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Abstract

We present an algorithm for aligning two colored point

clouds. The key idea is to optimize a joint photometric

and geometric objective that locks the alignment along both

the normal direction and the tangent plane. We extend a

photometric objective for aligning RGB-D images to point

clouds, by locally parameterizing the point cloud with a vir-

tual camera. Experiments demonstrate that our algorithm

is more accurate and more robust than prior point cloud

registration algorithms, including those that utilize color

information. We use the presented algorithms to enhance

a state-of-the-art scene reconstruction system. The preci-

sion of the resulting system is demonstrated on real-world

scenes with accurate ground-truth models.

1. Introduction

We are concerned with the following problem: given two

roughly aligned three-dimensional point clouds, compute a

tight alignment between them. This is a well-known prob-

lem in computer vision, computer graphics, and robotics.

The problem is typically addressed with variants of the ICP

algorithm [1, 3, 31]. The algorithm alternates between find-

ing correspondences and optimizing an objective function

that minimizes distances between corresponding points. A

common failure mode of ICP is instability in the presence of

smooth surfaces [14, 46]. The alignment can slip when ge-

ometric features do not sufficiently constrain the optimiza-

tion.

This ambiguity can be alleviated if the points are asso-

ciated with color. This is often the case. Modern depth

cameras commonly produce pairs of depth and color im-

ages. Many industrial 3D scanners are also equipped with

synchronized color cameras and provide software that as-

sociates color information with the 3D scans. Multi-view

stereo pipelines reconstruct colored point clouds from im-

age collections [8, 13, 39]. Considering color along with

the geometry can increase the accuracy of point cloud reg-

istration.

The standard formulation for integrating color into geo-

metric registration algorithms is to lift the alignment into

a higher-dimensional space, parameterized by both posi-

tion and color. Typically, correspondences are established

in a four- or six-dimensional space rather than the physical

three-dimensional space [21, 22, 27, 28]. This is an ele-

gant approach, but it is liable to introducing erroneous cor-

respondences between points that are distant but have sim-

ilar color. These correspondences can pull away from the

correct solution and prevent the method from establishing a

maximally tight alignment.

In this work, we develop a different approach to aligning

colored point clouds. Our approach establishes correspon-

dences in the physical three-dimensional space, but defines

a joint optimization objective that integrates both geometric

and photometric terms. A key challenge is that color is only

defined on discrete points in the three-dimensional space.

To optimize a continuous joint objective, we need to define

a continuous and differentiable photometric term, the gradi-

ent of which indicates how color varies as a function of posi-

tion. This is challenging because unstructured point clouds

do not provide a natural parameterization domain. We build

on dense and direct formulations for RGB-D image align-

ment, which use the two-dimensional image plane as the

parameterization domain [35, 25, 44, 40]. To define a pho-

tometric objective for point cloud alignment, we introduce

a virtual image on the tangent plane of every point, which

provides a local approximation to the implicit color vari-

ation. Using this construct, we generalize the photometric

objectives used for RGB-D image alignment to unstructured

point cloud alignment. The resulting photometric objective

is integrated with a geometric objective defined using the

same virtual image planes. This enables efficient joint pho-

tometric and geometric optimization for point cloud align-

ment. Our formulation unifies RGB-D image registration

and colored point cloud registration. We show that our al-

gorithm achieves tighter alignment than state-of-the-art reg-

istration algorithms, including those that use color informa-

tion.

Our primary contribution is a new approach to colored

point cloud registration. Beyond this, we make two sup-

porting contributions. Since point cloud registration plays

a central role in high-fidelity scene reconstruction, we have

used the presented algorithms to enhance a state-of-the-art
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scene reconstruction system [4]. To quantitatively evaluate

reconstruction accuracy on real-world scenes, we have cre-

ated a dataset of indoor scenes scanned with an industrial

laser scanner. Experiments demonstrate that the enhanced

pipeline produces significantly more accurate reconstruc-

tions.

2. Related Work

The ICP algorithm [1, 3, 31] has been a mainstay of ge-

ometric registration in both research and industry for many

years. Its variants have been extensively studied [31, 33,

38]. Notably, point-to-plane ICP has been broadly adopted

due to its fast convergence [3, 31]. ICP and other local re-

finement algorithms require a rough initial alignment as in-

put. Such initial alignment can be obtained via global reg-

istration algorithms [18, 43, 47]. These global algorithms

address a more difficult problem since they must establish

correspondences with no initialization. While significant

progress in global alignment has been made, the alignment

produced by state-of-the-art global registration algorithms

can often be improved by local refinement.

Most local registration algorithms that utilize color in-

formation lift the problem to a higher-dimensional space,

which is used to establish correspondences [21, 22, 28, 27].

Godin et al. [15] use color to prune correspondences. Our

approach is different in that we establish correspondences in

the physical 3D space inhabited by the point clouds that are

being registered, but optimize a joint photometric and geo-

metric objective. A recent work [7] represents color infor-

mation in a Gaussian mixture model. It is built upon a prob-

abilistic registration algorithm [11] and is orders of magni-

tude slower than common ICP variants or our approach.

Many approaches to RGB-D image registration have

been explored. Huhle et al. [20] and Henry et al. [17] com-

bine image matching with geometric registration. Other

approaches optimize a direct photometric objective defined

densely over the images [35, 25]. Whelan et al. [40] intro-

duce a joint optimization objective that combines the pho-

tometric objective and a point-to-plane ICP objective. We

build on these works, specifically on the dense and direct

formulations for RGB-D image registration. We review the

photometric objective used for RGB-D image registration

in Section 3 and then show that it can be generalized to un-

structured point clouds. A key challenge that distinguishes

point clouds from RGB-D images is the lack of a regular

grid parameterization.

Dense reconstruction from RGB-D sequences has been

extensively studied [29, 17, 24, 10, 4, 41]. Such recon-

struction systems commonly have three key components:

surface alignment (in the form of odometry and loop clo-

sure), global optimization, and surface extraction. We show

that the colored point cloud registration approach presented

in this paper can be used to increase the accuracy of the

surface alignment step in a state-of-the-art reconstruction

pipeline, significantly increasing the accuracy of the final

reconstruction. To evaluate this quantitatively, we collect

a dataset of RGB-D video sequences with dense ground-

truth 3D models acquired with an industrial laser scan-

ner. Many RGB-D datasets have been collected in prior

work [37, 42, 19, 5, 12]. To our knowledge, none of them

are accompanied by dense and accurate ground-truth 3D

models of whole scenes. Synthetic datasets have been cre-

ated for this purpose [16, 4]. We complement these efforts

with real-world datasets.

3. RGB-D Image Alignment

In this section, we review the photometric objective for

RGB-D image alignment [35, 25] and combine it with a ge-

ometric objective defined on the same image plane. This in-

troduces notation and lays the groundwork for colored point

cloud alignment, which will be presented in Section 4.

An RGB-D image is composed of a color image I and a

depth image D registered to the same coordinate frame. For

simplicity we use intensity images. Given a pair of RGB-D

images (Ii, Di) and (Ij , Dj) and an initial transformation

T0 that roughly aligns (Ij , Dj) to (Ii, Di), the goal is to

find the optimal transformation that densely aligns the two

RGB-D images.

A photometric objective EI is formulated in terms of

squared differences of intensities [35, 25]:

EI(T) =
∑

x

(

Ii(x
′)− Ij(x)

)2
, (1)

where x = (u, v)⊤ is a pixel in (Ij , Dj) and x′ = (u′, v′)⊤

is the corresponding pixel in (Ii, Di). The correspondence

is built by converting the depth pixel (x, Dj(x)) to a 3D

point in the camera space of (Ij , Dj), transforming it with

T, and projecting it onto the image plane of (Ii, Di). For-

mally,

x′ = guv

(

s(h(x, Dj(x)),T)
)

. (2)

Here h is the conversion from a depth pixel to a 3D point in

homogenous coordinates:

h(u, v, d) =
( (u− cx) · d

fx
,
(v − cy) · d

fy
, d, 1

)

⊤, (3)

where fx and fy are the focal lengths and (cx, cy) is the

principal point. s is the following rigid transformation:

s(h,T) = Th. (4)

g is the inverse function of h, which maps a 3D point to a

depth pixel:

g(sx, sy, sz, 1) =
(sxfx

sz
+ cx,

syfy

sz
+ cy, sz

)

⊤. (5)
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The first two components of g, denoted by guv , form the

corresponding pixel x′ on the image plane of (Ii, Di).
Similarly, we can define a geometric objective ED that

compares the depth of pixel x and x′. We notice that direct

comparison between depth values Di(x
′) and Dj(x) leads

to incorrect results since the depth values are measured in

different camera spaces. We therefore compare Di(x
′) with

the warped depth gd, which is the third component of g as

defined in Equation 5:

ED(T) =
∑

x

(

Di(x
′)− gd(s(h(x, Dj(x)),T))

)2
. (6)

It is important that both the photometric objective EI and

the geometric objective ED are defined on the same pa-

rameterization domain. In the next section, we show that a

change of parameterization domain enables generalization

of these objectives to unstructured point clouds.

A joint photometric and geometric objective can be for-

mulated by combining EI and ED:

E(T) = (1− σ)EI(T) + σED(T), (7)

where σ ∈ [0, 1] is a constant weight that balances the two

terms.

4. Colored Point Cloud Registration

In this section we generalize the joint optimization ob-

jective (7) to aligning colored point clouds.

4.1. Parameterization

Let P be a colored point cloud, and let C(p) be a discrete

function that retrieves the intensity of each point p. In order

to use color in optimization, we need to generalize C(p) to

a continuous function so that we can compute its gradient.

Conceptually, we introduce a virtual orthogonal camera

for each point p ∈ P. It is configured to observe p along

the normal np. The image plane of this virtual camera is the

tangent plane at p. It parameterizes a virtual image that can

be represented as a continuous color function Cp(u), where

u is a vector emanating from p along the tangent plane:

u · np = 0. The function Cp(u) can be approximated by

its first-order approximation:

Cp(u) ≈ C(p) + dp
⊤u, (8)

where dp is the gradient of Cp(u). The gradi-

ent is estimated by applying least-squares fitting to

{C(p′)|p′ ∈ Np}, where Np is the local neighborhood of

p.

Specifically, let f(s) be the function that projects a 3D

point s to the tangent plane of p:

f(s) = s− np(s− p)⊤np. (9)

The least-squares fitting objective for computing dp is

L(dp) =
∑

p′∈Np

(

Cp(f(p
′)− p)− C(p′)

)2

≈
∑

p′∈Np

(

C(p) + dp
⊤(f(p′)− p)− C(p′)

)2
,

(10)

with the additional constraint d⊤
pnp = 0. This is a linear

least-squares problem and can be solved efficiently during

preprocessing.

Similarly, we can assume that the virtual camera has

a depth channel and define a continuous depth function

Gp(u). Since its gradient at the origin is 0, the first-order

approximation of Gp(u) is a constant function:

Gp(u) ≈ (op − p)⊤np, (11)

where op is the origin of the virtual camera.

4.2. Objective

Let P and Q be two colored point clouds and let T0 be

the coarse initial alignment. Our goal is to find the optimal

transformation T that aligns Q to P.

We formulate a joint optimization objective

E(T) = (1− σ)EC(T) + σEG(T), (12)

where EC and EG are the photometric and geometric terms,

respectively. σ ∈ [0, 1] is a weight that balances the two

terms.

The term EC is defined by generalizing the photometric

term EI in Equation 1. The first change we make is to de-

fine residuals based on a correspondence set K = {(p,q)}
instead of the pixel set {x}. Here K is created following

the ICP algorithm: in each optimization iteration, K is re-

computed as the set of correspondence pairs between P and

TkQ that are within distance ε, where Tk is the current

transformation.

To use the virtual camera introduced in Section 4.1, q is

projected to a point q′ on the tangent plane of p:

q′ = f(s(q,T)), (13)

where s is the rigid transformation in Equation 4 and f is

the projection function in Equation 9. Using the local color

function Cp in (8) and the projected point q′ in (13), EC is

defined as

EC(T) =
∑

(p,q)∈K

(

Cp(q
′)− C(q)

)2
. (14)

Similarly, we generalize the geometric term ED in Equa-

tion 6 to EG:

EG(T) =
∑

(p,q)∈K

(

Gp(q
′)− (op − s(q,T))⊤np

)2
. (15)
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Substituting Gp(q
′) using (11), variable op is eliminated:

EG(T) =
∑

(p,q)∈K

(

(s(q,T)− p)⊤np

)2
. (16)

This function is equivalent to the point-to-plane objective in

the ICP algorithm [3, 31]. When only the geometric term is

used (σ = 1), our algorithm reduces to point-to-plane ICP.

Putting everything together, the joint optimization objec-

tive (12) can be written as

E(T) = (1− σ)
∑

(p,q)∈K

(

r
(p,q)
C (T)

)2

+ σ
∑

(p,q)∈K

(

r
(p,q)
G (T)

)2
, (17)

where r
(p,q)
C and r

(p,q)
G are the photometric and geometric

residuals, respectively:

r
(p,q)
C (T) = Cp(f(s(q,T)))− C(q), (18)

r
(p,q)
G (T) = (s(q,T)− p)⊤np. (19)

4.3. Optimization

We minimize the nonlinear least-squares objective E(T)
using the Gauss-Newton method. In each iteration, we lin-

eralize T locally as a 6-vector ξ = (α, β, γ, a, b, c), which

collates a rotational component ω and a translation t. T is

approximated by a linear function of ξ:

T ≈









1 −γ β a

γ 1 −α b

−β α 1 c

0 0 0 1









Tk, (20)

where Tk is the transformation estimated in the last itera-

tion. Following the Gauss-Newton method, we compute ξ

by solving the linear system

J⊤
r Jrξ = −J⊤

r r, (21)

where r is the residual vector and Jr is its Jacobian, both

evaluated at Tk:

r =
[√

1− σrC ;
√
σrG

]

, (22)

rC =
[

r
(p,q)
C (T)|T=Tk

]

(p,q)
, (23)

rG =
[

r
(p,q)
G (T)|T=Tk

]

(p,q)
, (24)

Jr =
[√

1− σJrC ;
√
σJrG

]

, (25)

JrC =
[

∇r
(p,q)
C (T)|T=Tk

]

(p,q)
, (26)

JrG =
[

∇r
(p,q)
G (T)|T=Tk

]

(p,q)
. (27)

To evaluate the partial derivatives in Equations 26

and 27, we use (18) and (19) and apply the chain rule:

∇r
(p,q)
C (T) =

∂

∂ξi
(Cp ◦ f ◦ s) (28)

= ∇Cp(f)Jf (s)Js(ξ), (29)

∇r
(p,q)
G (T) = n⊤

pJs(ξ), (30)

where ∇Cp = dp is the precomputed gradient for each

point p ∈ P, Jf (s) is the Jacobian of f derived from (9),

and Js is the Jacobian of s with respect to ξ, derived from

(4) and (20).

In each iteration, we evaluate the residual r and the Ja-

cobian Jr at Tk, solve the linear system in (21), update T

by applying the incremental transformation ξ to Tk using

(20), and map the transformation into SE(3). In the next

iteration, we reparameterize T around Tk+1 and repeat.

4.4. Coarse­to­fine processing

Objective (12) is non-convex and the optimization can

get trapped in local minima. To alleviate this problem, we

use a coarse-to-fine scheme. We build a point cloud pyra-

mid by downsampling the input point cloud using a voxel

grid with increasing voxel size. The downsampling algo-

rithm approximates the points in each voxel with their cen-

troid. Therefore, in terms of the optimization objective,

a residual at a coarser level is the combination of several

residuals at a finer level. The objective function at a coarser

level is smoother and can guide the Gauss-Newton method

to deeper minima. The optimization is performed at each

level of the pyramid, from coarse to fine. The result of a

coarse level initializes the optimization at the next level.

Algorithm 1 summarizes the presented algorithm for col-

ored point cloud registration.

5. Scene Reconstruction

We have presented joint photometric and geometric opti-

mization algorithms for aligning RGB-D images (Section 3)

and colored point clouds (Section 4). The benefit of the joint

objective is that it locks the alignment both along the tan-

gent plane (via the photometric term) and along the normal

direction (via the geometric term). Thus it is more robust

and more accurate than using either objective alone. We

now demonstrate the utility of these algorithms by using

them to increase the accuracy and robustness of a state-of-

the-art scene reconstruction system [4].

We build on the publicly available implementation of this

system, replacing two key steps using the algorithms pre-

sented in this paper. The system takes an RGB-D sequence

as input and proceeds through the following steps.

1. Build local geometric surfaces {Pi} (referred to as

fragments) from short subsequences of the input RGB-

D sequence;
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Algorithm 1 Colored point cloud alignment

Input: Colored point cloud P and Q, initial transformation T0

Output: Transformation T that aligns Q to P

1: Build point cloud pyramids {Pl} and {Ql}
2: for p ∈ Pl do

3: Precompute dp by minimizing (10)

4: This defines function Cp

5: T← T0, L← max pyramid level

6: for l ∈ {L,L− 1, · · · , 0} do ⊲ From coarsest to finest

7: while not converged do

8: r← 0,Jr ← 0

9: Compute the correspondence set K
10: for (p,q) ∈ K do

11: Compute r
(p,q)
C , r

(p,q)
G at T (Eq. 18,19)

12: Compute∇r
(p,q)
C ,∇r

(p,q)
G at T (Eq. 29,30)

13: Update r and Jr accordingly

14: Solve linear system 21 to get ξ

15: Update T using Equation 20, then map to SE(3)

16: Validate if T aligns Q to P

2. Perform global registration and detect matchable frag-

ment pairs {(Pi,Pj)} by applying robust graph opti-

mization over global registration results;

3. Tightly align matchable fragment pairs {(Pi,Pj)} and

build correspondence sets {Ki,j} between matchable

fragments;

4. Optimize the fragment poses {Ti} and a camera cal-

ibration function C(·) by minimizing an objective de-

fined over the correspondences {Ki,j} [45];

5. Integrate RGB-D images to generate a mesh model for

the scene.

We use the algorithms presented in Sections 3 and 4 to re-

place Steps 1 and 3.

Better fragment construction. We create a fragment

from every k = 100 RGB-D images. Within each sub-

sequence, we test every pair of RGB-D images to see if

they can be aligned. The initial alignment is estimated

by building correspondences between ORB features in the

color images [30], pruning with the 5-point RANSAC algo-

rithm [36], and computing a transformation that aligns the

corresponding depth pixels [9]. We then optimize objec-

tive (7) to obtain a tight alignment. The algorithm is de-

tailed in the supplement. The alignment results are treated

as edges in a pose graph. Robust pose graph optimization

is performed to estimate the camera pose of each RGB-D

image [4]. With a truncated signed distance volume and a

color volume, RGB-D images are integrated into fragments

in the form of colored point clouds [6, 29, 40]. This replaces

Step 1.

Better fragment alignment. For tight alignment of frag-

ment pairs, we use the colored point cloud alignment al-

gorithm developed in Section 4. This provides more accu-
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CZK [4] Ours

Figure 1. Left: failure of the ICP algorithm (top) leads to erroneous

reconstruction (bottom). Right: our colored point cloud registra-

tion algorithm locks the alignment along the tangent plane as well

as the normal direction (top), yielding an accurate scene model

(bottom).

rate fragment alignment. In particular, the new algorithm is

considerably more robust to slippage along flat surfaces, as

shown in Figure 1. This replaces Step 3.

6. Dataset

To our knowledge, no publicly available RGB-D dataset

provides dense ground-truth surface geometry across large-

scale real-world scenes. To complement existing datasets,

we have created ground-truth models of five complete in-

door environments using a high-end laser scanner, and cap-

tured RGB-D video sequences of these scenes. This data

enables quantitative evaluation of real-world scene recon-

struction and will be made publicly available.

We scanned five scenes: Apartment, Bedroom, Board-

room, Lobby, and Loft. The size of each scene ranges from

21 to 86 square meters. Ground-truth data was collected

using a FARO Focus 3D X330 HDR scanner. The scan-

ner has an operating range of 0.6m to 330m. At a distance

of 10 meters, its ranging accuracy is 0.1 millimeters. Each

scene was scanned from multiple locations. The scans were

merged using dedicated software provided by the manufac-

turer, which is used for range scan alignment in industrial

applications.

In each scene, we captured a continuous RGB-D video

sequence using an Asus Xtion Live camera. The lengths

of the sequences range from 11 to 18 minutes. Each se-

quence thoroughly covers the respective scene. The RGB-D

sequences can be used as input to scene reconstruction sys-

tems. The ground-truth models can be used to evaluate the

accuracy of the results. The dataset is summarized in Ta-

ble 1. The ground-truth models are visualized in the sup-

plement.
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Figure 2. Evaluation of point cloud alignment on the TUM RGB-D dataset [37]. The presented algorithm is compared to prior algorithms

that use color (top) and to algorithms that do not (bottom). The algorithms are initialized with transformations that are perturbed away from

the true pose in the rotational component (left) and the translational component (right). The plot shows the median RMSE at convergence

(bold curve) and the 40%-60% range of RMSE across trials (shaded region). Lower is better. Our algorithm outperforms all prior methods.

Name Size (m2) # of laser pts. # of RGBD frames

Apartment 69.17 18.7M 31.9K

Bedroom 21.01 10.9M 21.9K

Boardroom 60.90 17.4M 24.3K

Lobby 86.46 14.5M 20.0K

Loft 34.74 14.5M 25.3K

Table 1. Dataset statistics. Dense ground-truth surface models

were acquired for five real-world scenes using an industrial laser

scanner. The scenes were then scanned with an RGB-D camera.

7. Results

7.1. Colored point cloud registration

We begin by evaluating the colored point cloud registra-

tion algorithm presented in Section 4. We compare the algo-

rithm to three alternative algorithms for colored point cloud

alignment. The first two are ICP variants that embed the

point clouds in a higher-dimensional space: the algorithm

of Men et al. [28] (referred to as Color 4D ICP) and the

algorithm of Johnson et al. [21] (referred to as Color 6D

ICP). The third is the algorithm of Korn et al. [27], as im-

plemented in the Point Cloud Library [32] (referred to as

Generalized 6D ICP).

The first evaluation was performed on four sequences

from the TUM RGB-D dataset: fr1/desk, fr1/desk2,

fr1/room, and fr3/office [37]. We split the RGB-D se-

quences into segments and construct colored fragments us-

ing volumetric integration [6] with the ground truth camera

poses provided in the dataset. This gives us colored point

clouds with known relative poses. We tested registration al-

gorithms on pairs of point clouds that overlap by at least

30%. To evaluate the accuracy of the different algorithms

as a function of the initial pose, we initialized them in two

regimes. In the first, the rotational component of the initial

transformation was perturbed away from the true pose. In

the second, the translational component was perturbed. The

results are shown in Figure 2 (top). Our algorithm is more

accurate when the initialization is near the true pose, and is

much more robust to poor initialization.

For completeness, we also evaluate against registration

algorithms that do not use color. The results are shown in

Figure 2 (bottom). PCL ICP is the Point Cloud Library

implementation of the ICP algorithm [32]. Sparse ICP

is the algorithm of Bouaziz et al. [2]. We tested these algo-

rithms with both point-to-point and point-to-plane distance

measures [31]. Generalized ICP is a Point Cloud Li-

brary implementation of the algorithm of Segal et al. [34].

FGR is the state-of-the-art global registration algorithm of

Zhou et al. [47]. Our geometric term refers to our re-

sults using only the geometric term (σ = 1). Ours refers to

our results using the full optimization objective. The differ-

ence between Ours and Our geometric term shows

the benefit of using color information. The optimal value of

σ is found by grid search, as detailed in the supplement.

Our second evaluation was conducted on the Cathedral

scene from the multimodal IMPART dataset [26]. The

dataset provides seven colored LiDAR scans of a large out-
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Figure 3. Seven colored LiDAR scans of the Cathedral scene [26]

are aligned using our algorithm.

door scene, captured by a FARO laser scanner. The density

of the points is not uniform. The results on this dataset are

analogous to Figure 2 and are provided in the supplement.

If the initial perturbation is more than 35 degrees in rota-

tion or 4 meters in translation, the other methods begin to

fail (RMSE>0.25m). In contrast, our algorithm aligns the

scans tightly even when the initial perturbation is 40 degrees

in rotation and 6 meters in translation.

The running time of the different algorithms is reported

in Table 2. Runtime was measured on an Intel Core i7-

5960X CPU with 8 parallelized threads. Our algorithm is

faster than all other local registration algorithms. We hy-

pothesize that the optimization converges faster due to the

coarse-to-fine scheme and the photometric term.

Color 4D ICP [28] 3.64

Color 6D ICP [21] 3.66

Generalized 6D ICP [27] 16.11

Generalized ICP [34] 3.54

PCL ICP (point to point) [32] 2.43

PCL ICP (point to plane) [32] 1.77

Sparse ICP (point to point) [2] 8.96

Sparse ICP (point to plane) [2] 9.41

FGR∗ [47] 0.37

Ours 0.70

Table 2. Average running time (seconds). ∗FGR is a global regis-

tration algorithm that operates on fixed correspondences.

7.2. Scene reconstruction

We now evaluate the enhanced scene reconstruction sys-

tem described in Section 5. Our first baseline is the sys-

tem of Choi et al. [4] without our enhancements (referred

to as CZK). Our second baseline is the ElasticFusion

system of Whelan et al. [41], a state-of-the-art real-time

pipeline. Note that neither our system nor CZK operate in

real time, so ElasticFusion is at a disadvantage.

We begin with an evaluation on the existing SceneNN

dataset [19]. This dataset does not provide ground-truth

models, so our evaluation here is qualitative. We randomly

sample two sequences from the dataset and reconstruct
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Figure 4. Reconstruction of two randomly sampled scenes from

the SceneNN dataset [19]. Prior systems suffer from inaccurate

surface alignment and produce broken geometry. Our system pro-

duces much cleaner results.

them with the three pipelines. The results are shown in Fig-

ure 4. For the purpose of visualization, Poisson surface re-

construction is applied to the output of ElasticFusion

to create a mesh [23]. Our system produces the best quali-

tative results on both randomly sampled scenes.

We now perform a quantitative evaluation on the dataset

presented in Section 6. Let the precision of a reconstructed

model be the percentage of reconstructed points that have a

ground-truth point within distance τ . Let the recall of a re-

constructed model be the percentage of ground-truth points

that have a reconstructed point within distance τ . We use

τ = 20 millimeters. Our primary measure is the F-score,

the harmonic mean of precision and recall:

F =
2 · precision · recall

precision + recall
.

The F-score achieved by each system on each of the five

scenes is reported in Table 3. Our system achieves an aver-

age F-score of 59.69%, versus 46.49% achieved by the CZK

baseline. The reconstructions produced by our system are

visualized in Figure 5.

8. Conclusion

We revisited the problem of colored point cloud regis-

tration and presented an algorithm that optimizes a joint
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Figure 5. Scenes from the presented dataset, reconstructed using the presented system.

photometric and geometric objective. Our formulation uni-

fies RGB-D image alignment and colored point cloud reg-

istration. Our approach outperforms prior registration algo-

rithms. As an application, we used the presented approach

to significantly improve the accuracy of a state-of-the-art

scene reconstruction system. To quantitatively validate the

results on real-world data, we created a dataset of five in-

door scenes with accurate ground-truth models. Our dataset

and reference implementations will be made publicly avail-

able.

EF [41] CZK [4] Ours

Apartment 7.36 55.63 61.68

Bedroom 13.21 46.17 75.25

Boardroom 16.41 49.41 50.43

Lobby 7.35 35.37 48.02

Loft 30.60 45.88 63.05

Mean 14.99 46.49 59.69

Table 3. Results on the presented dataset. F-score in percentage

points.
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