such as image generation [8, 38], domain

adaptation [12], text-to-image synthesis [39], synthesis of

3D shapes [49] and texture [23], image-to-image transla-

tion [18], image super resolution [22] and even generating

radiation patterns in particle physics [6]. However, these

models suffer from issues such as mode collapse and oscil-

lations during training, making them challenging to use in

practice. The community is currently tackling these prob-

lems from multiple angles. Extensive effort has been placed

on carefully optimizing the architecture of the network

[38, 40] and developing best practices to optimize the train-

ing procedure2. Another active area of research is improving

the training objective function [33, 4, 37, 53, 1, 30, 42, 15].

In this paper, we build on the DCGAN architecture [38]

combined with the Wasserstein loss [1, 15], where the lat-

ter is used to help with the mode collapse issue, appearing

especially in our separable setting.

Conditioning for GANs. Starting from conditioning on

the class labels [31, 8, 34, 11], researchers have extended

conditioning to user scribbles [54] and images [46, 18, 55].

While the quality of images generated by [46, 18, 55] is

high, their models suffer from conditional mode collapse,

i.e., given the first (source) image there is very little or no

variety in the second (target image). This effect might be

related to the fact that the dataset contained only one tar-

get image available for each source image, so the model

has only indirect supervision for generating multiple condi-

tioned images. We have applied the pix2pix method of [18]

to the LIN dataset and it learned to produce high-quality

green images given the red input. However, it was unable to

generate multiple realistic green images for one red input.

Given the difficulty in learning robust latent spaces when

conditioning on an image, we opted for an alternate ap-

proach. We propose a new architecture for the generator,

where the red channel and green channels are given inde-

pendent random noise, and only the red channel is allowed

to influence the green channel, see Figure 2 (right).

Factors of variation. Chen et al. [4] and Mathieu et

al. [28] used unsupervised methods that encourage disen-

tangling factors of variation in the learned latent spaces,

e.g., separating the numerical value of a handwritten digit

from its writing style. In contrast to these works, we do not

rely on unsupervised training to discover factors of varia-

tions, but explicitly embed the separation into the model.
2https://github.com/soumith/ganhacks
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Analysis and synthesis of biological images. With large

scale imaging studies becoming more common in biology,

the automated analysis of images is now crucial in many

studies to prove the existence of an effect, process large

datasets or link with models and simulation [29, 5]. Al-

though the field has only recently embraced deep learning,

neural networks are now starting to make a splash, mainly

in classical discriminative settings [45].

While, to our knowledge, this work is the first reported

use of GANs on samples from fluorescent microscopy, gen-

erative models have been widely used in biology [32]. For

example, Johnson et al [19] learned to generate punctuate

patterns in cells (conditional on microtubule localization)

showing the potential of those methods in studying the rel-

ative sub-cellular positions of several proteins of interest.

Recently, sharing of large biological datasets has greatly

improved [25]. Further, EBI has made a large investment

to develop the IDR (Image Data Resource) [48], a database

built on top of open source tools to facilitate the sharing of

terabyte sized datasets with complex metadata.

3. Biological Background

3.1. Fluorescent Imaging

Fluorescence microscopy is based on fluorescent com-

pounds, i.e., compounds which can absorb light at given

wavelength (the absorption spectrum) and re-emit it almost

immediately at a slightly different wavelength (the emis-

sion spectrum). In the case of fluorescent proteins (FPs),

of which the Green Fluorescent Protein (GFP) [3, 43] is the

first and most widely used one, the fluorescing compound

is attached to the protein of interest via genetic engineer-

ing. Many FPs of various absorption and emission spectra

exist, e.g., Red Fluorescent Protein (RFP) [41]. By geneti-

cally tagging different proteins of interest with FPs of dif-

ferent color, one can image them in the same cell at the

same time and thus investigate their co-localization. How-

ever, the number of proteins that can be tagged and imaged

at the same time is limited to 3-4 due to the limited number

of FPs with non-overlapping absorption spectra.

Multi-channel fluorescent images are very different from

natural images. In natural images, color is determined by

the illumination and the properties of a particular material

in the scene. In order to generate realistic natural samples,

a GAN must capture the relationship between the materials

that make up a particular object and its hues. In contrast, in

fluorescent images, the intensity of light in a given channel

corresponds to the local concentration of the tagged pro-

tein, and the correlation between signals in different chan-

nels represents important information about the relationship

between proteins, but the color does not reflect any intrinsic

property about the protein itself.

3.2. Fission Yeast Cells

Fission yeast (Schizosaccharomyces pombe) cells are rod

shaped unicellular eukaryotes with spherical hemisphere

caps. They are born 7 µm long and 4 µm wide, and grow

in length to 14 µm while maintaining their width constant.

Newly born fission yeast cells start by growing only at the

pre-existing end until they reach a critical size, and then

switch to bipolar (from the two sides) growth. Bipolar

growth continues until cells reach their final length, when

they stop growing and start to form a cytokinetic ring in the

middle, which is responsible for cleaving the mother cells

into two daughters [36]. Interestingly, for most of the cell

cycle the length of the cell is a good proxy for its “age”, i.e.

the time it has spent growing since its “birth”.

Bgs4, the protein tagged in the red channel, is responsi-

ble for cell wall remodeling, and localizes to areas of active

growth (see Figure 1 for examples of images). Thus, by ob-

serving Bgs4, one can accurately infer growth cycle stage,

and predict where cell growth is occurring.

3.3. The LIN Dataset

All experiments in this paper make use of a recent dataset

of images of fission yeast cells, which was originally pro-

duced to study polarity networks [9]. The LIN dataset con-

sists of around 170,000 of images, with each image be-

ing centered on one cell; cell segmentation was performed

separately (see [9] for details) and the corresponding out-

line is also available. Each image is a 3D stack of 2D

images where each pixel correspond to a physical size of

100nm; each z-plane is distant by 300nm. Every image is

composed of two channels, informally called the “red” and

the “green”, where light emitted at a precise wavelength is

recorded. In this dataset two types of fluorescent-tagged

proteins are used: Bgs4 in the red channel, and one of 41

different polarity regulating proteins in the green channel.

A full description of all tagged proteins is beyond the scope

of this paper: we refer interested readers to [27, 9].

In this paper, we concentrate on a subset of 6 different

polarity factors, spanning a large set of different cellular lo-

calizations. This gives us 26,909 images of cell, which we,

for simplicity, center crop and resize to resolution of 48×80.

4. GANs for Image Generation

4.1. Preliminaries

GAN. The framework of generative adversarial net-

works [14, 13] is formulated as a minimax two-player game

between two neural networks: generator and discrimina-

tor. The generator constructs images given random noise

whereas the discriminator tries to classify if its input image

is real (from the training set) or fake (from the generator).

The goal of the generator is to trick the discriminator, such
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that it cannot easily classify. The discriminator is often re-

ferred to as the adversarial loss for training the generator.

More formally, consider a data-generating distribu-

tion IPd and a training set of images x ∈ X coming from

it. The generator G(z; θG) is a neural network parameter-

ized by θG that takes random noise z from distribution IPz

as input and produces an image xfake ∈ X . The discrimina-

tor D(x; θD) is a neural network parameterized by θD that

takes either a training image x or a generated image xfake

and outputs a number in the segment [0, 1], where zero is

associated with fake images and one – with the real images.

As introduced in [14], the key quantity is the negative cross-

entropy loss on the discriminator output:

L(θD, θG) = IEx∼IPdata
logD(x; θD)

+ IEz∼IPz
log(1−D(G(z; θG); θD)). (1)

The discriminator maximizes (1) w.r.t. θD and the genera-

tor, at the same time, minimizes (1) w.r.t. θG. In practice,

both optimization tasks are attacked simultaneously by al-

ternating between the steps of the two optimizers.

As noted by [14], the objective log(1 −
D(G(z; θG); θD)) often leads to saturated gradients

at the initial stages of the training process when the

generator is ineffective, i.e., its samples are easy to

discriminate from the real data. One practical trick to

avoid saturated gradients is to train the generator with

maximizing logD(G(z; θG); θD) instead.

Goodfellow et al. [14] showed that the minimax formula-

tion (1) can be reformulated via minimization of the Jensen-

Shannon (JS) divergence3 between the data-generating dis-

tribution IPd and the distribution IPG induced by IPz and G.

For the architectures of both the generator and the dis-

criminator, we largely reuse a successful version of Radford

et al. [38] called DCGAN. The generator of DCGAN (see

Figure 2, left) is based on up-convolutions [10] interleaved

with ReLu non-linearity and batch-normalization [16]. We

refer to [38] for additional details.

Wasserstein GAN. Recently, Arjovsky et al. [1] have

demonstrated that in some cases the JS divergence behaves

badly and cannot provide any useful direction for training,

e.g., when it is discontinuous. To overcome these degenera-

cies, they consider the earth mover’s distance (equivalent to

the 1-st Wasserstein distance) between the distributions

W (IPd, IPG) = inf
IP∈Π(IPd,IPG)

IE(x,x′)∼IP‖x− y‖, (2)

where set Π(IPd, IPG) is a set of all joint distributions IP
on x and x

′ whose marginals are IPd and IPG, respectively.

Intuitively, the distance (2) indicates the cost of the optimal

movement of the probability mass from IPd to IPG. Accord-

ing to [1] by using duality, one can rewrite (2) as

3The Jensen-Shannon divergence is a symmetrized version of

the Kullback-Leibler divergence between the two distributions, i.e.,

JS(IPd, IPG) = KL(IPd‖IPG) +KL(IPG‖IPd).

upconv, batchnorm

ReLu

upconv, batchnorm

ReLu

upconv, batchnorm

ReLu

concat

Gaussian noise

generated 

images

DCGAN generator separable generator

concat

concat

concat

upconv, tanh

upconv, batchnorm

ReLu

Figure 2. Architectures of the DCGAN generator (left) and our

separable generator (right).

W (IPd, IPG)= sup
D∈C1

(

IEx∼IPd
D(x)−IEx

′∼IPG
D(x′)

)

, (3)

where C1 is the set of all 1-Lipschitz functions D : X → R.

Optimizing w.r.t. the set C1 is complicated. As a prac-

tical approximation to the set of all 1-Lipschitz functions,

Arjovsky et al. [1] suggest to use neural networks D(x; θD)
with all parameters θD clipped to a fixed segment. Very re-

cently, Gulrajani et al. [15] proposed a surrogate objective

to (3), which is based on the L2-distance between the norm

of the discriminator gradient at specific points and one. In

all, we arrive at the minimax game

W (θD, θG) = IEz∼IPz
D(G(z; θG); θD)

− IEx∼IPdata
D(x; θD) +R(θD), (4)

where R is the regularizer (see [15] for details). The objec-

tive (4) is very similar to the original game of GANs (1),

but has better convergence properties. In what follows, we

refer to the method of [15] as WGAN-GP.

4.2. Model Extensions

In this section, we present our modeling contributions.

First, we describe our approach to separate the red and green

channels of the generator. Second, we discuss a way to train

a multi-channel generator using the two-channel data in the

LIN dataset. Finally, we propose a new star-shaped archi-

tecture that uses the red-green channel separation to obtain

multiple channels in the output.

Channel separation. The key idea of the channel sep-

aration consists in separating the filters of all the up-

convolutional layers and the corresponding features into

2236



two halves. The first set of filters is responsible for gen-

erating the red channel, while the second half generates the

green channel. To make sure the green channel matches the

red one, we use one way connections from the red convolu-

tional filters towards the green ones. Figure 2 (right) depicts

our modification in comparison to DCGAN (left).

Multi-channel models. The LIN dataset [9] contains

only two-channel images, the red and one type of the green

at a time. Obtaining up to 4 channels simultaneously from

a set of 40 proteins (a fixed red and 3 greens) would require

the creation of nearly 60,000 yeast strains. Scaling even

higher is currently impossible with this imaging technique

due to the limited number of FPs with non-overlapping ab-

sorption spectra. Because of these constraints, training the

generator only on a subset of channels is a task of practi-

cal importance. The first approach we present consists in

training a multi-channel GAN using an artificial training set

of multi-channel images created from the real two-channel

images. We proceed as follows: for each two-channel im-

age, we search in every other class for its nearest-neighbors

(using L2-distance) in the red channel. Then, we create a

new sample by combining the original image with the green

channels of its nearest neighbors in other classes.

We can then use this dataset to train a multi-output DC-

GAN. The only difference in the architecture is that the gen-

erator outputs c+1 channels, where c is the number of green

channels used in the experiment, and the discriminator takes

(c+ 1)-channel images as input.

Star-shaped model. In our experiments, the multi-

channel approach did not perform well, because, even using

the nearest neighbors, the extra greens channels were not

exactly consistent with the original red signal, emphasizing

the importance of correlations between channels.

To overcome this effect, we propose a star-shaped archi-

tecture for the generator, consisting of a single red tower

(a stack of upconvolutional layers with non-linearities in-

between) that feeds into c green towers (see Figure 2, right).

Unlike the multi-channel model described above, the green

outputs are independent conditioned on the red. Thus, the

model can be trained using the existing two-channel images.

In our experiments, we found it important to use batch

normalization [17] in the red tower only once, compared to

a more naive way of c times. The latter leads to interfer-

ence between several normalizations of the same features

and prevents convergence of the training scheme.

After the forward pass, we use c discriminators attached

to different versions of the greens, all paired with the same

generated red. For the WGAN-GP version of this model,

we apply the original procedure of [15] with the modifica-

tion that during the discriminator update we simultaneously

update all c discriminators, and the generator receives back

the accumulated gradient.

5. Experiments

Evaluating generative models is in general non-trivial. In

the context of GANs and other likelihood-free approaches,

evaluation is even harder, because the models do not pro-

vide a way to compute the log-likelihood on the test set,

which is the most common evaluation technique. Recently,

a number of techniques applicable to evaluating GANs have

been proposed [26, 30, 50]. Among those, we chose the fol-

lowing two: the neural-network two-sampled test discussed

by [26] combined with the surrogates of the earth mover’s

distance [1, 15] and an optimization-based approach of [30]

to check if the test samples can be well reconstructed. We

modify these techniques to match our needs and check their

performance using sensible baselines (Sections 5.1 and 5.2).

Finally, in Section 5.3, we show the cell growth cycle gen-

erated with our star-shaped model.

5.1. Neural­network Two­sample Test

Lopez-Paz and Oquab [26] have recently applied the

classifier two-sample test (C2ST) to evaluate the quality of

GAN models. A trained generator is evaluated on a held-

out test set. This test test is split again into a test-train and

test-test subsets. The test-train set is then used to train a

fresh discriminator, which tries to distinguish fake images

(from the generator) from the real images. Afterwards, the

final measure of the quality of the generator is computed as

the performance of the new discriminator on the test-test set

and the freshly generated images.

When C2ST is applied for images, the discriminator is

usually a ConvNet, but even very small ConvNets can dis-

criminate between fake and real images almost perfectly. To

obtain a useful measure, Lopez-Paz and Oquab [26] deliber-

ately weaken the ConvNet by fixing some of its parameters

to the values obtained by pre-training on ImageNet.

ImageNet-based features are clearly not suitable for LIN

cell images, so we weaken the discriminator in another way.

We use the negation of the WGAN-GP [15] discriminator

objective as a surrogate to the earth mover’s distance. Sim-

ilar to [26], we train this discriminator on the test-train sub-

set and compute the final estimates on the test-test subset.

For all the runs, we repeat the experiment on 10 different

random splits of the test set and train the discriminator for

5000 steps with the optimizer used by [15]. For the exper-

iments involving multi-channel generators, we train a sep-

arate discriminator for each green channel paired with the

red channel.

In our experiments, the training procedure occasionally

failed and produced large outliers. To be more robust, we

always report a median over 10 random splits together with

the median absolute deviation to represent the variance. In

the Suppl. Mat. [35], we additionally quantitatively and

qualitatively compare the WGAN-GP [15], WGAN [1] and

cross-entropy discriminators used in C2ST.
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Figure 3. Scores of the classifier two-sample test (C2ST) between

the generators and the hold-out test sets of images. We report the

scores of separable GAN and WGAN-GP at different stages of

training. For each line, we show the samples from the correspond-

ing models to demonstrate that the lower C2ST scores correspond

to better-looking (sharper, less artifacts, etc.) images. Best viewed

in color and on a screen. An extended version of this figure is

given in the Suppl. Mat. [35].

Sanity checks of the two-sample test. We evaluate C2ST

in two baseline settings. First, we compare the separa-

ble GAN [38] and the WGAN-GP [15] models (based on

the same DCGAN architecture, trained on the same set

of images of 6 proteins) at different stages of the training

process. For each of these models, we also show quali-

tative difference between the generated images. Figure 3

shows that along the training process, quality of both GAN

and WGAN-GP improves, i.e., generated images become

sharper and contain less artifacts, consistent with the C2ST

score. To better visualize the difference between the trained

GAN and WGAN-GP models, in Figure 4, we show multi-

ple samples of the green channel corresponding to the same

red channel. We see that the C2ST evaluation captures sev-

eral aspects of the visual quality (such as sharpness, correct

shape, absence of artifacts, diversity of samples) and pro-

vides a meaningful score.

From Figures 3 and 4, we also conclude that the quality

of GAN samples is worse than the quality of WGAN-GP

according to visual inspection. C2ST (based on WGAN-

GP) confirms this observation, which is not surprising given

that WGAN-GP was trained using the same methodology.

Surprisingly, when evaluated with the cross-entropy C2ST,

WGAN-GP also performs better than GAN (see Suppl. Mat.

[35] for details).

As the second baseline evaluation, we use C2ST to com-

pare real images of different classes. Table 1 shows that

when evaluated w.r.t. the test set of the same class the esti-

Samples from separable models

se
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ar
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le
G

A
N

se
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W

G
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N
-G

P

Figure 4. Samples generated by separable GAN (top) and WGAN-

GP (bottom) models trained on the 6 selected proteins shown in

Figure 1. Each row has samples with identical red channel, but

different green ones. We observe that WGAN-GP provides much

larger variability of the green channel conditioned on the red. In

particular, in the three bottom rows, even the type of the protein

changes, which we have never observed for the samples of GAN

(this effect should be present, because the model is trained without

any distinction between the classes, but is surprisingly rare). This

difference is captured by the C2ST evaluation: the GAN model

has the score of 3.2± 0.1 compared to 1.6± 0.1 of WGAN-GP.

mates are significantly smaller (but with non-zero variance)

compared to when evaluated w.r.t. different classes. Note

that the C2ST score is not a metric. In particular, Table 1 is

not symmetric reflecting biases between the train/test splits.

Specifically to WGAN-GP, the score can also be negative,

because the quadratic regularization term is the dominant

part of the objective (4) when the two image sources are

very similar.

As an additional test, we include two extra proteins

Fim1 and Tea4 that are known to have similar localization

to Arp3 and Tea1, respectively. We observe that C2ST re-

flects this similarity by giving the pairs of similar proteins

a much smaller score compared to most of other pairs (but

still significantly higher than comparing a protein to itself).

Results. Table 2 shows the results of C2ST applied to sev-

eral models with multiple output channels (see Section 4.2):

the multi-channel model and its separable version, the star-

shaped model and the two baselines, which do not align
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test Alp14 Arp3 Cki2 Mkh1 Sid2 Tea1 Fim1 Tea4

Alp14 0.1 ± 0.2 12.5 ± 0.3 8.1 ± 0.3 12.5 ± 0.5 9.5 ± 0.2 10.9 ± 0.3 15.6 ± 0.3 11.4 ± 0.3

Arp3 14.4 ± 0.2 0.8 ± 0.4 16.2 ± 0.2 11.5 ± 0.4 20.5 ± 0.3 13.2 ± 0.2 3.7 ± 0.2 18.3 ± 0.3

Cki2 8.6 ± 0.2 15.9 ± 0.3 -0.2 ± 0.3 13.7 ± 0.4 12.0 ± 0.3 15.8 ± 0.3 18.5 ± 0.4 16.0 ± 0.5

Mkh1 12.3 ± 0.4 12.2 ± 0.6 13.6 ± 0.3 -0.2 ± 0.4 12.4 ± 0.6 13.3 ± 0.6 15.1 ± 0.5 14.9 ± 0.8

Sid2 9.0 ± 0.3 19.5 ± 0.4 11.8 ± 0.5 13.4 ± 0.9 -0.6 ± 0.3 12.6 ± 0.3 23.9 ± 0.4 7.7 ± 0.6

Tea1 11.3 ± 0.3 11.5 ± 0.5 15.9 ± 0.3 14.4 ± 0.6 13.1 ± 0.1 -0.1 ± 0.4 14.5 ± 0.5 6.9 ± 0.5

Fim1 16.3 ± 0.2 2.8 ± 0.3 18.4 ± 0.2 14.5 ± 0.3 23.4 ± 0.3 15.1 ± 0.2 -0.2 ± 0.3 20.8 ± 0.5

Tea4 9.7 ± 0.6 15.8 ± 0.7 14.0 ± 0.9 13.9 ± 0.9 6.2 ± 0.4 5.9 ± 0.3 19.5 ± 0.7 -0.5 ± 0.7

Table 1. Results of C2ST with WGAN-GP when comparing real images of different proteins. For each run, the training images of one

class are evaluated w.r.t. the test images of another class. The reported values are comparable with Table 2, but not with Figure 3.

real images
one-class

non-separable

one-class

separable

multi-channel

non-separable

multi-channel

separable
star-shaped

separable red/green - ✗ ✓ ✗ ✓ ✓

class conditioned - ✗ ✗ ✓ ✓ ✓

Alp14 0.1 ± 0.2 0.6 ± 0.3 1.2 ± 0.2 3.2 ± 0.4 2.3 ± 0.5 0.6 ± 0.3

Arp3 0.8 ± 0.4 1.2 ± 0.3 2.4 ± 0.4 3.2 ± 0.4 4.2 ± 0.4 2.1 ± 0.5

Cki2 -0.2 ± 0.3 0.3 ± 0.5 1.0 ± 0.3 2.5 ± 0.3 3.6 ± 0.5 1.2 ± 0.3

Mkh1 -0.2 ± 0.4 0.8 ± 0.6 0.5 ± 0.4 4.6 ± 0.5 6.6 ± 0.5 2.4 ± 0.6

Sid2 -0.6 ± 0.3 0.8 ± 0.4 1.0 ± 0.5 4.5 ± 0.5 3.2 ± 0.6 1.1 ± 0.6

Tea1 -0.1 ± 0.4 0.8 ± 0.5 0.8 ± 0.5 4.4 ± 0.3 2.8 ± 0.5 1.1 ± 0.4

6 proteins -0.1 ± 0.2 0.8 ± 0.2 1.1 ± 0.2 3.7 ± 0.1 3.8 ± 0.2 1.4 ± 0.1

Table 2. Results of C2ST with the WGAN-GP objective comparing several multi-channel models w.r.t. the real images. All the models

were trained with WGAN-GP. The values in this table are directly comparable to the ones in Table 1.

green channels of different classes with the same red chan-

nel: one-class generators trained individually for each class

and their separable versions. All the models were trained

with WGAN-GP with the same ratio of the width of the

generator tower to the number of output channels.

We observe that the individual one-class WGAN-GP

models lead to higher quality compared to all the mod-

els outputting synchronized channels for all the classes.

Among the models that synchronize channels, the star-

shaped model performs best, but for some proteins there is

a significant drop in quality w.r.t. the one-class models.

5.2. Optimization to Reconstruct the Test Set

One of the common failures of GANs is the loss of

modes from the distribution, usually referred to as mode

collapse. There is evidence [37] that image quality can be

inversely correlated with mode coverage. To test for the

mode collapse, we perform an experiment proposed in [30],

where for a fixed trained generator G we examine how well

it can reconstruct images from a held out test set. For each

image in the test set, we minimize the L2-distance (normal-

ized by the number of pixels) between the generated and test

images w.r.t. the noise vector z. We call this task regular re-

construction. We use 50 iterations of L-BFGS and run it 5

times to select the best reconstruction. We also performed

an additional task, separable reconstruction, which exam-

ines the ability of separable networks to reproduce modes

of the green channel conditioned on the red. In this task, we

use a two-step procedure: first, we minimize the L2-error

between the red channels holding the green noise fixed, and

then we minimize the L2-error in the green channel while

keeping the red noise fixed at it’s optimized value. To com-

plete the study, we also report the negative log likelihood

(NLL) w.r.t. the prior IPz of the noise vectors z obtained

with a reconstruction procedure. As a baseline for the re-

construction error, we show the nearest neighbor cell (in

both red and green channels) from the training set and the

average L2-distance to the nearest neighbors. As a baseline

for NLL, we show the averaged NLL for the random point

generated from IPz .

We apply the reconstruction procedure to evaluate four

models: separable one-class and star-shaped models trained

with both GAN and WGAN-GP algorithms. Figure 5 and

Table 3 present qualitative and quantitative results, respec-

tively. For all the measurements, we report the median val-

ues and the median absolute deviation. In Figure 6, we plot

reconstruction errors vs. NLL values for the Mkh1, which

was the hardest protein in the separable reconstruction task.

Analyzing the results, we observe that separable recon-

struction is a harder task than the single step procedure.

Second, WGAN-GP models can reconstruct better, prob-

ably because they suffer less from the mode collapse. And

finally, the star-shaped models do not degrade the perfor-

mance in terms of reconstruction, except for some hard pro-

teins (see more details in the Suppl. Mat. [35]).
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(a) (b) (c) (d) (e) (f)

Figure 5. Examples of cell reconstructions. (a) – a test image;

(b) – the L2 nearest neighbor; (c) – regular reconstruction by one-

class separable WGAN-GP; (d) – regular reconstruction by star-

shaped WGAN-GP; (e) – separable reconstruction by star-shaped

WGAN-GP; (e) – separable reconstruction by star-shaped GAN.

An extended version of this figure is given in the Suppl. Mat. [35].

L2-error NLL

Nearest neighbors 0.079± 0.009 -

Gaussian noise - 142± 5

re
g

u
la

r

GAN-sep 0.053± 0.007 166± 17
WGAN-GP-sep 0.043± 0.006 149± 8
GAN-star 0.061± 0.008 139± 12

WGAN-GP-star 0.041± 0.005 150± 8

se
p

ar
ab

le GAN-sep 0.069± 0.011 158± 13
WGAN-GP-sep 0.062± 0.009 143± 6
GAN-star 0.074± 0.011 142± 7

WGAN-GP-star 0.058± 0.010 143± 7

Table 3. Reconstruction experiment. For the four trained mod-

els (GAN/WGAN-GP and separable one-class/star-shaped), we

report L2-errors of the reconstructions and the negative log like-

lihoods (NLL) of the latent vectors found by the reconstruction.

5.3. Progression Through the Cell Cycle

As described in Section 3.2, the localization of Bgs4 can

be used to accurately pinpoint the cell cycle stage. However,

not nearly as much as is known about how the localization

of the other proteins changes within the cell cycle [27].

Using our separable GAN architecture, we can interpo-

late between points in the latent space [47] to move across

the different stages of growth and division. Due to the ar-

chitecture of our network, the output of the green channel

will always remain consistent with the red output. We show

an example of the reconstructed cell cycle in Figure 7 and

several animated examples in the Suppl. Mat. [35]. As a

validation of our approach, Arp3 is seen gradually moving

a dot like pattern at the tips of the cell towards the middle

of the cell during mitosis, as has been previously described

in the literature [51].

It’s important to highlight that the LIN dataset lacks true

multi-channel (3+) images, and as such, we are unable to

compare how our generated multi-channel images compare

to real fluorescent images. We hope that as more datasets
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(a) regular reconstruction (b) separable reconstruction

Figure 6. Reconstruction errors against negative log likelihood

(NLL) of the latent vectors found by reconstruction. We show all

the cells corresponding to protein Mkh1, which appears to be the

hardest for the star-shaped models. The vertical gray line shows

the median L2-error of the nearest neighbor. Horizontal gray lines

show mean NLL (± 3 std) of the noise sampled from the Gaussian

prior. In the separable (red-first) setting, the star-shaped model

trained with GAN provides very bad reconstructions, whereas the

same model trained with WGAN-GP results in high NLL values.

An extended version of this figure is given in the Suppl. Mat. [35].

Bgs4 Alp14 Arp3 Cki2 Mkh1 Sid2 Tea1
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Figure 7. Cell cycle of a star-shaped WGAN-GP model.

in biology become open, we will have a better baseline to

compare our model too.

6. Conclusion

Although generative modeling has seen an explosion in

popularity in the last couple of years, so far it has mostly

been applied to the synthesis of real world images. Our re-

sults in this paper suggest that modern generative models

can be fruitfully applied to images obtained by fluorescent

microscopy. By leveraging correlation between different

image channels, we were able to simulate the localization

of multiple proteins throughout the cell cycle. This could

enable in the future the exploration of uninvestigated, inac-

cessible or unaffordable biological/biomedical experiments,

to catalyze new discoveries and potentially enable new di-

agnostic and prognostic bioimaging applications.
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