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Abstract

The conventional methods for estimating camera poses

and scene structures from severely blurry or low resolution

images often result in failure. The off-the-shelf deblurring

or super-resolution methods may show visually pleasing re-

sults. However, applying each technique independently be-

fore matching is generally unprofitable because this naı̈ve

series of procedures ignores the consistency between im-

ages. In this paper, we propose a pioneering unified frame-

work that solves four problems simultaneously, namely,

dense depth reconstruction, camera pose estimation, super-

resolution, and deblurring. By reflecting a physical imag-

ing process, we formulate a cost minimization problem and

solve it using an alternating optimization technique. The

experimental results on both synthetic and real videos show

high-quality depth maps derived from severely degraded im-

ages that contrast the failures of naı̈ve multi-view stereo

methods. Our proposed method also produces outstand-

ing deblurred and super-resolved images unlike the inde-

pendent application or combination of conventional video

deblurring, super-resolution methods.

1. Introduction

Structure from motion or multi-view stereo (MVS) is a

very interesting problem in computer vision that aims to

determine the underlying 3D scene structure and camera

configuration from multiple images. Despite the inherent

difficulty of this inverse problem, contemporary algorithms

show a satisfactory performance when applied on public

datasets [10, 20].

Despite their encouraging achievements, some limita-

tions prevent the aforementioned methods from being ap-

plied in highly realistic scenarios. Among these challenges

are the blurs resulting from camera motion [14, 17], which

becomes serious when using handheld cameras or cameras

attached to moving vehicles. Blur operation acts differently

on each pixel according to the scene depth and camera mo-

Figure 1: Comparison of depth estimation and image

restoration results for blurry, low-resolution images. The

left column shows the estimated latent images, while the

right column shows their corresponding depth maps. The

images from top to bottom are obtained via (a) a simple

bicubic interpolation, (b) the independent use of deblur-

ring [30] after applying the super-resolution algorithm [25],

and (c) the proposed method, respectively. The depth maps

for the first two rows are estimated via baseline variational

depth estimation.

tion, and it breaks brightness constancy assumption among

consecutive frames.

Low-resolution (LR) input images also often affect

stereo matching accuracy [5, 15], because low-quality cam-

eras are frequently used considering the limitations in cost

or space for some applications. However, even in a high-

resolution (HR) image, the actual scene resolution is spa-

tially uneven and dependent on depth because of the per-

spective projection.

The aforementioned problem becomes especially chal-

lenging when the image frames are simultaneously cor-

rupted by blur and low resolution. This problem can be

directly addressed by applying the super-resolution [24] or
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Figure 2: Comparison of the proposed blur model and the conventional blur model used in [14, 17]. Both models illustrate the

blur procedures for the frame at time t, where s represents the time of the previous frame. The proposed model approximates

the intermediate images Iτ ’s during the shutter time using the interpolated camera poses Pτ ’s and depth maps Dτ ’s, while

the conventional model depends on a single optical flow map from s to t, us,t (e.g. uτ1,t is used to approximate Iτ1 ). The

deblurred images with the overlaid blur kernels of each model are also presented for comparison. Although both images are

obtained using the ground-truth depth map and camera poses, the image obtained using the conventional blur model exhibits

more artifacts because of inaccurate blur kernels.

deblurring method [30] before matching, which may pro-

duce visually pleasing images. However, the results ob-

tained using this approach are worse than those obtained

using original images in terms of matching as shown in Fig-

ures 1 (a) and (b), because single-image super-resolution or

deblurring algorithms ignore and break the brightness con-

stancy among neighboring frames.

In this study, we consider the four inter-related prob-

lems of camera pose estimation, dense depth reconstruction,

deblurring, and super-resolution as a whole by formulat-

ing them as a unified energy function. To the best of our

knowledge, this study is the first to solve the four afore-

mentioned problems jointly in a single framework. Our

proposed method clearly outperforms the independent use

of existing techniques for each problem. By exploiting the

multi-view geometry explicitly, our proposed method can

handle more general blur kernels that may result from cam-

era rotations and forward motions.

2. Related Works

Few researchers have attempted to perform image

matching on blurry images. Portz et al. [17] proposed an

optical flow method that uses a blur-aware matching pro-

cedure originally introduced in tracking methods [12, 16].

Based on the assumed commutativity of blur operations,

this method blurs the input images with the kernels of one

another instead of deblurring them using their own kernels.

Lee et al. [13, 14] extended this idea and proposed sev-

eral methods for handling blurred input images in camera

pose estimation [13] and dense stereo matching [14]. How-

ever, given that scene depth and camera motion can gener-

ate the exact blur kernels only when both values are correct,

estimating these parameters separately would be inappro-

priate. Moreover, the aforementioned works [14, 17] are

limited by a simple assumption that the blur kernel can be

modeled by using linear optical flow vectors between con-

secutive frames.

By contrast, our proposed blur model (Section 3) cov-

ers more general camera motions by adopting the linear

model in an Lie algebra se (3)space [6]. The blur kernel

is explicitly approximated by interpolating the camera path

and depth maps between adjacent frames. Figure 2 shows

the difference between the conventional and proposed blur

models.

Recent works [21, 32] have attempted to solve stereo

matching and image deblurring jointly using the same blur

model as the proposed one. However, both of these meth-

ods depend on additional or external data. The method pro-

posed by Sellent et al. [21] can only handle stereo video se-

quences, in which per-frame depth cues are available. Zhen

and Stevenson [32] proposed a method for single-view im-

age sequences, but this method requires additional data, in-

cluding inertial measurements and sharp noisy frames.

Some methods solve the super-resolution and MVS

problems in a single framework [5, 15], which is shown to

increase the accuracy of both the restored images and depth

maps. However, the multi-frame super-resolution frame-

work used in [5, 15] only works when accurate matching
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information is available in sub-pixel units. Therefore, these

methods cannot jointly estimate super-resolved images and

depth maps for blurry input images because of the large er-

rors in correspondences.

Some researchers proposed to solve super-resolution and

deblurring jointly [23, 4]. The method proposed by Bascle

et al. [4] relies on external tracking information to estimate

the blur kernel using the trajectory of the object and es-

tablish the sub-pixel correspondence for multi-frame super-

resolution. However, this method is applicable only on

some objects, which should be easy to track, not on the en-

tire image. Takeda and Milanfar [23] proposed an intriguing

method to handle a spatio-temporal super-resolution and de-

blurring problem in a spatially invariant 3D deconvolution

framework. However, this method cannot handle large blur

kernels because the size of motion vectors between consec-

utive frames is limited by a few pixels.

3. Modeling Imaging Process

We examine an image sequence captured by a single

moving camera where the target scene is assumed to be

static to enable stereo matching and camera pose estima-

tion. In this study, an image is defined as a mapping that

uses a 2D pixel coordinate vector as input and a 3D color

vector as output (in the case of typical RGB images). The

color value of the pixel x = [x, y]
T

of image I is given by

I (x). When the query 2D coordinate has non-integer val-

ues, the color values are interpolated using the color values

of the neighboring grid points. We apply bilinear interpola-

tion throughout this paper.

In the following, the input images are denoted by Bt’s,

with t representing the time when the images are captured.

An acquired image Bt is assumed to be the accumulation

of the sensor output from the opening (to) to the closing

(tc = t) of the camera shutters. We model this capturing

process by assuming the presence of ideal clean and HR

images during the shutter time. By denoting the ideal im-

ages at time τ as Iτ , a real image Bt is considered as the

downsampled version of the integral of Iτ as follows:

Bt =
1

tc − to

(
∫ tc=t

to

Iτdτ

)

↓, (1)

where the down arrow represents the downsampling pro-

cess.

A blur is generated for the static scene because of the

camera movement during the shutter time. Therefore, the

images Iτ ’s change over time. However, the difference be-

tween Iτ and It, clean HR image at time t, is not large

because such variation is caused by the slight camera mo-

tions that take place within a short period (less than tc− to).

Therefore, Iτ can be approximated by warping It, if the rel-

ative poses of the cameras and the scene structure are both

known.

We denote the pose of the camera and the depth map of

the image It by Pt and Dt, respectively, and then denote the

time-invariant camera intrinsic matrix by K. Using these

notations, the warping process is expressed as follows:

Iτ (x) ≈ It
(

W τ→t (x)
)

, (2)

where the function W τ→t (·) computes the warped pixel

position from the camera Pτ to Pt, and can be expressed

as follows:

xt = W τ→t (x) (3)

= i2

(

Ki3

(

(Pt)
−1

Pτh3

(

1

Dτ (x)
K−1h2 (x)

)))

,

where functions i2 (·) and i3 (·) convert the homogeneous

coordinates into inhomogeneous coordinates in the 2D and

3D spaces, respectively, while h2 (·) and h3 (·) convert the

inhomogeneous coordinates into homogeneous coordinates

in the same spaces.

The integral in Equation (1) is approximated using a fi-

nite sum of images. The insertion of the image warping

Equation (2) generates the following:

Bt ≈ Ψt ◦ It, (4)

(Ψt ◦ I) (x) =

(

1

M

M
∑

m=1

I
(

W τm→t (x)
)

)

↓, (5)

where τm = (m/M) (tc − to) + to and M controls the

degree of discretization. We define Ψt (·) as the operator on

a general image I to approximate the degradation resulting

from the capturing process at time t. Figure 2 illustrates the

concept of this blur operation.

In practice, the values of Dτm
′s and Pτm

′s are approxi-

mated using Dt, Pt, and Ps, where s represents the time

of the previous frame. Pτm is sampled from the inter-

polated camera path between Pt and Ps. The interpola-

tion is conducted in the Lie algebra se (3)space [6]. Given

∆Pt,s = log
(

Pt · (Ps)
−1
)

, the interpolation is performed

as follows:

Pτm = exp

(

τm − s

t− s
·∆Pt,s

)

·Ps, (6)

where log and exp denote the logarithmic and exponen-

tial maps between the Lie group SE (3)space, where the

actual camera pose matrices resides, and the Lie algebra

se (3)space [6]. Note that the proposed method might work

unreliably when the camera motion between the consecu-

tive frames is too complex to be approximated by the sim-

ple interpolation scheme in Equation (6), for example, when

the camera vibrates with a frequency much higher than the

camera frame rate.
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After obtaining the camera pose at time τm, the depth

map Dτm can be approximated by warping the closest depth

map Dt. The warped depth value can be computed by re-

projecting Dt to the world coordinate and then projecting

this map the virtual camera at Pτm . The projected value

is actually the depth of the point from Pτm . The capturing

operator Ψt (·) is only dependent on Dt, Pt, and Ps.

4. Unified Energy Formulation

This study aims to estimate the latent images It’s with

the corresponding depth maps Dt’s and camera poses Pt’s

from a blurred, LR image sequence, Bt’s. We assume that

the intrinsic parameters K are previously known. Given that

the target variables are interrelated, the proposed method

estimates them altogether by optimizing a single unified en-

ergy function.

The total energy function E is defined by the sum of en-

ergy functions, Et, which is defined for each single frame

at time t. Et comprises three terms, with each term having

a unique physical meaning:

E =
∑

t

Et, (7)

Et = Em
t + Es

t + Er
t , (8)

where the matching, self-consistency, and regularization

terms are presented from left to right.

4.1. Matching term

The first term relates the images from the consecutive

frames based on the scene structure and camera motion.

Given the static target scene, the images warped into a spe-

cific frame must coincide if the warping is based on correct

depth maps and camera poses.

In the proposed matching term, we match the input

blurred LR image, Bt, with the latent images of the neigh-

boring frames, Is’s, where s ∈ N (t) denotes the time index

for the neighboring frames of t. Therefore, an additional

one-way blur operation for matching is performed, where

Is’s must be blurred and downsampled by the capturing op-

erator of Bt. The matching term is defined as follows:

Em
t =

∑

s∈N(t)

∑

x∈Ωts

∥

∥Bt (x)−Ψt ◦ Is
(

W t→s (x)
)∥

∥

1
.

(9)

The matching term only considers the pixels in the set Ωts,

which represents the visible area of the image domain at

time t in terms of the camera at s. Section 5.4 discusses how

this area is determined. We use L1-norm, which generates

reliable results and is highly robust to the presence of noise

and occlusion [26].

In terms of MVS matching, the proposed methods try to

determine the plausible scene structure and camera poses

that satisfy the brightness constancy assumption by mini-

mizing the matching term. The same matching term is also

used as the evidence of super-resolution for restoring Is’s

from LR observations based on the estimation of the latent

images.

4.2. Selfconsistency term

The self-consistency term Es
t is derived from the imag-

ing process in Equation (5) as follows:

Es
t = λs

∑

x

‖Bt (x)−Ψt ◦ It (x)‖1, (10)

which makes the solution consistent with the observation.

Based on the depth maps and camera poses, the capturing

operator Ψt (·) is constant and the equation is similar to the

conventional data term in the extant deblurring methods.

The parameter λs controls the strength of this constraint.

4.3. Regularization term

Although the matching and self-consistency terms can

compensate each other, they both rely on possibly noisy in-

put images. The additional term regularizes the solutions

to suppress the errors. In the proposed framework, we use

typical total variation (TV) priors for the depth maps and

latent images. Although originally introduced for denois-

ing signals, TV priors has been frequently used in address-

ing image deblurring [29], super-resolution [9], and stereo

matching problems [18].

The TV priors used in the proposed method is defined as

follows:

Er
t = λd

∑

x

gt (x) ‖∇Dt (x)‖2 + λi

∑

x

‖∇It (x)‖2,

(11)

where ∇I (x) represents the gradient value of image I

at pixel x. The weighting function gt (x) is used for edge-

preserving smoothness with the same definition as proposed

in [11]. We use the magnitude of L2-norm to make the TV

priors isotropic while preserving the discontinuities in the

images and depth maps. The parameters λd and λi deter-

mine the degree of regularization on the depth maps and

latent images, respectively.

5. Optimization

The optimization of Equation (7) is a complex process

that serves as a function of many variables (Dt’s, Pt’s, and

It’s for all frames). This process is also highly nonlinear

because of the warping operations. Therefore, instead of

obtaining the global optimum, we attempt to secure a favor-

able approximated solution by adopting several strategies.

At the core of this solution is a divide-and-conquer strategy

or an iterative and alternating optimization of variables. The

proposed framework uses two-phase iterations in which the
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Algorithm 1 The overall optimization procedure

% initialization

for t = 1 to T do

Initialize Dt, Pt by minimizing Equation (15)

end for

% main loop

for iteration = 1 to max iter do

% first phase : update images

for t = 1 to T do

update It by minimizing Equation (14)

end for

% second phase : update depths and cameras

approximate Equation (7) using Equation (12)

update Dt’s and Pt’s by using IRLS

end for

structures (cameras and depth maps) and latent images are

alternatingly updated.

Algorithm 1 presents the overall optimization procedure.

T denotes the number of frames in the input image se-

quence, while max iter denotes the number of iterations set

by users. The solutions almost converge after three itera-

tions, which is the chosen max iter value of the proposed

method.

5.1. Update of the depth maps and camera poses

In the first phase of each iteration, we optimize the vari-

ables on the scene structure, Dt’s and Pt’s, with the fixed

latent images, It’s. The energy function then becomes sim-

ilar to that of the variational framework for optical flow [22]

and we follow the optimization strategy employed in [22].

At each iteration of this iterative optimization, the functions

in the L1-norm for Equations (9) and (10) are approximated

using the first-order Taylor expansion at the current solu-

tion.

The linear approximation is conducted by calculating the

partial derivatives of the warping equation in terms of indi-

vidual depth value and camera pose as parameterized by the

six-dimensional vector on se (3). Suppose that the current

solution of our iterative algorithm lies at a point in the solu-

tion space, D0
t , P0

t , and P0
s. The backward image warping

procedure from the frame at time s to t can be approximated

as follows:

I0s (x) = Is
(

W t→s (x)
)∣

∣

Dt=D0

t
,Pt=P 0

t
,Ps=P 0

s

,

Is (W
t→s (x))

= I0s (x) +
∂I0

s

∂u

(

∂u
∂Dt(x)

∆Dt (x) +
∂u
∂εt

εt +
∂u
∂εs

εs

)

,

(12)

where u is the warping-generated flow that serves as a func-

tion of the depth and camera parameters. The partial deriva-

tives are actually Jacobians [6].

∆Dt (x), ǫt, and ǫs are variables that contribute to the

solution as follows:

Dt (x) = D0
t (x) + ∆Dt (x) ,

Pt = exp (εt)P
0
t ,

Ps = exp (εs)P
0
s. (13)

Given that all terms in the L1-norm have been linearized,

these variables can be efficiently estimated using the simple

iteratively reweighted least square (IRLS) method [19].

5.2. Update of the latent images

The latent images are optimized in the second phase of

the outer loop. The L1-norm functions for the target image

It in the matching term, Equation (9), provides information

about the different blur and sampling of latent image It.

The self-consistency term in Equation (10) and the smooth-

ness imposed by the regularization term in Equation (11)

are considered to provide a frame-by-frame representation

of the energy function on It as follows:

∑

s∈N(t)

∑

x∈Ωts

‖Ψs ◦ It (W
s→t (x))−Bs (x)‖1

+λs

∑

x

‖Ψt ◦ It (x)−Bt (x)‖1

+λi

∑

x

‖∇It (x)‖2,

(14)

which is optimized by finding the most plausible values that

satisfy these competing constraints simultaneously.

We apply bilinear interpolation to sample the color val-

ues of non-grid points in image warping, and then apply

simple box filtering for downsampling in the capturing op-

eration. This process makes the warping and capturing op-

erations act as linear operators on the latent image after fix-

ing the depth maps and camera poses. Consequently, the

Equation (14)denotes the sum of L1-norm and L2-norm on

the linear functions of It that can be easily optimized using

IRLS [19].

5.3. Initialization

We initialize the camera poses of the first two frames us-

ing a structure from motion software [27, 28]. After deter-

mining the camera poses of the first two frames, the depth

maps Dt’s and remaining camera poses Pt’s can be ini-

tialized by sequentially minimizing the following equation

frame-by-frame in a coarse-to-fine manner [22]:

Einit
t =

∑

x

∥

∥(Ψt ◦Bs)
(

W t→s (x)
)

−Ψs ◦Bt (x)
∥

∥

1

+ λd

∑

x

‖∇Dt (x)‖2, (15)

where s denotes the time of the previous frame. Given that

the estimated depth maps have LR, we upsample these maps
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Table 1: The performance comparison of deblurring performance for synthetic datasets. All the PSNR(dB) values are aver-

aged for the whole frames in each sequence.

Methods Dolls Reindeer InteriorScene [1] WorkDesk [2] avg.

Bicubic interpolation (Bic.) 23.52 29.54 26.82 20.45 25.08

Bic. + Lee and Lee[14] 11.17 22.52 15.19 10.88 14.94

Timofte et al. [24] + Lee and Lee[14] 10.60 16.71 13.29 9.74 12.59

Wang et al. [25] + Lee and Lee[14] 11.07 21.44 15.08 10.86 14.61

Bic. + Xu et al. [30] 22.47 26.88 26.43 19.77 23.89

Timofte et al. [24] + Xu et al. [30] 19.68 22.66 23.52 17.71 20.89

Wang et al. [25] + Xu et al. [30] 22.62 27.00 26.40 19.71 23.93

Bic. + Kim and Lee[11] 25.96 31.03 28.55 24.23 27.44

Timofte et al. [24] + Kim and Lee[11] 22.41 24.20 25.82 20.51 23.23

Wang et al. [25] + Kim and Lee[11] 26.11 31.56 28.65 24.18 27.63

Kim and Lee[11] + Wang et al. [25] 25.56 29.86 28.39 23.84 26.91

Xu et al. [30] + Wang et al. [25] 21.24 24.10 24.82 18.33 22.12

Proposed(w/o SR) + Bic. 27.33 31.11 22.48 22.17 25.77

Bic. + Proposed(w/o SR) 26.92 30.97 27.73 24.71 27.58

Proposed 28.39 32.48 29.06 25.29 28.81

Table 2: Depth and camera pose estimation performance of

synthetic datasets. The errors are measured using PSNR and

relative errors (rel.) for depth, and absolute trajectory error

(eate) for pose [8]. All errors are averaged for the whole

frames in each sequence.

Datasets Methods
Depth errors Pose errors

PSNR(dB) rel. traj.(eate)

Dolls [10]

Bic. + Lee et al. [13] - - 0.1220

Bic. + Lee and Lee [14] 19.76 0.6700 -

Bic. + Baseline 41.79 0.0560 0.0046

[25] + [30] + Baseline 40.51 0.0676 0.0028

[25] + [11] + Baseline 41.70 0.0568 0.0078

Proposed(w/o SR) + Bic. 43.47 0.0396 0.0005

Bic. + Proposed(w/o SR) 43.50 0.0375 0.0011

Proposed 45.37 0.0336 0.0027

Reindeer [10]

Bic. + Lee et al. [13] - - 0.0107

Bic. + Lee and Lee [14] 23.00 0.4982 -

Bic. + Baseline 37.79 0.1084 0.0021

[25] + [30] + Baseline 37.23 0.2026 0.0022

[25] + [11] + Baseline 37.72 0.1099 0.0036

Proposed(w/o SR) + Bic 36.52 0.1321 0.0005

Bic. + Proposed(w/o SR) 37.41 0.1143 0.0005

Proposed 37.99 0.1055 0.0012

InteriorScene [1]

Bic. + Lee et al. [13] - - 1.9355

Bic. + Lee and Lee [14] 23.15 0.4641 -

Bic. + Baseline 30.82 0.1647 0.1548

[25] + [30] + Baseline 30.93 0.1627 0.1288

[25] + [11] + Baseline 30.41 0.1812 0.0923

Proposed(w/o SR) + Bic 21.26 0.5253 0.0974

Bic. + Proposed(w/o SR) 30.19 0.1802 0.0281

Proposed 31.28 0.1617 0.1461

WorkDesk [2]

Bic. + Lee et al. [13] - - 2.8334

Bic. + Lee and Lee [14] 26.01 0.4411 -

Bic. + Baseline 36.85 0.0949 0.1392

[25] + [30] + Baseline 36.23 0.1057 0.1950

[25] + [11] + Baseline 30.82 0.2479 0.4953

Proposed(w/o SR) + Bic 36.16 0.1031 0.3481

Bic. + Proposed(w/o SR) 39.90 0.0544 0.0914

Proposed 38.13 0.0781 0.5048

to match the resolution of the target latent images, and then

begin the main loop of the optimization. We adopt a simple

bicubic interpolation method for the upsampling.

5.4. Occlusion Handling

Although the use of L1-norm for the matching term in

Equation (9) makes the proposed method robust to exis-

tence of occlusion, modeling the visible area in Ωts can

help generate precise depth values around the discontinu-

ities. Therefore, we update the visible area Ωts whenever

the depth maps and camera poses are updated. Given the

updated depth maps and camera poses, we update Ωts as

follows:

Ωts = {x |Dt (x) > Dt (y) , ∀y ∈ Θts (x)} , (16)

where Θts represents the set of pixels in the camera at time

t that fall in the same area after warping.

Θts (x) =
{

y
∣

∣

∣

∣W t→s (y)−W t→s (x)
∣

∣ ≤ 0.5
}

. (17)

6. Experimental Results

We test the validity of our proposed method on synthetic

and real datasets. For comparison, we use the simple varia-

tional matching method as the baseline. This method solves

the same optimization problem as the proposed method, ex-

cept that the capturing operations are missed in the energy

terms and the images are fixed to input images.

The values of some parameters are empirically deter-

mined. The proposed algorithm converges to favorable so-

lutions when max iter is 3 and M is 50. We use a large value

of λs (30) for all datasets to provide strong constraints on

the solutions. We tune the value of λd between 8 to 10 and

the value of λi between 0.3 to 0.6 based on the dataset. We

set the upscale factor of the method to 2.

Our proposed framework is limited by its computational

complexity. Specifically, we spend approximately five
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(a) Ground truth (b) Bic. + baseline (c) Bic. + [14] (d) Proposed

Figure 3: Comparison of the depth maps and latent images of synthetic datasets. Each pair of rows shows results on Dolls [10],

Reindeer [10], InteriorScene [1], and WorkDesk [2] dataset from top to bottom .

hours to process 10 frames of 320×240 images in our Mat-

lab implementation using a quad-core 3.2GHz CPU. This

complexity may be addressed by running many parts of the

algorithm on GPU in parallel.

6.1. Synthetic datasets

No public datasets provide blurry LR images with cor-

responding ground-truth latent images, depth maps, and

camera poses. The desired datasets can be generated by

synthesizing a simulated blur sequence using the Middle-

bury stereo datasets [10]. Given two images with ground-

truth depth maps, the images between these two viewpoints

are interpolated by assuming an imaginary camera path be-

tween the two reference views. Afterward, with a preset

imaginary shutter time, the blurry images in each frame

are approximated by summing up the intermediate images

while the shutters are open. Similarly, we can generate a

more realistic dataset using Blender [3]. The intermediate

images for these datasets are accurately rendered by using

full 3D models. Figure 3 presents examples of synthesized

datasets with their corresponding experimental results.

Table 2 and Table 1 present the quantitative compari-

son results. Table 2 shows the quantitative results of depth

and camera pose estimation, while Table 1 compares the

deblurring results in terms of peak signal-to-noise ratio

(PSNR). The depth and image estimation errors are mea-

sured by comparing the reconstructed results with the clos-

est intermediate sharp ground-truth ones (followed by scal-

ing to address scale ambiguity for the case of depth maps).

When we compute the depth errors for Dolls and Reindeer

datasets [10], we cropped the depth maps to be the 70%

of original size at image center to ignore invalid regions

around image boundary introduced by warping.

The third, fourth, and fifth rows of Table 2 show that

using per-frame super-resolution and deblurring indepen-

dently before matching may degrade the stereo matching

performance as expected. The method proposed by Lee and

Lee [14] and Lee et al. [13] performs worse than the base-

line despite employing blur-aware matching. This result

may be attributed to the fact that the degree of blur in our

experiments is much more severe than that in the datasets

used in [13, 14] and, furthermore, the scene structures in our

datasets are more complex than the nearly planar structures

in [13, 14]. The pose estimation performance of the pro-

posed method seems less impressive compared to the depth

estimation performance. However, comparing the ground-

truth trajectory to the restored camera trajectory itself can

be problematic for blurry input images because it is am-

biguous to specify a camera pose during the shutter time,

especially when the the size of blur kernel is large as in In-
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(a) Bicubic interpolation (b) [30] + [24] (c) HR images + [7] (d) [25] + [11] (e) Proposed

Figure 4: Comparison of the deblurring results on real datasets.

teriorScene [1] and WorkDesk [2] datasets. By contrast,

the depth estimation errors are more significant because we

can find the closest intermediate ground-truth depth map for

a estimated depth map without ambiguity.

Table 1 shows that the proposed method outperforms the

combination of super-resolution methods [24, 25] and de-

blurring method [14, 30, 11], which implies that jointly esti-

mating inter-related problems is effective in terms of image

restoration. The method proposed in [11] also joinlty es-

timates the pixel correspondences (optical flow) and latent

images (deblurring) from a video sequence. Still, Table 1

shows that leveraging multi-view constraints for deblurring

problem and jointly solving it with super-resolution is more

profitable.

The use of super-resolution clearly improves the accu-

racy of image restoration and depth estimation except for

the case of WorkDesk [2] dataset. The surfaces in this

dataset are weakly-textured and repeated, making the pixel-

wise matching and super-resolution results less reliable.

6.2. Real datasets

For the real datasets, we use the proposed approach

in [31] for camera calibration. The shutter time and frames

per second (FPS), both of which are necessary for interpo-

lating the camera path and for simulating blurs for each

frame, are obtained as metadata by taking an image se-

quence using commercial cameras.

Figure 4 presents the comparison results of our pro-

posed approach with those of other image restoration meth-

ods [30, 24, 7, 25, 11]. Given that the images are blurred by

real camera motions, we generate LR images by downsam-

pling them manually to compare the super-resolution per-

formances of these methods. The proposed method clearly

outperforms the others even if the results of [7] are obtained

using the original HR images. Some characters become

recognizable and the textures representing the materials in

the scene are well-restored in our results. Figure 4b also

shows that performing the super-resolution after deblurring

results in exaggeration of undesired artifacts, explaining the

low PSNR values of ’super-resolution after deblurring’ ap-

proaches in Table 1.

7. Conclusion

We proposed a pioneering framework for jointly solv-

ing four inter-related computer vision problems, including

dense depth reconstruction, camera pose estimation, super-

resolution, and deblurring. We jointly modeled these prob-

lems using an energy function that is derived by revisiting

the blurry image formulation. Our model allows more gen-

eral camera motions and nonlinear blur kernels than the pre-

viously proposed blur-aware matching methods. Our ex-

periments show that the proposed method outperforms the

other related methods that only address one or two target

problems in terms of depth maps and latent images.
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