
Chained Cascade Network for Object Detection

Wanli Ouyang1,2, Kun Wang1, Xin Zhu1, Xiaogang Wang1

1. The Chinese University of Hong Kong 2. The University of Sydney
{wlouyang, kwang, xzhu, xgwang}@ee.cuhk.edu.hk

Abstract

Cascade is a widely used approach that rejects obvious

negative samples at early stages for learning better classi-

fier and faster inference. This paper presents chained cas-

cade network (CC-Net). In this CC-Net, there are many cas-

cade stages. Preceding cascade stages are placed at shal-

low layers. Easy hard examples are rejected at shallow lay-

ers so that the computation for deeper or wider layers is not

required. In this way, features and classifiers at latter stages

handle more difficult samples with the help of features and

classifiers in previous stages. It yields consistent boost in

detection performance on PASCAL VOC 2007 and Ima-

geNet for both fast RCNN and Faster RCNN. CC-Net saves

computation for both training and testing. Code is available

on https://github.com/wk910930/ccnn.

1. Introduction

Object detection is a fundamental computer vision task.

It differs from image classification in that the number of

background samples (image regions not belonging to any

object class of interest) is much larger than the number of

object samples. This leads to the undesirable imbalance in

the number of samples for different classes during training.

In order to handle the imbalance problem from the back-

ground samples, bootstrapping, cascade, and hard nega-

tive mining have been developed [32, 4, 34]. In these ap-

proaches, classifier learning is divided into multiple stages.

In each stage, only a subset of background samples are

used for training. The classifiers at earlier stages handle

easier samples while the classifiers at latter stages handle

more difficult samples. Bootstrapping and hard negative

mining aim at learning more accurate classifier. In com-

parison, cascade improves both accuracy and speed of the

detection process by rejecting easy background samples at

both training and testing time. The essence of cascade is

to learn more discriminative classifiers by using multi-stage

classifiers. Classifiers at early stages discard large number

of easy negative samples so that classifiers at latter stage

can focus on handling more difficult examples. Motivated

by these approaches, we propose a CC-Net to learn features

and classifiers with multiple stage. The more discriminative

Figure 1. Motivation of the chained cascade ConvNet in reject-

ing large number of easy background samples for faster speed and

more discriminative features.

features and classifiers are used for handling more difficult

examples as the network goes deeper or wider.

Deep ConvNets have led to significant improvement in

accuracy for object detection [11, 10]. Based on a baseline

network, adding deeper layers [30] or branches for making

the network wider [9, 41, 1] were found to improve accu-

racy for object detection and classification. But this also

increases computational time for both training and testing.

Empirical results in [29] show that very large batch size

for ConvNet provides improvement in detection accuracy,

but leads to increase in training time. In order to reduce

the computational complexity from more training samples

and more complex networks, we design a cascaded net-

work structure. This network has many stages for rejecting

easy samples within a single CNN. When an easy sample

is rejected at a shallow layer, it need not go through deeper

layers, for which the computation and memory are not re-

quired. With this design, the huge number of training sam-

ples can be used but the memory and time for training and

testing are still acceptable by rejecting large number of easy

examples at earlier cascade stages.

11938

Based on the observations above, we design a chained

cascade network (CC-Net) for object detection. The contri-

bution of this design is as follows:

• Cascade is used in both training and testing the CC-Net

to save computation. In the CC-Net, when a sample is

rejected at shallow layers, the computation and memory

at deeper layers are not require for it.

• In the network, the early cascade stage and contextual

cascade stage are used for learning more and more dis-

criminative features. By rejecting easy samples at shal-

low layers in the network, the features and classifiers

learned at deeper layers or extra branches focus on harder

samples. In this way, the learned features and classifiers

are better in handling the harder examples. As shown

by the example in Fig. 1, when the first classifier finds

that the object should only be a mammal, then the fea-

tures and classifier at the second stage can focus more on

distinguishing specific class of mammal like horse, sheep

and cattle. And the classifier at the third stage then learns

features that help to distinguish mammals with horns,

e.g. sheep and cattle.

• All the cascaded classifiers and their corresponding fea-

tures are jointly learned through a single ConvNet.

With BN-Net [14] as the baseline model, our approach pro-

vides 6.3% mAP gain compared with BN-Net. Testing time

of the CC-Net is 14% of the GBD-Net and 30% of the CC-

Net without cascade. Experimental results on ImageNet and

Pascal VOC 2007 show improvement in detection accuracy

for different region proposal methods.

2. Related work

Cascade and bootstrapping for hand crafted features.

Cascade has appeared in various forms dating back to the

1970s, as was pointed out by Schneiderman [27]. It has

been widely used in object detection [7, 2, 5, 17]. Cascade

can be applied for SVM [7], boosted classifiers [5, 17, 35].

Chaining of classifiers among cascade stages was called soft

cascade [2] and boosting chain in [35]. In these approaches,

the detection scores in the previous stages were added to

the detection scores in the current stage. Classifier chain-

ing was effective in face detection [2, 35] and generic ob-

ject detection [7] for hand crafted features. Bootstrapping

was introduced in the work of Sung and Poggio [32] in the

mid-1990s for training face detection models. Bootstrap-

ping was frequently used when training SVMs for object

detection [4, 8]. These works for hand-crafted features did

not learn features and cascaded classifiers jointly. And they

learned cascaded classifiers by multiple separate steps. Dif-

ferent from these works, multiple cascaded classifiers and

features in our CC-Net are learned by the ConvNet with a

one-step training.

Design of better CNN model. Deeper ConvNets were

effective for image classification and object detection [15,

28, 30, 33, 13]. On the other hand, wide residual network

[38], inception modules [33, 3], and multi-region features

[9, 1, 39, 41, 40] improved the image classification and

object detection accuracy by increasing the width of Con-

vNets. Our work is complementary to the works above

that learn better features. CC-Net can use these deeper and

wider networks to obtain diverse features for cascade.

Recent CNN based methods for object detection. Deep

models were found to be effective in object detection

[11, 10, 12, 24, 25, 18, 21, 22, 41, 19, 19, 20]. Cascade

of ConvNets was found to be effective in region proposal

and region classification [20, 37, 16]. These works learn

separate CNNs through multiple steps, while our CC-Net

jointly learns all cascaded features and classifiers through

one-step training. Shrivastava et al. introduced online min-

ing of hard positive and negative examples for ConvNet-

based detector [29]. Joint learning of cascaded ConvNets

were proposed in [23]. The approaches in [16, 23] cascade

on multiple networks, where each network has its own in-

put image and is used as one cascade stage. In our work,

a single network with one input image has many cascade

stages, which is complementary to the cascade of multiple

networks in [16, 23]. Early cascade, contextual cascade,

and chaining of scores in multiple stages are not built up in

[23, 29] for face detection but are used for learning better

features in our CC-Net for generic object detection. Our

approach saves memory and computational time for both

training and testing. In comparison, the approach in [23]

only saves time for testing and the approach in [29] only

saves time for backward-propagation during training.

3. The CC-Net for object detection

3.1. Overview of the CC-Net

Brief introduction of the fast RCNN. This paper adopts

the fast RCNN framework for illustrating the CC-Net for

object detection. In fast RCNN, 1) a set of regions of inter-

est (RoIs) are generated by a region proposal approach; 2)

CNN feature maps for the input image are generated by sev-

eral convolutional layers; 3) the roi-pooling layer projects

the RoIs onto the CNN feature maps and extracts feature

maps of the same size for RoIs of different sizes; 4) the

layers after roi-pooling are conducted to obtain the final fea-

tures, from which the classification scores and the regressed

coordinates for bounding-box relocalization are predicted.

Fig. 2 shows an overview of the CC-Net. The exist-

ing approaches in [31, 37] are used for generating RoIs in

our implementation. Based on the fast RCNN framework,

it uses several convolutional layers for extracting convolu-

tional features from the image and then use roi-pooling for

projecting features of RoIs into the fixed size.

At the early cascade stage, features from shallow layers

are used for rejecting RoIs belonging to background by mul-

tiple cascade stages. In each stage, features are roi-pooled

from the image feature map. The roi-pooled features are

then used for classification. At a stage, the RoIs rejected by

previous stages do not have their features roi-pooled from

1939

image convolution on image

loss function for

training
softmax

softmax

softmax

detection

results

chained class

scores

... ...

chained CNN

features for RoI

...
roi-pooling

RoI

rejected

RoI

contextual cascade

RoIs

...

rejected

RoI

Classifier chaining with multiple

cascade stages

remaining

RoIsfeatures
remaining

RoIs

detection scores

classifier

classifier

classifier

early cascade

Figure 2. Overview of the CC-Net. Several convolutional layers are used on the input image. At the early cascade stage, roi-pooled

features are used for rejecting easy background samples. Then roi-pooling is used for obtaining features of different layers, resolutions

and contextual regions at the contextual cascade stage for further rejecting easy background samples. Classifiers chaining is used in both

early cascade and contextual cascade stages for both training and testing. Feature chaining is used for passing the information from one

contextual region to another at the contextual cascade stage. Bounding box regression and all cascaded classifiers are jointly learned. Best

viewed in color.

image feature map for classification.

At the contextual cascade stage, the RoIs not rejected in

the early cascade stage are used for obtaining features of

different contextual regions. These features are then used

by the chained features and classifiers with multiple cascade

stages for further rejecting easy negative samples. If a RoI

is not rejected by the cascade, its final classification score is

used as the detection score.

The major modifications to fast RCNN are as follows:

• Classifiers with several cascade stages are used for ob-

ject detection. At each cascade stage, many background

RoIs are rejected. RoIs not rejected go to the next stage.

By classifier chaining, classification scores in previous

stages are used for classification in the current stage.

• Classifiers at different stages use different features.

These CNN features can be different in depth, learned

parameters, resolution and contextual regions.

• The features in previous stages can be chained with the

features at the current stage. With this chaining, the

features at previous stages serve as the prior knowledge

for the features at the current stage.

• The bounding box regressor, feature chaining, classifier

chaining in both early cascade and contextual cascade

stages are learned end-to-end through back-propagation

from a loss function.

In our implementation, the BN-Net in [14] is used as the

baseline ConvNet if not specified. Fig. 3 shows the CC-

Net based on the BN-Net. If only single stage of features

and classifiers is used and the early cascade stage is re-

moved, then Fig. 3 becomes a fast RCNN implementation

of the BN-Net. There are ten inception modules in the BN-

Net. The roi-pooling layer is placed after the second, third,

fourth and seventh module, which are denoted by icp(3b),

(3c), (4a) and (4d) in Fig. 3. In the early cascade stage, the

roi-pooling for icp(3b), (3c), and (4a) use the same contex-

tual region as the tight RoI. At stage 1, the features from

icp(3b) is used for obtaining classification score. At stage

2, if the RoI is not rejected at stage 1, then the roi-pooled

features from icp(3c) for this RoI is used for classification.

Similarly for icp(4a) at stage 3. The remaining RoIs after

stage 3 are then used for contextual cascade. In the contex-

tual cascade stage, the roi-pooling from icp(4d) is used for

obtaining features of different resolutions and contextual re-

gions. The features after roi-pooling from icp(4d) for stage t
is denoted by ht, t = 1, 2, 3, 4. At stage t, the features in ht

go through the modules icp(4e)t, (5a)t, (5b)t and global av-

erage pooling for obtaining features ft. Then these features

are combined by feature chaining, with details in Section

3.2. The chained features are then used by chained classi-

fiers with multiple cascade stages for detecting objects, with

details in Section 3.3.

3.2. Feature chaining

3.2.1 Preparation of features with diversity

Classifiers in different cascade stages can use different fea-

tures. Multi-region, multi-context features were found to be

effective in [1, 9, 41]. In order to obtain features with di-

versity, we apply roi-pooling from image features using dif-

ferent contextual regions and resolutions. In our CC-Net,

the roi-pooled features have the same number of channels

but have different sizes at different stages. The sizes of roi-

pooled features are respectively 14× 14, 22× 22, 16× 16
and 14 × 14 for features at stages 1, 2, 3 and 4. These

sizes are heuristically selected to have features with differ-

ent contexts. The contextual regions for these features are

1940

Image

icp

(4d)

icp

(4e)1(5a)1(5b)1

icp

(4e)2(5a)2(5b)2

icp

(4e)3(5a)3(5b)3

icp

(4e)4(5a)4(5b)4

global_pool1

global_pool2

global_pool3

global_pool4

f1

f2

f3

f4

feature

chaining

(Section 3.2)

RoI
icp

(3b)

icp

(3c)

icp

(4a)
......

roi-pool 3

roi-pool 4-7

roi-pool 1

roi-pool 2

early cascade

Classifier chaining with multiple cascade stages

(Section 3.3)

contextual cascade

Flow of RoI

Flow of feature

and score

RoIs

Classifier chaining with

multiple cascade stages

(Section 3.3)

Figure 3. An example of the CC-Net for the BN-Net [14]. There are ten inception modules in the BN-Net. Each inception module consists

of several convolutional layers. icp(3b), (3c), (4a), (4d), (4e), (5a), (5b) in the figure are respectively the second, third, fourth, seventh,

eighth, ninth and tenth inception modules of the BN-Net. Best viewed in color.

...

Figure 4. The use of roi-pooling to obtain features with different

resolutions and contextual regions. After roi-pooling, features in

different stages have different sizes and contextual padding value

c. The original box size is used when c = 0. And 1.5 times the

original box size is used when c = 0.5. Best viewed in color.

also different. Suppose the RoI has width W and height

H . Denote c as the context padding value for the RoI. The

padded region has the same center as the RoI and has width

(1+c)·W and height (1+c)·H . c = 0, 0.5, 0.8, and 1.7 for

stages 1, 2, 3, and 4 respectively. Fig. 4 shows the contex-

tual regions for features at different stages. These features

are arranged with increasing contextual regions.

After features of different resolutions and contextual re-

gions are obtained, they go through the remaining three in-

ception modules (4e), (5a) and (5b). In order to increase

the variation of features, the inception modules at different

cascade stages have different parameters. Denote the incep-

tion module (4e) at stage t by (4e)t. The modules (4e)1,

(4e)2, (4e)3, and (4e)4 are initialized from the same pre-

trained inception module (4e) but have different parameters

during the finetuning stage because they receive different

gradients in backpropagation. The treatment for the mod-

ule (4e)t are also applied for the inception modules (5a)t
and (5b)t. The CNN features obtained from the inception

modules (5b)t have different sizes. We use global average

pooling for these features so that they have the same size

before feature chaining.

3.2.2 The feature chaining structure

Denote the features at depth l and stage t as hl,t. In order

to use the features in previous stages as the prior knowledge

when learning features for stage t, we design the feature

chaining which has the following formulation:

hl,t = ψ(hl,t−1,ol,t), (1)

ol,t = φ(hl−1,t,Θl−1,t), (2)

where Θl−1,t contains the parameters learned from the

network. In this design, the hl,t is obtained from the

features in previous stages hl,t−1 and features from the

shallower layer hl−1,t. ol,t denotes the features after

nonlinear mapping of hl−1,t. The nonlinear mapping in

φ(hl−1,t,Θl−1,t) in (2) can be implemented by convolu-

tional layer or fully connected layer with nonlinear acti-

vation function. ψ(hl,t−1,ol,t) can be implemented by

concatenation, i.e. ψ(hl,t−1,ol,t) = Concat(hl,t−1,ol,t),
where Concat is the feature concatenation operation. As

another choice, ψ(hl,t−1,ol,t) in (1) can also be im-

plemented by weighted averaging, i.e. ψ(hl,t−1,ol,t) =
hl,t−1+al,t⊙ol,t. The operation ⊙ denotes the Hadamard

product, where [α1 α2] ⊙ [β1 β2] = [α1β1 α2β2]. al,t−1

denotes a vector of scalers for scaling the ol,t.

In our implementation for the BN-Net as shown in Fig.

5, feature chaining is placed after the global average pool-

ing, where all features are spatially pooled to have spatial

size 1 × 1 and 1024 channels. Denote the features af-

ter global pooling for stage t as ot. The following proce-

dure can be used for obtaining the chained features when

weighted averaging is used:

f1 = o1,

f2 = o2 ⊙ a2 + f1,

f3 = o3 ⊙ a3 + f2,

f4 = o4 ⊙ a4 + f3.

(3)

In this implementation, the feature ft at stage t is obtained

by summing up features ft−1 in the previous stage and the

1941

inception

(4e)1(5a)1(5b)1

inception

(4e)2(5a)2(5b)2

inception

(4e)3(5a)3(5b)3

inception

(4e)4(5a)4(5b)4

global_pool1

global_pool2

global_pool3

global_pool4

inception

(4d)

+

f1

f2
a2

+ f3

+ f4

a3

roi-pooling

a4

Figure 5. Chaining features for BN-Net.

ot ⊙ at, which which is the output from the previous layer

global poolt weighted by at. The summed features ft, t =
1, 2, 3, 4 are then used for classification.

3.2.3 Discussion

Feature chaining includes the concept of stage. Features

hl,t and hl,t+1 have the same depth but are different in

stages. Features in different stages have specific objectives

– they are used by classifiers for rejecting easy background

samples. The features of the same depth but different stages

communicate through feature chaining.

If the feature at the current stage is helpful for detection,

its learned weight should be high. Otherwise, the weight is

low. Thus the weight controls the amount of information to

be transmitted for better detection accuracy.

With feature chaining, features at the current stage take

the features in previous stages into consideration. There-

fore, the CNN layers at the stage t no longer need to rep-

resent the information existing in previous stages. Instead,

they will focus on representations that are complementary

to those in previous stages.

3.3. Classifier chaining in CC-Net

3.3.1 Cascade with classifier chaining

This section briefly introduces cascade and chaining of bi-

nary classifiers, which is called soft cascade in [2] and

boosting chain in [35].

Classifier chaining. Denote ft as the features for the clas-

sifier at stage t, t = 1, 2, . . . , T . Denote ct(ft) as the classi-

fication function for the feature ft at the stage t. The partial

sum of classification scores up to and including the tth stage

is defined as follows:

pst =
∑

i=1,...,t

ct(ft). (4)

In classifier chaining, the partial sum pst of classification

scores are obtained.

Cascade after classifier chaining. In the cascade, the

partial sum pst is compared with the threshold rt. If

pst < r, then the sample is not considered as an object.

Otherwise, the next stage of comparison is performed. If

the sample is not rejected after T stages of such rejection

scheme, the score psT will be used as the detection score.

The main difference between cascade with classifier chain-

ing and conventional cascade is that conventional cascade

only uses ct(ft) as the score at the stage t but cascade with

classifier chaining includes the previous scores.

3.3.2 Classifier chaining at the testing stage in CC-Net

In the CC-Net, the partial sum of classification scores up

to and including the tth stage is obtained from the set of

features {ft} as follows:

p̃t = [pt,1 . . . pt,K+1]
T =

∑

i=1,...,t

(bt ⊙ ct(ft)) . (5)

The ct(ft) in (5) denotes the K + 1-class classifier which

takes the feature ft as input and outputs K + 1 classifica-

tion scores on the input sample being one of the K classes

or background. ct(ft) is implemented using the fully con-

nected (fc) layer in the CC-Net. The
∑

in (5) denotes the

summation over vectors. The operation ⊙ in (5) denotes

the Hadamard product. bt for this dot product is the vector

of scaling parameters for controlling the scale of the clas-

sification scores. The scores p̃t in (5) are normalized to

probabilities pt using the softmax function as follows:

pt = [pt,1 . . . pt,K+1] = softmax(p̃t), (6)

where pt,k = p̃t,k/

K+1
∑

k=1

p̃t,k. (7)

The probabilities pt are used for deciding whether to reject

the given sample or not as follows:

u(pt, rt) =

{

1, if max{pt,1 . . . pt,K} > rt,

0, otherwise.
(8)

If u(pt, rt) = 0, then the sample is considered as a back-

ground and the convolutional layers at latter stages are not

used for saving testing time. For example, if a RoI is con-

sidered as the negative sample after using its roi-pooled

features from the second inception module, which is the

icp(3b) in Fig. 3, then this RoI is not used by the latter clas-

sifiers and the contextual cascade for this RoI is not done

for saving computation. Conservative threshold rt is cho-

sen so that many background RoIs are rejected and most of

the foreground RoIs are retained in the cascade stages. If a

RoI is not rejected after T cascade stages, then pT is used

as its detection result. Fig. 6 shows the diagram for cas-

cade chaining at the testing stage. In the CC-Net, cascade

chaining is used for early cascade and contextual cascade.

It is also used between these two stages, i.e. the score from

early cascade is transmitted to the contextual cascade stage.

3.3.3 Training CC-Net

A multi-task loss of classification and bounding-box regres-

sion is used to jointly optimize the CC-Net. Suppose there

1942

softmax

softmax

softmax

softmax

features

p1

p2

p3

p4

u(p1, r1)=0?

u(p2, r2)=0?

u(p3, r3)=0?

u(p4, r4)=0?

rejected

rejected

rejected

rejected

Y

Y

Y

Y

N

N

N

detection

results

c2(f2) b2

summed

class scores

+

c1(f1)

b1

c3(f3) b3

+

c4(f4) b4
+

f1

f2

f3

f4

Figure 6. The chaining of features and classifiers at the testing

stage. Given features ft, an fc layer is used for obtaining classi-

fication score at stage t. The classification sores from previous

stages are combined with the scores at the current stage to ob-

tained the summed scores. The summed scores undergo softmax

to obtain the normalized scores pt at stage t. Then the threshold-

ing function u(pt, rt) decides whether to reject the sample or not.

The sample not rejected after T stages uses the pT as the detection

result. T = 4 in the figure. Best viewed in color.

are K object classes to be detected. Denote the set of es-

timated class probabilities for a sample by p = {pt|t =
1, . . . , T}, where pt = [pt,0 . . . pt,K] is the estimated prob-

ability vector at stage t and pt,k is the estimated probabil-

ity for the kth class. k = 0 denotes the background. pt

is obtained by a softmax over the K + 1 outputs of a fc

layer. Another layer outputs bounding-box regression off-

sets l = {lk|k = 1, . . .K}, lk = (lkx , l
k
y , l

k
w, l

k
h) for each of

the K object classes, indexed by k. Parameterization for lk

is the same as that in [11]. The loss function is defined as

follows:

L(p, k∗, l, l∗) = Lcls(p, k
∗) + Lloc(l, l

∗, k∗), (9)

Lcls(p, k
∗) = −

T
∑

t=1

λtut log pt,k∗ , (10)

ut =
t−1
∏

i=1

[pi,k∗ < ri] when t > 1, u1 = 1. (11)

Lcls(∗) is the loss for classification and Lloc is the loss for

bounding-box regression. If λt = ut = 1 and T = 1, then

Lcls(∗) is a normal cross entropy loss. ut evaluates whether

the sample is rejected in previous stages. If a sample is re-

jected in previous stages, it is no longer used for learning

the classifier in the current stage. And this sample will not

be used for extracting its features in the latter CNN layers.

Since we did not constrain the sample to be background for

rejection, easy positive samples are also rejected at early

stages during training. λt is a hyper parameter that controls

the weight of loss for each stage of cascaded classifier. We

set λT = 1 and λt = 0.01/T for t = 1, . . . T − 1. Loss

is used for t = 1, . . . T − 1 so that the learned classifiers

in these stages can learn reasonable classification scores for

rejecting background samples. Since the score in the last

classifier is used as the final detection score, the classifi-

cation loss in the last stage has much higher weight than

the loss in other stages. For Lloc, we use the smoothed

L1 loss in [10]. With this loss function, bounding box re-

gression, chained features and all cascaded classifiers are

learned jointly through backpropagation.

4. Experimental results

4.1. Experimental setup

The CC-Net is implemented based on the fast RCNN

pipeline. The BN-Net is used as the baseline network if not

specified. The CC-Net for BN-Net [14] is shown in Fig. 5.

In the CC-Net, the layers belonging to the baseline networks

are initialized by these baseline networks pre-trained on the

ImageNet dataset. The parameters at in feature chaining

and bt cascade chaining are initialized as 1. For region pro-

posal, we use the Craft in [37] for ImageNet and the selec-

tive search in [31] for VOC 2007 if not specified. The Craft

in [37] is an improved approach based on the faster RCNN

[25].

We evaluate our method on two public object detection

datasets, ImageNet [26] and PASCAL VOC 2007 [6]. Since

the ImageNet object detection task contains a sufficiently

large number of images and object categories to reach a con-

clusion, evaluations on component analysis of our training

method are conducted on this dataset. This dataset has 200

object categories and consists of three subsets. i.e., train,

validation and test data. We follow the same setting in [11]

and split the whole validation subset into two subsets, val1

and val2. The network finetuning step uses training sam-

ples from train and val1 subsets. The val2 subset is used

for evaluating components. All our results are for single

model with single-scale training and testing if not specified.

Single-stage bounding box regression is used.

4.2. ImageNet results

On this dataset, we compare with the methods tested on

the val2 dataset. We compare our framework with several

other state-of-art approaches [11, 33, 14, 20, 36, 13, 41].

The mean average precision for these approaches are shown

in Table 1. Our work is trained using the provided data

of ImageNet. Compared with these approaches, our single

model result ranks No. 2. 1

4.3. PASCAL VOC 2007 results

On this dataset, the VOC07 and VOC12 trainval dataset

are optionally used for training and the VOC07 test set is

used for evaluation.

When only VOC07 is used for training, as shown in Ta-

ble 2, the baseline BN-Net+FRCN has mAP 70.8%. Adding

our design in chaining features and cascaded classifiers,

1The ResNet result with mAP 60.5% in [13] used multi-scale testing,

bounding box voting and contextual scores. Without them but with the

same region proposal from Craft, the ResNet-152 has mAP 54% and our

CC-Net based on BN-Net has mAP 54.5% .

1943

appraoch RCNN Berkeley GoogleNet DeepID-Net Superpixel ResNet FRCN GBD-Net CC-Net

[11] [11] [33] [20] [36] [13] [10] [41]

val2(sgl) 31.0 33.4 38. 5 48.2 42.8 60.5 49.4 51.4 54.5

Table 1. Object detection mAP (%) on ImageNet val2 for state-of-the-art approaches with single model. FRCN and CC-Net use the same

region proposal [37]. BN-Net is used for FRCN and CC-Net is based on BN-Net.

method M N R train set mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [10] V 07 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

OHEM [29] V 07 69.9 71.2 78.3 69.2 57.9 46.5 81.8 79.1 83.2 47.9 76.2 68.9 83.2 80.8 75.8 72.7 39.9 67.5 66.2 75.6 75.9

Ours V 07 72.4 78.3 79.4 69.1 63.5 53.2 82.1 79.7 86.3 56.0 75.6 72.3 83.4 79.0 76.3 76.4 43.1 67.6 71.8 77.3 76.6

FRCN [10] V 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

MRCN [9] � V � 07+12 74.9 78.7 81.8 76.7 66.6 61.8 81.7 85.3 82.7 57.0 81.9 73.2 84.6 86.0 80.5 74.9 44.9 71.7 69.7 78.7 79.9

OHEM [29] � V 07+12 78.9 80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 87.3 82.4 78.8 53.7 80.5 78.7 84.5 80.7

ION [1] � V 07+12 79.2 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9 76.5 88.4 87.5 83.4 80.5 52.4 78.1 77.2 86.9 83.5

Ours � V 07+12 80.4 83.0 85.8 80.0 73.4 64.6 88.3 88.3 89.2 63.2 86.0 76.8 87.6 88.2 83.4 84.1 54.9 83.7 77.7 86.0 83.6

FRCN [10] B 07 70.8 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

Ours B � 07 77.1 77.0 84.2 78.0 66.8 62.6 82.6 85.7 88.4 63.1 85.6 73.1 87.4 86.9 79.9 76.9 50.1 76.1 78.4 79.6 79.5

Table 2. VOC 2007 test detection average precision (%). All methods use selective search for region proposal. Training set key: 07:

VOC07 trainval, 07+12: union of 07 and VOC12 trainval. Multi-region features are not used for our CC-Net for VGG16. Legend: N:

using VGG16 (V) or BN-Net (B) as the baseline network. R: whether the multi-region features are used. M: whether multi-step bounding

box regression and the multi-scale is used for training and testing.

the mAP is 77.1%. The baseline VGG16+FRCN has mAP

66.9%, our CC-Net based on VGG16 has mAP 72.4%. For

VGG16, our CC-Net did not use multi-region features but

only use the features at conv3-3, conv4-3 and conv5-3 for

chaining. The ION net in [1] also used conv3-3, conv4-3

and conv5-3 features. The IRNN structure for using con-

text and segmentation labels are used in ION but not in our

model for VGG. Our CC-Net based on VGG provides 1.2%

absolute mAP gain compared with ION based on VGG. We

also list the hard example example mining approach in [29]

and the multi-region approach in [9] for comparison. The

results show that our model performs better.

CC-Net is independent of detection pipeline like fast

RCNN or Faster RCNN. When CC-Net is applied for

the Faster RCNN, the baseline VGG16+Faster-RCNN

has mAP 73.2% when trained on VOC07+12 and tested

on VOC07, the VGG16+Faster-RCNN+CC-Net has mAP

80.8% when multi-scale training and multi-step bounding

box regression are used. Multi-region features are not used

in CC-Net for the results above.

4.4. Component analysis

4.4.1 Results on cascade chaining

In order to evaluate the performance gain from chaining cas-

caded classifiers, we use the BN-Net as the baseline. Multi-

context multi-resolution features are not included. For the

results in Table 3, all cascaded classifiers take the output the

global pool layer in BN-Net as the feature. Features and

classifiers are jointly learned. Compared with the baseline,

adding two extra stages of cascaded classifiers improves the

mAP by 1.1%, and adding four extra cascaded classifiers

improves mAP by 1.5%. The use of more cascaded classi-

fiers provides better detection accuracy. If the 4 extra stages

of cascade do not use chaining, i.e. not using previous clas-

sification scores for the current classification score, there

+ 2 cascade stages? �

+ 4 cascade stages? � �

cascade? � � �

chaining classifier? � �

mAP 49.4 50.5 50.9 50.5

Table 3. ImageNet val2 detection mean average precision (%) for

baseline BN-Net with different setup on cascade. ‘chaining clas-

sifier’ denotes the result using the chaining for classifier, in which

scores in previous stages are used for the current stage. ‘cascade’

denotes the use of cascade.

will be 0.4% mAP drop.

4.4.2 Chaining features and classifiers

Table 4 shows the performance for different settings in

chaining features and classifiers for VOC07 and ImageNet.

The results for VOC07 are trained on VOC07 train+val.

The results for ImageNet val2 are trained on ImageNet

train+val1. The baseline BN-Net has mAP 49.4%(70.8%)

for ImageNet(VOC07). Multi-region features are found to

be effective in [9]. When we concatenate features of dif-

ferent contextual regions and resolutions but without the

feature chaining or the classification cascade, the mAP is

50.5%(73.8%) for ImageNet(VOC07). This setting has the

same depth/width as the CC-Net but does not include clas-

sifier or feature chaining. When multi-region features and

different classifiers are used in different cascade stages, the

network has mAP 73.6% on VOC 2007 if there is no chain-

ing in the cascade.

Based on the multi-region features, cascade chain-

ing provides 0.8%(1.4%) absolute mAP gain for Ima-

geNet(VOC07). Based on the multi-region features fea-

tures, mAP is 54.5%(77.1%) if both feature chaining and

cascade chaining are used in the CC-Net.

In the experimental results, the early cascade stage is

used for the results in VOC2007 but not used for the results

1944

multi-region features? � � �

cascade? � �

classifier chaining? � �

features chaining? �

mAP (VOC 2007) 70.8 73.8 75.2 77.1

mAP (ImageNet) 49.4 50.5 51.3 54.5

Table 4. VOC 2007 test and ImageNet val2 detection mean av-

erage precision (%) for baseline BN-Net with different settings on

feature chaining and classifier chaining. Early cascade is used for

the results on VOC 2007 but not for the results on ImageNet.

in ImageNet val2. This might be the reason on the different

improvement in these two datasets for chaining cascaded

classifier.

When learning the chaining of features and classifiers,

scaling vectors a and b are used for controling the scales of

features and classification scores, if these scalers are fixed

as 1 but not learned, the mAP will drop by 1.7%. No mAP

gain is observed when the scaling vector a for feature chain-

ing with C1 parameters is replaced by fully connected layer

with C1C2 parameters.

4.5. Experimental comparison with GBD-Net

Tested on the ImageNet val2, CC-Net has mAP 54.5%.

In comparison, the GBD-Net in [41] has mAP 51.4%. CC-

Net performs better than GBD-Net by learning more com-

plementary features. GBD-Net aims for context. Our fea-

ture chaining aims for learning complementary features and

is not constrained to contextual information. For the CNN

model in Fig. 3, if all features in the inception modules

icp(4e)t, (5a)t and (5b)t for t = 1, 2, 3, 4 have the same

contextual region, GBD-Net has 50.2% mAP while the CC-

Net has 52% mAP. This experiment shows that CC-Net

learns complementary features even if the contextual re-

gions are the same. But GBD-Net, which aims at passing

message among contextual features, does not provide extra

gain when the contextual regions is the same.

In GBD-Net [41], when a message is passed from a layer

with C1 channels to another layer with C2 channels, the

computational cost and the number of parameters is propor-

tional to C1C2. The computational cost and the number of

parameters of which are proportional to C1 when passing

message from a layer to another. Therefore, feature chain-

ing saves the computation and parameter size in message

passing by C2 times. C1 = C2 = 1024 in the BN-Net.

On the other hand, the feature chaining increases the num-

ber of parameters when the inception module icp(4e)1 and

icp(4e)2 do not share parameters in our implementation but

share parameters in the GBD-Net. But the computation and

parameter sizes required in icp(4e)- icp(5b) are smaller than

that for message passing. Using the same BN-Net as base-

line, GBD-Net and CC-Net require 107M and 31M param-

eters respectively.

4.6. Computational complexity and memory cost

We evaluate the computational complexity using the se-

lective search for the region proposal on Titan X GPU. The

Stage Initial Early cascade Contextual cascade

Recall 93.3% 92.0 % 89.8%

BgRoI Rej. 0 915 752

Table 5. The recall rate (%) and number of background RoIs re-

jected (BgRoI Rej) on VOC07.

training time required for batch size 256 is 0.85 and 1.4

seconds per iteration respectively for CC-Net without cas-

cade and GBD-Net. The training time required for batch

size 2048 is 1.15 seconds per iteration for CC-Net with cas-

cade. When the batch size increases by 7 times, the com-

putational time increases only by 0.35 times. For single im-

age with 128 RoIs, the GBD-Net run out of GPU memory

on the 12GB GPU. For 256 RoIs, CC-Net without cascade

runs out of memory. At the testing stage, the GBD-Net and

CC-Net without cascade require 11 and 5 seconds per im-

age respectively. With simpler design in passing messages

among features, CC-Net without cascade is faster. The CC-

Net with cascade requires 1.6 seconds per image, around

15% of the time required by GBD-Net and 32% the time

required by CC-Net without cascade.

The recall rate (%) and number of background RoIs

(BgRoI) rejected in different stages are shown in Table 5.

Initially there are 1940 background RoIs per image, the

early cascade stage rejects 915 RoIs and the contextual cas-

cade further rejects 752 RoIs.

5. Conclusion

In this paper, we present a chained cascade network (CC-

Net) for object detection. In this network, the cascaded

classifiers in multiple stages are jointly learned through a

single end-to-end neural network. This network includes

classifier chaining and feature chaining, in which feature

and classifier at a stage take the feature and classification

scores in previous stages as the prior knowledge. By reject-

ing easy examples at earlier stages, the features and classi-

fiers learned at latter stages focus more on hard examples

for better detection accuracy. After an easy sample is re-

jected at earlier stage in shallow layer, its computation for

deeper or wider layers is not required for faster speed. Ex-

perimental results on Pascal VOC and ImageNet for differ-

ent region proposals show the effectiveness of the CC-Net

in improving the detection accuracy.

Acknowledgement This work is supported by Sense-
Time Group Limited, the General Research Fund spon-
sored by the Research Grants Council of Hong Kong
(Project Nos. CUHK14213616, CUHK14206114,
CUHK14205615, CUHK419412, CUHK14203015,
CUHK14207814, and CUHK14239816), the Hong
Kong Innovation and Technology Support Programme
(No.ITS/121/15FX), National Natural Science Foundation
of China (No. 61371192), and ONR N00014-15-1-
2356.

1945

References

[1] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-

outside net: Detecting objects in context with skip pooling

and recurrent neural networks. In CVPR, 2016. 1, 2, 3, 7

[2] L. Bourdev and J. Brandt. Robust object detection via soft

cascade. In CVPR, 2005. 2, 5

[3] F. Chollet. Xception: Deep learning with separable convolu-

tions. arXiv preprint arXiv:1610.02357, 2016. 2

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 1, 2

[5] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast fea-

ture pyramids for object detection. IEEE Trans. PAMI,

36(8):1532–1545, 2014. 2

[6] M. Everingham, L. V. Gool, C. K. I.Williams, J.Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. IJCV, 88(2):303–338, 2010. 6

[7] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade

object detection with deformable part models. In CVPR,

2010. 2

[8] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE Trans. PAMI, 32:1627–1645, 2010. 2

[9] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware cnn model. In

ICCV, 2015. 1, 2, 3, 7

[10] R. Girshick. Fast r-cnn. In CVPR, 2015. 1, 2, 6, 7

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1, 2, 6, 7

[12] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable

part models are convolutional neural networks. In CVPR,

2015. 2

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 6, 7

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

ICML, 2015. 2, 3, 4, 6

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 2

[16] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5325–5334, 2015. 2

[17] S. Z. Li and Z. Zhang. Floatboost learning and statistical face

detection. IEEE Trans. PAMI, 26(9):1112–1123, 2004. 2

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed.

Ssd: Single shot multibox detector. In ECCV, 2016. 2

[19] W. Ouyang, H. Li, X. Zeng, and X. Wang. Learning deep

representation with large-scale attributes. In ICCV, 2015. 2

[20] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li,

S. Yang, Z. Wang, C.-C. Loy, et al. Deepid-net: Deformable

deep convolutional neural networks for object detection. In

CVPR, 2015. 2, 6, 7

[21] W. Ouyang, X. Zeng, and X. Wang. Learning mutual visibil-

ity relationship for pedestrian detection with a deep model.

IJCV, 120(1):14–27, 2016. 2

[22] W. Ouyang, X. Zeng, X. Wang, S. Qiu, P. Luo, Y. Tian, H. Li,

S. Yang, Z. Wang, H. Li, K. Wang, J. Yan, C.-C. Loy, and

X. Tang. Deepid-net: Deformable deep convolutional neu-

ral networks for object detection. IEEE Trans. PAMI, page

accepted, 2016. 2

[23] H. Qin, J. Yan, X. Li, and X. Hu. Joint training of cascaded

cnn for face detection. In CVPR, 2016. 2

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016. 2

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. NIPS, 2015. 2, 6

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. IJCV, 2015. 6

[27] H. Schneiderman. Feature-centric evaluation for efficient

cascaded object detection. In CVPR, 2004. 2

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. arXiv preprint

arXiv:1312.6229, 2013. 2

[29] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

CVPR, 2016. 1, 2, 7

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1, 2

[31] A. Smeulders, T. Gevers, N. Sebe, and C. Snoek. Segmen-

tation as selective search for object recognition. In ICCV,

2011. 2, 6

[32] K.-K. Sung and T. Poggio. Learning and example selection

for object and pattern detection. MIT A.I. Memo No. 1521,

(1521), 1995. 1, 2

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2, 6, 7

[34] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001. 1

[35] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning

for object detection. In ICCV, 2003. 2, 5

[36] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li. Object detection

by labeling superpixels. In CVPR, 2015. 6, 7

[37] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Craft objects from

images. In CVPR, 2016. 2, 6, 7

[38] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016. 2

[39] X. Zeng, W. Ouyang, and X. Wang. Window-object relation-

ship guided representation learning for generic object detec-

tions. arXiv preprint arXiv:1512.02736, 2015. 2

[40] X. Zeng, W. Ouyang, J. Yan, H. Li, T. Xiao, K. Wang, Y. Liu,

Y. Zhou, B. Yang, Z. Wang, et al. Crafting gbd-net for object

detection. TPAMI, 2017 (accepted). 2

[41] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang. Gated

bi-directional cnn for object detection. In ECCV, 2016. 1, 2,

3, 6, 7, 8

1946

