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Abstract

This paper addresses the problem of estimating the ge-

ometric transformation relating two distinct visual modali-

ties (e.g. an image and a map, or a projective structure and

a Euclidean 3D model) while relying only on semantic cues,

such as semantically segmented regions or object bound-

ing boxes. The proposed approach differs from the tradi-

tional feature-to-feature correspondence reasoning: start-

ing from semantic regions on one side, we seek their pos-

sible corresponding regions on the other, thus constraining

the sought geometric transformation. This entails a simul-

taneous search for the transformation and for the region-

to-region correspondences. This paper is the first to derive

the conditions that must be satisfied for a convex region,

defined by control points, to be transformed inside an el-

lipsoid. These conditions are formulated as Linear Matrix

Inequalities and used within a Branch-and-Prune search to

obtain the globally optimal transformation. We tested our

approach, under mild initial bound conditions, on two chal-

lenging registration problems for aligning: (i) a semanti-

cally segmented image and a map via a 2D homography;

(ii) a projective 3D structure and its Euclidean counterpart.

1. Introduction

Estimating a geometric transformation relating two over-

lapping instances of a scene, be it images or 3D point

clouds, typically relies on establishing cross-instance (e.g.

2D-2D, 2D-3D or 3D-3D) correspondences of low-level

features such as points [38], lines [6], planes [18], sky-

lines [35], or scene constraints [22]. The success of es-

tablishing such correspondences may be undermined by the

absence of such features or by the difficulty of matching

them. Such difficulty would be high in case of very different

modalities (e.g. matching an image and a map). Methods,

such as [13, 32], do not require initial correspondences yet

they rely on detecting such low-level features.

Mainly spurred by significant advances in Machine

Learning [21, 20], detecting higher level features (objects,

regions, and their semantic labels) is nowadays reaching

unparalleled levels of performance in a variety of imaging

modalities including 2D images [20], videos [16], and 3D

point clouds [41]. In many applications, the use of tradi-

tional hand-crafted features (such as SIFT) is outperformed

by that of high-level features learned by Neural Networks.

As semantic labels for 2D images and 3D data can be

obtained quite accurately nowadays [23, 24, 48], it is be-

coming particularly appealing to use these for solving geo-

metric problems. Matching high-level features and estimat-

ing the underlying aligning transformation is a challenging

problem that we address in this paper. Supporting transfor-

mation estimation with semantic cues has the potential to

improve the success rate, speed and accuracy of the process.

Owing to their success in many applications, Machine

Learning techniques have been tried to solve a wide range

of problems in Computer Vision, including that of learning

geometric parameters directly from images [12, 45, 44, 25].

This said, attempts towards the latter have only met with

limited success. The results were often not on par with those

of model-based methods. Although model-based transfor-

mation estimation may potentially benefit from semantics,

methods to do so have obtained little attention.

Semantic cues have been successfully exploited to sup-

port several 3D vision tasks such as, keypoint match-

ing [19], 3D reconstruction [10, 39], and robot naviga-

tion [7]. In the context of transformation estimation, the

method in [11] learns and estimates the relative homog-

raphy between a pair of images using deep convolutional

neural networks. For producing a semantic map from

multi-view street-level imagery, [40] considers a homogra-

phy relationship between semantically labeled pixels of the

ground plane in one image and a sub-set in another. These

methods fully rely on the ability of learning methods and

do not provide guaranties on the optimality of the estimated

parameters. In this regard, a global method for uncalibrated

2D-3D alignment was proposed in [31]. The method re-

lies on multi-convex conditions for associating correspond-

ing multi-view 2D pixels and 3D bounding boxes. Yet, that
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approach does not allow one to establish correspondences

between high-level features in both imaging modalities.

In this paper, we address the problem of the globally op-

timal estimation of geometric transformations using only

semantic cues. These features could materialize in the form

of regions with semantic labels or as bounding boxes of

previously detected/known scene parts. Regions of interest

or bounding boxes are represented by polytopes in one in-

stance of the data (the source) and by ellipsoids in the other

instance (the target). Based on this representation, we pro-

pose Linear Matrix Inequality (LMI) conditions that must

be satisfied by a projectively transformed polytope from the

source to lie within an ellipsoid in the target. We also pro-

pose a convex optimization formulation to estimate a cov-

ering ellipsoid around the set of all transformed polytopes

emanating from all possible transformations within given

parameter bounds. The covering ellipsoid, the so-called

Löwner-John ellipsoid, is estimated using the polynomial

Sum-of-Squares (SoS) theory. Unlike the multi-convex for-

mulation of [31] for bounding-box estimation, our covering

ellipsoid estimation problem is purely convex.

Based on the proposed polytope-ellipsoid assignment

conditions, we use parameter bounds to infer correspon-

dences. Correspondences contradicting the semantic cues

or that are geometrically inconsistent are eliminated. Geo-

metrically consistent correspondences not contradicting the

semantic cues are further investigated. Regions in the tar-

get data are shrunk and subdivided leading to new corre-

spondences. These are then used to estimate new param-

eter bounds. A dynamically Branch-and-Prune search tree

is built by recursively repeating this process. The nodes of

the tree are potential correspondences to prune or to investi-

gate. Using some initial bounds on transformation parame-

ters, we applied our approach on two challenging problems:

(i) Image-to-map registration to align an image and a se-

mantic map via a 2D projective homography, (ii) Projective

3D-to-3D registration of an uncalibrated reconstruction.

Image-to-map registration: Registering an image to a

map is a challenging problem in which establishing low-

level feature correspondences is not possible. Exploiting

semantic cues might as well be the only plausible way for

achieving this task. To our knowledge, there exists no glob-

ally optimal method that registers images to maps using

semantic cues. Existing methods perform image localiza-

tion either by image retrieval [37] or by direct learning [44].

These methods are non-optimal and purely data driven. In

our experiments, we push the challenge of image-to-map

registration one step further by not relying on landmarks

(such as unique buildings/objects) for correspondences.

Projective 3D-to-3D registration: When cameras

are uncalibrated, the transformation relating the Structure-

from-Motion (SfM) reconstruction to its Euclidean counter-

part is a 3D projective homography. The projective 3D-to-

3D registration problem may appear whenever a Euclidean

reconstruction and another from uncalibrated SfM need to

be combined. One may attempt to solve this problem in

two steps: camera auto-calibration for projective-to-metric

upgrade followed by Metric-to-Euclidean registration. As

argued in [31], camera auto-calibration methods are known

to be impractical due to their sensitivity to noise, critical

motions, and large variations in the camera parameters. Us-

ing the proposed method, we accurately estimate this trans-

formation by exploiting semantic cues and bounds on cam-

era centers. In this context, our problem is similar to [31].

However, our method performs significantly faster under

the same conditions while obtaining better results.

2. Background and Notations

This section is devoted to an overview of the convex

optimization machinery we employ in our solution to the

problem of optimal transformation estimation. The nota-

tions used throughout the paper are also introduced herein.

For instance, when dealing with matrices, A ≻ 0 (resp.

A ⪰ 0) means that A is a symmetric positive definite (resp.

semidefinite) matrix. Should A be a m × n matrix, we refer

to the upper-left (m−1)×(n−1) block of A by Â. The jth

element of a vector x is denoted by xj .

Linear Matrix Inequalities: Considering A(x) to be a ma-

trix whose entries are affine functions of a vector x, the

problem of finding a realization of x such that A(x) ≻ 0

or A(x) ⪰ 0 is a Linear Matrix Inequality (LMI) feasibility

problem. Minimizing or maximizing a linear cost subject

to LMI constraints is a Semidefinite Programming problem

(SDP). LMI and SDP problems can efficiently be solved us-

ing interior-point methods [3]. Furthermore, when dealing

with convex nonlinear matrix inequalities, Schur’s comple-

ment lemma, a fundamental tool in the theory of LMIs, may

be used to turn such inequalities to equivalent LMIs:

Lemma 2.1 (Schur Complement [14]) For a symmetric

block-partitioned matrix D = [ A B

B⊺ C
] and its Schur com-

plement D/A = C −B⊺A−1B, D ⪰ 0 ⇐⇒ A ⪰ 0,D/A ⪰ 0.

Another important result in this theory is the so-called S-

Procedure: a tool for verifying whether or not one quadratic

inequality is a consequence of another quadratic inequality:

Lemma 2.2 (S-Procedure [43]) Let A0 and A1 be symmet-

ric matrices. z⊺A0z ≤ 0 holds for all z such that z⊺A1z ≤ 0
if there exists λ ≥ 0 such that λA1 ⪰ A0.

Ellipsoids: Without loss of generality, an ellipsoid E in a(d − 1)-dimensional space can be represented by a d × d

matrix Q ⪰ 0 whose (d − 1) × (d − 1) upper-left block Q̂

satisfies Q̂ ≻ 0. Using homogeneous coordinate vectors, in

which points in (d − 1)-space are represented by z ∈ IRd, E
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is defined by E = {z ∶ z⊺Qz ≤ z2d}. One is often interested

in finding the so-called Löwner-John ellipsoid: the tightest

ellipsoid that covers a given set of points:

Definition 2.3 (Löwner-John ellipsoid [17]) Löwner-

John ellipsoid of a compact and non-empty set S ⊆ IR
d

is

the minimum volume ellipsoid E that covers S .

In general, finding the Löwner-John ellipsoid is a NP-

complete problem [29]. However, should S be con-

vex, the volume of an ellipsoid E being proportional to√
det(Q̂−1) [4] (p.48), the Löwner-John ellipsoid can be

obtained by solving the concave maximization problem:

maximize
Q

log det Q̂

s.t. z⊺Qz ≤ z2d, ∀z ∈ S, Q̂ ≻ 0, Q ⪰ 0. (1)

This is again a problem for which the optimal solution can

be obtained using interior point methods [3].

Polynomial Sum-of-Squares: More general results, which

we also use in this work, on the characterization of nonlin-

ear polynomial inequalities, have to do with the theory of

polynomial Sum-of-Squares (SoS).

Definition 2.4 (SoS) Let IR[x] be the ring of polynomials

parameterized by variables x ∈ IR
n

with real valued co-

efficients. A polynomial f(x) ∈ IR[x] is Sum-of-Squares

(SoS), if there exist polynomials fi(x) ∈ IR[x] such that

f(x) = ∑i fi(x)2.

In general, establishing the nonnegativity of polynomials is

NP-hard while testing whether it is SoS is a LMI feasibility

problem involving the so-called Gram matrix of the polyno-

mial. Not all nonnegative polynomials are SoS but, fortu-

nately enough, for some classes, such as quadratic polyno-

mials, nonnegativity and SoS are equivalent:

Theorem 2.5 (Nonnegativity and SoS [15]) A second de-

gree polynomial is nonnegative, iff it is SoS.

Definition 2.6 (Gram matrix [33]) For a second degree

polynomial p(x) ∈ IR[x], the matrix G such that p(x) =
[x⊺ 1]G [x

1
] is a Gram matrix of p(x).

Theorem 2.7 (SoS and Gram matrix [5, 33]) The poly-

nomial p(x) is SoS iff there exists a Gram matrix G ⪰ 0.

The following result (an extension of the S-lemma) allows

one to test the positivity of a quadratic polynomial within

some predefined parameters interval:

Theorem 2.8 (Polynomial within bounds [32]) A second

degree polynomial f(x) is positive within the interval [x, x]
if there exist non-negative scalars σk such that

p(x) = f(x) − n∑
k=1

gk(x)σk (2)

is SoS, for gk(x) = (xk − xk)(xk − xk). More importantly,

as the size of the interval tends to zero, p(x) is guaranteed

to be a SoS, if f(x) is positive within that interval.

3. Transformation Estimation w/ Semantics

The transformation estimation method proposed in this

paper, and outlined in Section 3.3, relies on exploring po-

tential correspondences inferred by bounds on the param-

eters of the sought transformation matrix. At each itera-

tion, bounds on the transformation parameters are consid-

ered. The idea is to characterize the region in the target data

covering all possible mappings of a point or region from

the source data. The resulting regions in the target data are

then checked for semantic consistency against their source

counterparts. If the semantics in the target and source data

are consistent, then the ellipsoids are re-estimated to bet-

ter fit the region/object in the target data and the parame-

ters bounds. The correspondences thus obtained are further

checked for geometric consistency: i.e. whether they may

emanate from applying a common transformation.

3.1. Bounded Geometric Transformations

Consider a transformation matrix T(x) ∈ IRd×r, linearly

parameterized by x ∈ IR
n. With a given T(x), a point

from the source data, with homogeneous coordinate vec-

tor y, is mapped into a point with homogeneous coordinate

vector z ≃ T(x)y in the target data. Typically, registering

the source and target data requires estimating the unknown

parameters x. This, however, requires correspondences be-

tween z and y to be established. In our work, such cor-

respondences are unknown. Instead, we consider that, be-

cause T(x) is dependent on x, the location z corresponding

to some given y is a function of x. Hence, we write:

z(x) = T(x)y. (3)

We define the set Sb of all possible points in the target data

that y can be mapped into when considering all possible

values of x in the interval x ∈ [x, x]
Sb = {z ∶ z ≃ z(x), x ∈ [x, x]}. (4)

We are interested in a convex characterization of the region

defined by Sb. To this end, we seek the Löwner-John ellip-

soid, the ellipsoid with minimum volume, Eb = {z ∶ z⊺Qbz ≤
z2d, z ∈ Sb} where Qb is the solution of (1) when S = Sb.

However, this problem involves nonconvex inequalities of

the form z(x)⊺Qz(x) ≤ zd(x)2 in which both Q and x are

unknown. As an alternative, we propose a relaxed formula-

tion of this problem. Denoting by fb(x) the polynomial

fb(x) = zd(x)2 − z(x)⊺Qz(x) (5)

the problem turns into:

4660



Problem 3.1 Find the smallest ellipsoid Ẽb such that

pb(x) = fb(x) − ∑n
k=1 gk(x)σk is SoS, for gk(x) = (xk −

xk)(xk − xk) and scalars σk, k = 1, . . . , n.

Note that, based on Theorem 2.8, if pb(x) is SoS then

z(x)⊺Qz(x) ≤ zd(x)2 ∀x ∈ [x, x]. The volume of an el-

lipsoid being proportional to

√
det(Q̂−1), we now state the

following proposition without further proof:

Proposition 3.2 Consider the Gram matrix

G(Q, σ1, σ2, . . . , σn) of the polynomial pb(x). The

smallest ellipsoid Ẽb, optimal solution of Problem 3.1, can

be obtained by solving the concave maximization problem:

maximize
Q,σ1,σ2,...,σn

log det Q̂

s.t. G(Q, σ1, σ2, . . . , σn) ⪰ 0,
Q ⪰ 0, Q̂ ≻ 0,
σk ≥ 0, k = 1,2 . . . , n.

(6)

As in (1), the optimization problem (6) can efficiently be

solved using interior-point methods [3].

Now let us assume that several points yi, i = 1,2 . . . , p

from the source data are mapped onto zi(x) = T(x)yi in

the target data. Furthermore, assume that points zi(x), i =
1,2, . . . , p, are correctly assigned to ellipsoids. Then, the

estimation of minimum volume ellipsoid associated with

a yet-to-be-assigned point z(x) = T(x)y may benefit from

these additional constraints to obtain a tighter ellipsoid:

Proposition 3.3 For a given set of point-to-ellipsoid cor-

respondences {(zi(x),Ei)}pi=1, consider polynomials fi(x)
constructed as in (5) from these correspondences and with

known Qi, i = 1,2, . . . p.

Based on the S-procedure Lemma 2.2, a tighter ellipsoidẼb around z(x) = T(x)y, supported by point-to-ellipsoid

correspondences, can be estimated by solving:

maximize
Q,σk,τi

log det Q̂

s.t. Gb(Q, σ1, σ2, .., σn) − p∑
i=1

τiGi(Qi) ⪰ 0,
Q ⪰ 0, Q̂ ≻ 0, σk ≥ 0, k = 1,2, . . . , n,
τi ≥ 0, i = 1,2, . . . , p.

(7)

This is a concave maximization problem where Gb and Ge

are the Gram matrices of pb(x) and fi(x), respectively.

Remark 3.4 For τi = 0,∀i, (7) is equivalent to (6). This

means that the solution of (7) is at least as good as that

of (6). For any x ∈ [x, x] that satisfies the assignment{(zi(x),Ei)}pi=1, fi(x) are always nonnegative. Therefore,

the solution of (7) never violates the given assignments.

On the contrary, these additional assignment constraints

help restricting the set Sb by eliminating the regions not

respected by the given assignments. This can lead only to a

tighter estimation of Ẽb.

Finally, we consider the case in which multiple points yi,

i = 1,2 . . . , p, from the source data are mapped onto zi(x) =
T(x)yi in the target. None of these zi(x) are assigned to

any ellipsoid and the interest here is to estimate a single

minimum volume ellipsoid covering all the points zi(x), i =
1,2, . . . , p, ∀ x ∈ [x, x]:
Proposition 3.5 Consider a given set of correspondences{(zi(x),E)}pi=1 between multiple points and a single ellip-

soid. Consider the Gram matrices Gi(Q, σi
k) of the polyno-

mial pib(x) constructed as in the formulation of Problem 3.1

for the points zi(x), i = 1,2, . . . , p, ∀x ∈ [x, x], and a sin-

gle unknown matrix Q. The minimum volume ellipsoid Êb
covering zi(x), i = 1,2, . . . , p, ∀x ∈ [x, x], is obtained by

solving the concave maximization problem:

maximize
Q,σi

k

log det Q̂

s.t. Gi(Q, σi
k) ⪰ 0,

Q ⪰ 0, Q̂ ≻ 0,
σi
k ≥ 0, i = 1,2, . . . , p, k = 1,2, . . . , n.

(8)

3.2. Geometric Consistency

When bounds on the transformation parameters are con-

sidered, Proposition 3.2 allows one to estimate the smallest

ellipsoid, in the target data, containing all potential map-

pings of a point from the source data. Proposition 3.3 al-

lows to additionally characterize this ellipsoid from avail-

able point-to-ellipsoid assignments. Proposition 3.5 allows

one to estimate the ellipsoid covering the mappings of sev-

eral points from the source data: this is particularly useful

when such points are the vertices of a polytope delimiting a

region/object in the source data. The ellipsoids obtained us-

ing these propositions may be re-estimated to better fit the

target data. It is then necessary to check whether the result-

ing correspondences are geometrically consistent, i.e. there

exists a common transformation leading to them.

Definition 3.6 A set of point-to-ellipsoid putative assign-

ments {zi(x),Ei}pi=1 is said to be geometrically consistent

if there exists x such that each point with coordinates zi(x)
lies inside its associated ellipsoid Ei.
Proposition 3.7 A set of point-to-ellipsoid assignments{zi(x),Ei}pi=1 is geometrically consistent iff there exists x ∈
IR

n
such that LMIs

[δizd(x)Q̂−1i ẑi(x)
ẑi(x)⊺ δizd(x)] ⪰ 0 ∀i, x ∈ [x, x]. (9)
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are simultaneously feasible for δi = ±1. In (9) ẑi(x)
refers to the (d − 1)-dimensional vector such that zi(x)⊺ =(ẑi(x)⊺ z(x)d) and Q̂i is the (d − 1) × (d − 1) upper-left

block of Qi.

Proof Lemma 2.1 demonstrates that (9) is equivalent to

ẑi(x)⊺Q̂iẑi(x) ≤ δ2i zd(x). Hence, the simultaneous feasi-

bility of the LMIs means that there exists a x mapping each

point zi(x) to its designated elliposoid.

Due to the presence of noise and/or outliers, the opti-

mization problem (9) may turn out to be infeasible for given

parameter intervals and assignments. Under such circum-

stances, we suggest to consider the following remark to ob-

tain a closest feasible solution.

Remark 3.8 In the absence of a strictly feasible solution,

the closest feasible solution within the parameter intervals

can be obtained by relaxing the volume of assigned ellip-

soids. Such solution can be obtained by solving the follow-

ing convex optimization problem:

minimize
si,x

∑
i

si

s.t. [si + δizd(x)Q̂−1i ẑi(x)
ẑi(x)⊺ si + δizd(x)] ⪰ 0

si ≥ 0, ∀i, x ∈ [x, x].
(10)

3.3. The BnP Algorithm

We have devised an optimal transformation estimation

method using our formulations within a Branch-and-Prune

(BnP) search. Our method relies on a small set of reliable

semantic cues to bound the problem as well as to speed up

the processing. We assume that at least a minimal set of

control points, say S ⊂ V = {yi}pi=1, in one modality from

different semantic cues are detected. We refer to these as

the support points. In our BnP search, subdivision is carried

out by dividing the regions that the support points are as-

signed to. The branching process progressively reduces the

regions to which the support points can be assigned. After

obtaining the subdivided regions, we fit ellipsoids around

them using (1). While doing so, we make use of only the

sparsely selected boundary points. Once the ellipsoids for

all the support points are estimated, we induce the ellip-

soids for the rest of the points using Proposition 3.3. If the

induced ellipsoid does not cover the sought semantic cues,

it indicates that the assignment of the support points, in the

current branch, is surely incorrect. Therefore, the branch

is pruned. Once the ellipsoids for all the control points

are estimated, we shrink the ellipsoids corresponding to the

support points. With newly shrunk ellipsoids, we test the

assignments feasibility using Proposition 3.7. If the prob-

lem is feasible for all the assignments, we re-estimate the

parameters’ bounds B = [x, x, ] by solving for each xk as

follows:

min/max
x

xk

s.t. [δizd(x)Q̂−1i ẑi(x)
ẑi(x)⊺ δizd(x)] ⪰ 0, ∀i,

x ∈ [x, x].
(11)

After updating B, we compute the cost for a feasible x

to assign all points on one side to the closest points, on

the other, with the sought semantics and lying inside their

respective ellipsoids. Denoting the Euclidean distance by

d(., .), this cost is

ξ(x) =∑
i

min
e∈Ei

d(e,T(x)yi). (12)

If the feasibility test fails, the cost is computed for the so-

lution obtained from Remark 3.8, and this branch is pruned

after recording the solution. In the next step, the branch

with the lowest cost is selected and the support ellipsoid

with the largest volume is divided into two new ellipsoids

(each for a new branch) by slicing it along the smallest vari-

ation direction. This process is repeated recursively until

the desired solution is obtained. In each iteration, every

node is processed using Algorithm 1.

Algorithm 1 [B,S , V, ξ, η] = NodeProcessing(B,S ,V)

1. Induce Eb for y ∈ V with B and S (Proposition 3.3/3.5).

2. If any Eb is empty, set η = 0 (for pruning).

3. Shrink Eb for all y ∈ S .

4. Test the feasibility using Proposition 3.7.

Ô⇒ If a feasible solution exists, compute ξ using (12),

update B using (11) and set η = 1 (to continue).

Ô⇒ Otherwise, compute ξ for x from (10) and set η = 0.

Initialization: For image-to-map registration, we assume

that at least 4 support points belonging to two non-

overlapping regions are provided. Similarly, at least 5 sup-

port points belonging to 3 different regions are assumed to

be known for projective 3D-to-3D registration. The initial

parameter bounds are either derived from vague knowledge

on the acquisition setups, or using (11) from given region

correspondences. More details are provided in Section 4.

Termination: To ensure optimality, BnP explores branches

until all control points are assigned to the ellipsoids of vol-

ume smaller than a threshold. For given semantic cues,

there may exist multiple configurations where all control

points are assigned to the desired volume ellipsoids. There-

fore, the algorithm can be terminated when (i) all branches

are pruned, or (ii) the cost ξ(x) is below a predefined ob-

jective, or (iii) all control points are assigned to the desired

volume ellipsoids. When the cost ξ(x) reaches the prede-

fined objective, the obtained solution is said to be optimal.
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4. Experiments

We tested our transformation estimation method on two

registration problems: 2D-2D image-to-map and projec-

tive 3D-3D. All reported experiments are conducted on real

datasets. The semantic cues were obtained in two differ-

ent ways: (1) manual annotation, (2) automatic detection.

For automatic detection, we used the state-of-art methods

for object detection [36] and semantic segmentation [47].

Our algorithm is implemented in MATLAB2015a and all

the optimization problems are solved using MOSEK [27].

4.1. ImagetoMap Registration

We used images acquired by three roundshot cameras [1]

mounted on the top of buildings in Zürich, Switzerland.

These cameras provide 360
○ panoramic views with high

quality 2051 × 9002 pix images. The local map, covering

about 14km2, was downloaded from OpenStreetMap [2].

We registered images to the map with 2D homographies,

whose initial bounds were obtained by inferring some vague

knowledge about the acquisition setup. We assumed that the

cameras were mounted at a height between 20 − 50m, they

looked roughly towards the ground plane, ground plane’s

normal coordinates are close to (0,0,1), and a region of

size 50 × 50m2 or 100 × 100m2 that includes the camera is

known. Furthermore, we also assume that the detected river

parts (in images) are located in of 1× 1km2 known map re-

gion, with camera search region in the center. Similarly, the

region for tramways is set to 400 × 400m2. Given the form

of the sought homography H = R − 1

d
tn⊺, we first establish

the individual bounds R, t, and d using only the above men-

tioned assumptions. Then, the bounds on the entries of H

are estimated using interval arithmetics [26].

First, we present the effect of different bound gaps on

ellipse estimation. Figure 1 shows, for a selected set of im-

age points, the ellipses induced on the map using Propo-

sition 3.2 with 1.0 bound gap homographies. The corre-

sponding feature points are also displayed on the map. The

expected result of registration is the map warped to fit the

image. It is shown in the same figure using the ground-truth

homography matrix. The effect on ellipse estimation with

various bound gaps is shown in Figure 2. One can observe

that the ellipse areas decrease with the decreasing bound

gap. It comes as no surprise that points near infinity have

higher uncertainties than those close to the camera.

Experiments with manual image annotations and oth-

ers with automatic detection from images were carried

out independently. For registration supported by manual

annotation, two semantic regions with labels “river” and

“tramway” were chosen on the images. Similarly, the auto-

matic detection consists of three categories: “car”, “tram”,

and “boat” obtained using [36]. We use the assumption

that cars, trams, and boats can be found only on roads,

tramways, and rivers, respectively. The corresponding la-

bels on the map were extracted from the OpenStreetMap

data. Both manual and automatic semantic labels used for

one dataset are also shown in Figure 3. In the same figure,

we also show the qualitative results obtained by our method

before and after refinement (refer to Remark 3.8).

The final results of our method for all cameras are shown

in Table 1, after decomposing the homography into more

geometrically meaningful parameters. It can be seen that

the accuracy of the rotation, translation, and normal estima-

tion is very satisfactory. Note that the semantic labels from

manual source has only two categories, whereas, the auto-

matic source consists of three. To analyze the behavior of

our BnP search, we report the number of nodes and remain-

ing areas (inside the ellipses induced by the support points)

for the first 100 iterations and all three cameras, on only

two semantic categories, in Figure 4. Note that the search

volume of the parameter space is guaranteed to decrease.

Figure 4(right) shows the area left in the map calculated as

the sum of ellipsoids including overlaps. Although this is

an overestimation, the remaining area in the map is clearly

decreasing. Figure 4(left) shows that the number of nodes

naturally increases in the initial iterations while remaining

fairly low (about 20 nodes for Alstadt after 100 iterations).

Experiments on object detection simulation data: An-

other set of experiments on image-to-map registration was

conducted for assessing the influence of object sizes and

number of control points. Although real data are used, we

refer to these experiments as simulations as we randomly

simulated bounding boxes on the road or on the river (mim-

icking cars and boats of different size). We used the Altsatdt

dataset setup. All objects belong to one of two categories:

either river or tramway. Objects of various sizes were sim-

ulated on the map along with their corresponding bounding

boxes on the image. The number of the support points and

object sizes were varied. The computation time and the ho-

mography estimation accuracy are reported in Figure 5.

Note that the accuracy of homography estimation natu-

rally deteriorates with larger object sizes (with a fixed num-

ber of support points). The speed of the algorithm depends

on the number of support points. Interestingly, with only 20

support points the algorithm is faster because of the lower

computation time for processing each node. But for 25 sup-

port points, the algorithm gets slower and for 30 support

points the algorithm gets faster again. This is because (for

fixed object size) more support points lead to less BnP it-

erations to obtain the predefined objective. Each iteration

however would involve more computations than using fewer

points. The remaining plots demonstrate the trade-off that

BnP makes on registration parameters to reach the desired

objective for different experimental setups. All the experi-

ments were conducted for the same predefined objective.
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Figure 1: Selected image points (top-left) and the warped map on the image (top-right). Corresponding points on the map

(bottom-left) and the ellipses around them induced by a set of homographies with 1.0 bound gap in each entry (bottom-right).

Datasets Search area (m2) Semantics Source Support points Time (sec) ∆R(degrees) ∆t(%) ∆n(%)

Altstadt 100 × 100
river, tramway manual 31 28.28 6.6918 10.96 5.46

boat, tram, car automatic 83 232.96 2.97 8.82 11.92

Sechselautenplatz 50 × 50
river, tramway manual 17 134.56 15.48 3.95 13.33

boat, tram, car automatic 26 64.19 6.28 3.72 9.21

ZurichWest 50 × 50
river, tramway manual 39 166.54 17.21 4.95 10.27

boat, tram, car automatic 35 144.09 10.31 8.65 13.83

Table 1: Results on three datasets for manual and automatic semantic labels. Experimental setups (search area, semantic

cues, and support points) with their corresponding running time and 2D homography estimation error.

Figure 2: Left to right: ellipses induced around correspond-

ing points by homographies of 0.5, 0.3, 0.2, 0.1 bound gaps.

4.2. Projective 3Dto3D registration

We also tested our method to register uncalibrated 3D

projective SfM reconstructions and Euclidean 3D models

of the same scenes, using two real datasets: Fountain-P11

and Herz-Jesu-P8 obtained from [42]. These datasets re-

spectively consist of 11 and 8 images of size 3072 × 2048
captured by a moving camera of fx = 2759.5, fy = 2764.2,

u = 1520.7 and v = 1006.8, along with the laser scanned 3D

scenes. We first obtained a projective reconstruction from

feature point correspondences across images using [30] in

Rabauds SfM Toolbox [34]. Then, the registration was car-

ried out between the projective structure and a laser scanned

3D scene using our method. In these experiments, we used

the semantic image segmentation cues automatically ob-

tained from [47], trained on the categories of [8]. As in [31],

boxes around cameras were also used: One can consider the

camera centers to be within a known bounding box should

GPS/IMU measurements be available. The semantic labels

on the 3D scene were extracted manually although these

can also be obtained automatically using methods similar

to [24]. Input semantic labels and the final results obtained

by our algorithm on Fountain dataset are shown in Figure 6.

Our results were compared against three other methods:

SSR [31], RISAG [9], and Go-ICP [46]. For the sake of

comparison, we conducted both experiments in the same

setup as that of SSR. However, we could not do the so

for the other methods. Therefore, these methods were con-

ducted under their most favorable conditions. RISAG and

Go-ICP require Metric and Euclidean reconstructions, re-

spectively. The metric reconstruction required for RISAG

was obtained using openMVG [28]. For Go-ICP, this re-

construction was upgraded to Euclidean using the ground-

truth reconstruction scale. Table 2 summarizes the results

of all four methods. Notice that our method performs sig-

nificantly faster than SSR on both datasets while producing

better results in terms of accuracy. Our method also pro-

duces better results than the other two methods, yet a direct

comparison between them may be unfair (also because of

the difference in input data for registration). RISAG and

Go-ICP’s reported results are rather meant to give the reader

an overall impression.
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Figure 3: Top left: Segmented regions (river in red and tramway in blue) selected manually; top right: automatically detected

objects (boats in blue, trams in red, and cars in green) from an image sequence recorded over a day. An example of the warped

map (on the image) obtained using our method before (bottom left) and after (bottom right) the refinement step.

Datasets Methods Semantics Sup. points Cameras Bbox (m) Time (sec) ∆f ∆uv ∆R(○) ∆t 3D Error

Fountain

Ours ground, pole, vegetation 28 11/11 2.00 47.7201 0.0602 0.1172 1.5881 0.0600 0.0167

SSR ground, pole, vegetation 28 11/11 2.00 238.0209 0.0984 0.4353 8.1879 0.2474 0.0169

RISAG - 4601 -/11 - 805.680 - - 8.6825 0.1408 0.3275

Go-ICP - 4601 -/11 - 529.415 - - 0.7225 0.0163 0.0348

Herz-Jesu

Ours ground, pole 23 8/8 1.00 50.1480 0.0202 0.1288 2.8400 0.0843 0.0187

SSR ground, pole 23 8/8 1.00 348.8915 0.0421 0.2166 4.4098 0.1377 0.0190

RISAG - 4024 -/8 - 160.064 - - 17.6378 0.0570 0.1830

Go-ICP - 4024 -/8 - 31.254 - - 3.2618 0.169 0.0725

Table 2: Results with four different methods. Cameras: p/q cameras are bounded within boxes of size Bbox. The reported

errors are RMS errors on estimating {fx, fy},{u, v}, rotation, transaltion, and 3D point clouds registration.
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Figure 4: Number of nodes remaining to be processed (left)

and area measure of ellipses (right) for three datasets with

50×50m2 search region (shown for the first 100 iterations).
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Figure 5: Quantitative results for various object sizes and

support points (S). Running time in seconds (top-left) and

errors in rotation (top-right), translation (bottom-left), and

normal (bottom-right).

Figure 6: Left to right: image and 3D semantic cues (pole

in blue, ground in black, and vegetation in green) and re-

constructed point cloud (in red) registered to the scene.

5. Conclusion

We have proposed a method that demonstrates the po-

tential of using semantic cues to estimate geometric trans-

formations. We have applied our method for solving two

challenging registration problems in which using semantic

cues might as well be the most plausible solution. Our ap-

proach differs from traditional methods because we search

for region-to-region correspondences rather than low-level

feature correspondences. The proposed optimization for-

mulations are purely convex and can be solved efficiently

using the existing optimization algorithms. These formula-

tions have the potential to be useful for solving many other

computer vision problems.
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[7] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and

J. Montiel. Towards semantic slam using a monocular cam-

era. In 2011 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, pages 1277–1284. IEEE, 2011.

1

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3213–3223, 2016. 7

[9] M. Corsini, M. Dellepiane, F. Ganovelli, R. Gherardi,

A. Fusiello, and R. Scopigno. Fully automatic registration

of image sets on approximate geometry. International Jour-

nal of Computer Vision (IJCV), pages 91–111, March 2013.

7

[10] M. Crocco, C. Rubino, and A. Del Bue. Structure from mo-

tion with objects. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 1

[11] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image

homography estimation. arXiv preprint arXiv:1606.03798,

2016. 1

[12] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Advances in neural information processing systems, pages

2366–2374, 2014. 1

[13] J. Fredriksson, V. Larsson, C. Olsson, and F. Kahl. Optimal

relative pose with unknown correspondences. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1728–1736, 2016. 1

[14] E. V. Haynsworth. On the schur complement. Technical

report, DTIC Document, 1968. 2
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