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Abstract

Deep neural networks (DNNs) trained on large-scale

datasets have recently achieved impressive improvements

in face recognition. But a persistent challenge remains to

develop methods capable of handling large pose variations

that are relatively under-represented in training data. This

paper presents a method for learning a feature representa-

tion that is invariant to pose, without requiring extensive

pose coverage in training data. We first propose to gener-

ate non-frontal views from a single frontal face, in order

to increase the diversity of training data while preserving

accurate facial details that are critical for identity discrim-

ination. Our next contribution is to seek a rich embedding

that encodes identity features, as well as non-identity ones

such as pose and landmark locations. Finally, we propose a

new feature reconstruction metric learning to explicitly dis-

entangle identity and pose, by demanding alignment between

the feature reconstructions through various combinations

of identity and pose features, which is obtained from two

images of the same subject. Experiments on both controlled

and in-the-wild face datasets, such as MultiPIE, 300WLP

and the profile view database CFP, show that our method

consistently outperforms the state-of-the-art, especially on

images with large head pose variations. 1

1. Introduction

The human visual system is commendable at recognition

across variations in pose, for which two theoretical con-

structs are preferred. The first postulates invariance based

on familiarity where separate view-specific visual represen-

tations or templates are learned [6, 26]. The second sug-

gests that structural descriptions are learned from images

that specify relations among viewpoint-invariant primitives

[10]. Analogously, pose-invariance for face recognition in

∗This work was part of the Xi’s internship at NEC Laboratories America.
1Detail results and resource are referred to: https://sites.

google.com/site/xipengcshomepage/iccv2017.

Figure 1. (a) Generic data-driven features for face recognition might

confound images of the same identity under large poses with other

identities, as shown two subjects (in different colors) from MultiPIE

are mapped into the learned feature space of VGGFace [22]. (b)

We propose a feature reconstruction metric learning to disentangle

identity and pose information in the latent feature space. (c) The

disentangled feature space encourages identity features of the same

subject to be clustered together despite of the pose variation.

computer vision also falls into two such categories.

The use of powerful deep neural networks (DNNs) [15]

has led to dramatic improvements in recognition accuracy.

However, for objects such as faces where minute discrimina-

tion is required among a large number of identities, a straight-

forward implementation is still ineffective when faced with

factors of variation such as pose changes [24]. Consider the

feature space of the VGGFace [22] evaluated on MultiPIE

[7] shown in Figure 1, where examples from the same iden-

tity class that differ in pose are mapped to distant regions of

the feature space. An avenue to address this is by increasing

the pose variation in training data. For instance, 4.4 million

face images are used to train DeepFace [39] and 200 million

labelled faces for FaceNet [32]. Another approach is to learn
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a mapping from different view-specific feature spaces to a

common feature space through methods such as Canonical

Correlation Analysis (CCA) [8]. Yet another direction is to

ensemble over view-specific recognition modules that ap-

proximate the non-linear pose manifold with locally linear

intervals [20, 12].

There are several drawbacks for the above class of

approaches. First, conventional datasets including those

sourced from the Internet have long-tailed pose distributions

[19]. Thus, it is expensive to collect and label data that

provides good coverage for all subjects. Second, there are

applications for recognition across pose changes where the

dataset does not contain such variations, for instance, recog-

nizing an individual in surveillance videos against a dataset

of photographs from identification documents. Third, the

learned feature space does not provide insights since factors

of variation such as identity and pose might still be entangled.

Besides the above limitations, view-specific or multiview

methods require extra pose information or images under

multiple poses at test time, which may not be available.

In contrast, we propose to learn a novel reconstruction

based feature representation that is invariant to pose and

does not require extensive pose coverage in training data. A

challenge with pose-invariant representations is that discrim-

ination power of the learned feature is harder to preserve,

which we overcome with our holistic approach. First, in-

spired by [50], Section 3.1 proposes to enhance the diversity

of training data with images under various poses (along with

pose labels), at no additional labeling expense, by designing

a face generation network. But unlike [50] which frontalizes

non-frontal faces, we generate rich pose variations from

frontal examples, which leads to advantages in better preser-

vation of details and enrichment rather than normalization

of within-subject variations. Next, to achieve a rich fea-

ture embedding with good discrimination power, Section 3.2

presents a joint learning framework for identification, pose

estimation and landmark localization. By jointly optimizing

those three tasks, a rich feature embedding including both

identity and non-identity information is learned. But this

learned feature is still not guaranteed to be pose-invariant.

To achieve pose invariance, Section 3.3 proposes a fea-

ture reconstruction-based structure to explicitly disentangle

identity and non-identity components of the learned feature.

The network accepts a reference face image in frontal pose

and another image under pose variation and extracts fea-

tures corresponding to the rich embedding learned above.

Then, it minimizes the error between two types of reconstruc-

tions in feature space. The first is self-reconstruction, where

the reference sample’s identity feature is combined with its

non-identity feature and the second is cross-reconstruction,

where the reference sample’s non-identity feature is com-

bined with the pose-variant sample’s identity feature. This

encourages the network to regularize the pose-variant sam-

ple’s identity feature to be close to that of the reference sam-

ple. Thus, non-identity information is distilled away, leaving

a disentangled identity representation for recognition at test.

Section 5 demonstrates the significant advantages of our

approach on both controlled datasets and uncontrolled ones

for recognition in-the-wild, especially on 90◦ cases. In par-

ticular, we achieve strong improvements over state-of-the-art

methods on 300-WLP, MultiPIE, and CFP datasets. These

improvements become increasingly significant as we con-

sider performance under larger pose variations. We also

present ablative studies to demonstrate the utility of each

component in our framework, namely pose-variant face gen-

eration, rich feature embedding and disentanglement by fea-

ture reconstruction.

To summarize, our key contributions are:

• To the best of our knowledge, we are the first to propose a

novel reconstruction-based feature learning that disentan-

gles factors of variation such as identity and pose.

• A comprehensively designed framework cascading rich

feature embedding with the feature reconstruction, achiev-

ing pose-invariance in face recognition.

• A generation approach to enrich the diversity of train-

ing data, without incurring the expense of labeling large

datasets spanning pose variations.

• Strong performance on both controlled and uncontrolled

datasets, especially for large pose variations up to 90◦.

2. Related Work

While face recognition is an extensively studied area, we

provide a brief overview of works most relevant to ours.

Face synthesization Blanz and Vetter pioneered 3D mor-

phable models (3DMM) for high quality face reconstruction

[2] and recently, blend shape-based techniques have achieved

real-time rates [3]. For face recognition, such techniques

are introduced in DeepFace [39], where face frontalization

is used for enhancing face recognition performance. As an

independent application, specific frontalization techniques

have also been proposed [9]. Another line of work pertains

to 3D face reconstruction from photo collections [29, 18, 42]

or a single image [19, 50, 40], where the latter have been

successfully used for face normalization prior to recognition.

While most of the methods apply the framework of aligning

3DMM with the 2D face landmarks [47, 46, 25] and con-

duct further refinement. In contrast, our use of 3DMM for

face synthesis is geared towards enriching the diversity of

training data.

Deep face recognition Several frameworks have recently

been proposed that use DNNs to achieve impressive perfor-

mances [22, 32, 37, 38, 39, 43, 44]. DeepFace [39] achieved

verification rates comparable to human labeling on large

test datasets, with further improvements from works such

as DeepID [38]. Collecting face images from the Internet,

FaceNet [32] trains on 200 million images from 8 million
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Figure 2. An overview of the proposed approach. (a) Pose-variant face generation utilizes a 3D facial model to synthesize new viewpoints

from near-frontal faces. (b) Rich feature embedding is then achieved by jointly learning the identity and non-identity features using

multi-source supervisions. (c) Finally, Disentangling by reconstruction is applied to distill the identity feature from the non-identity one for

robust and pose-invariant representation.

subjects. The very deep network can only be well stimulated

by the huge volume of training data. We also use DNNs,

but adopt the contrasting approach of learning pose-invariant

features, since large-scale datasets with pose variations are

expensive to collect, or do not exist in several applications

such as surveillance.

Pose-invariant face recognition Early works use Canoni-

cal Correlation Analysis (CCA) to analyze the commonality

among different pose subspaces [8, 21]. Further works con-

sider generalization across multiple viewpoints [34] and mul-

tiview inter and intra discriminant analysis [13]. With the in-

troduction of DNNs, prior works aim to transfer information

from pose variant inputs to a frontalized appearance [41, 45],

which is then used for face recognition [51]. The frontal

appearance reconstruction usually relies on large amount

of training data and the pairing across poses is too strict

to be practical. Stacked progressive autoencoders (SPAE)

[11] map face appearances under larger non-frontal poses

to those under smaller ones in a continuous way by setting

up hidden layers. The regression based mapping highly

depends on training data and may lack generalization abil-

ity. Hierarchical-PEP [17] employs probabilistic elastic part

(PEP) model to match facial parts from different yaw angles

for unconstrained face recognition scenarios. The 3D face

reconstruction method [50] synthesizes missing appearance

due to large view points, which may introduce noise. Rather

than compensating the missing information caused by se-

vere pose variations at appearance level, we target learning a

pose-invariant representation at feature level which preserves

discrimination power through deep training.

Disentangle factors of variation Contractive discrimina-

tive analysis [28] learns disentangled representations in semi-

supervised framework by regularizing representations to be

orthogonal to each other. Disentangling Boltzmann ma-

chine [27] regularizes representations to be specific to each

target task via manifold interaction. These methods in-

volve non-trivial training procedure, and the pose variation

is limited to half-profile views (±45◦). Inverse graphics net-

work [16] learns an interpretable representation by learning

and decoding graphics codes, each of which encodes differ-

ent factors of variation, but has been demonstrated only on

the database generated from 3D CAD models. Multi-View

Perceptron [52] disentangles pose and identity factors by

cross-reconstruction of images synthesized from determin-

istic identity neurons and random hidden neurons. But it

does not account for factors such as illumination or expres-

sion that are also needed for image-level reconstruction. In

contrast, we use carefully designed embeddings as recon-

struction targets instead of pixel-level images, which reduces

the burden of reconstructing irrelevant factors of variation.

3. Proposed Method

We propose a novel pose-invariant feature learning

method for large pose face recognition. Figure 2 provides

an overview of our approach. Pose-variant face generation

utilizes a 3D facial model to augment the training data with

faces of novel viewpoints, besides generating ground-truth

pose and facial landmark annotations. Rich feature embed-

ding is then achieved by jointly learning the identity and

non-identity features using multi-source supervision. Finally,

disentanglement by feature reconstruction is performed to

distill the identity feature from the non-identity one for better

discrimination ability and pose-invariance.
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Figure 3. Pose-variant faces are used to finetune an off-the-shell

recognition network θr to learn the rich feature embedding e
r ,

which is explicitly branched into the identity feature e
i and the

non-identity feature en. Multi-source supervisions, such as identity,

pose and landmark, are applied for joint optimization.

3.1. Pose­variant Face Generation

The goal is to generate a series of pose-variant faces from

a near-frontal image. This choice of generation approach

is deliberate, since it can avoid hallucinating missing tex-

tures due to self-occlusion, which is a common problem with

former approaches [9, 5] that rotate non-frontal faces to a

normalized frontal view. More importantly, enriching in-

stead of reducing intra-subject variations provides important

training examples in learning pose-invariant features.

We reconstruct the 3D shape from a near-frontal face to

generate new face images. Let χ be the set of frontal face

images. A straightforward solution is to learn a nonlinear

mapping f(·; θs) : χ → R
3N that maps an image x ∈ χ to

the N coordinates of a 3D mesh. However, it is non-trivial

to do so for a large number of vertices (15k), as required for

a high-fidelity reconstruction.

Instead, we employ the 3D Morphable Model (3DMM)

[2] to learn a nonlinear mapping f(·; θs) : χ → R
235

that embeds x to a low-dimensional parameter space. The

3DMM parameters p control the rigid affine transformation

and non-rigid deformation from a 3D mean shape S to the

instance shape S. Please refer to Figure 2 for an illustration:

S(p) = sR(S+Φidαid +Φexpαexp) + T, (1)

where p = {s,R, T, αid, αexp} including scale s, rotation

R, translation T , identity coefficient αid and expression

coefficient αexp. The eigenbases Φid and Φexp are learned

offline using 3D face scans to model the identity [23] and

expression [3] subspaces, respectively.

Once the 3D shape is recovered, we rotate the near-frontal

face by evenly manipulating the yaw angle in the range of

[−90◦, 90◦]. We follow [50] to use a z-buffer for collecting

texture information and render the background for high-

quality recovery. The rendered face is then projected to 2D

to generate new face images from novel viewpoints.

3.2. Rich Feature Embedding

Most existing face recognition algorithms [19, 20, 32, 43]

learn face representation using only identity supervision. An

underlying assumption of their success is that deep networks

can “implicitly” learn to suppress non-identity factors after

seeing a large volume of images with identity labels [32, 39].

However, this assumption does not always hold when

extensive non-identity variations exist. As shown in Figure

1 (a), the face representation and pose changes still present

substantial correlations, even though this representation is

learned throught a very deep neural network (VGGFace [22])

with large-scale training data (2.6M).

This indicates that using only identity supervision might

not suffice to achieve an invariant representation. Motivated

by this observation, we propose to utilize multi-source su-

pervision to learn a rich feature embedding er, which can

be “explicitly” branched into an identity feature ei and a

non-identity feature en, respectively. As we will show in the

next section, the two features can collaborate to effectively

achieve an invariant representation.

More specifically, as illustrated in Figure 3, en can be

further branched as ep and el to represent pose and land-

mark cues. For our multi-source training data that are not

generated, we apply the CASIA-WebFace database [44] and

provide the supervision from an off-the-shelf pose estima-

tor [48]. Therefore, we have:

ei = f(x; θr, θi), en = f(x; θr, θn),

ep = h(en;wp) = f(x; θr, θn, wp),

el = h(en;wl) = f(x; θr, θn, wl),

where mapping f(·; θ/w) : χ → R
d takes x and generates

an embedding vector f(x) and θ/w denotes the mapping

parameters. Here, θr can be any off-the-shelf recognition

network. h(·; θ) is used to bridge two embedding vectors.

We jointly learn all embeddings by optimizing:

argmin
θr,i,n,wi,p,l

∑

image

− λi
[

yi log softmax(wiT ei))
]

+ λp‖yp − ep‖2
2
+ λl‖yl − el‖2

2
, (2)

where yi, yp and yl are identity, pose and landmark an-

notations and λi, λp and λl balance the weights between

cross-entropy and l2 loss.

By resorting to multi-source supervision, we can learn

the rich feature embedding that “explicitly” encodes both

identity and non-identity cues in ei and en, respectively. The

remaining challenge is to distill ei by disentangling from en

to achieve identity-only representation.

3.3. Disentanglement by Feature Reconstruction

The identity and non-identity features above are jointly

learned under different supervision. However, there is no

guarantee that the identity factor has been fully disentangled

from the non-identity one since there is no supervision ap-

plied on the decoupling process. This fact motivates us to
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Figure 4. A genuine pair {x1,x2} that share the same identity

but different pose is fed into the recognition network θr to obtain

the rich embedding e
r

1 and e
r

2. By regularizing the self and cross

reconstruction, er

11 and e
r

21, the identity and non-identity features

are eventually disentangled to make the non-frontal peer ei

2 to be

similar to its near-frontal reference e
i

1.

propose a novel reconstruction-based framework for effec-

tive identity and non-identity disentanglement.

Recall that we have generated a series of pose-variant

faces for each training subject in Section 3.1. These images

share the same identity but have different viewpoints. We

categorize these images into two groups according to their

absolute yaw angles: near-frontal faces (≤ 5◦) and non-

frontal faces (> 5◦). The two groups are used to sample

image pairs that follow a specially designed configuration: a

reference image which is randomly selected from the near-

frontal group and a peer image which is randomly picked

from the non-frontal group.

The next step is to obtain the identity and non-identity

embeddings of two faces that have the same identity but

different viewpoints. As shown in Figure 4, a pair of images

{xk : k = 1, 2} are fed into the network to output the

corresponding identity and non-identity features:

eik = f(erk; θ
i) = f(xk; θ

r, θi),

enk = f(erk; θ
n) = f(xk; θ

r, θn).

Note that θ is not indexed by k as the network shares weights

to process images of the same pair.

Our goal is to eventually push ei
1

and ei
2

close to each

other to achieve a pose-invariant representation. A simple

solution is to directly minimize the l2 distance between the

two features in the embedding subspace. However, this

constraint only considers the identity branch, which might

be entangled with non-identity, but completely ignores the

non-identity factor, which provides strong supervision to

purify the identity. Our experiments also indicate that a

hard constraint would suffer from limited performance in

large-pose conditions.

To address this issue, we propose to relax the constraint

under a reconstruction-based framework. More specifically,

we firstly introduce two reconstruction tasks:

er
11

= g(ei
1
, en

1
; θc), er

21
= g(ei

2
, en

1
; θc),

where er
11

denotes the self reconstruction of the near-frontal

rich embedding; while er
21

denotes the cross reconstruction

of the non-frontal rich embedding. Here, g(·, ·; θc) is the

reconstruction mapping with parameter θc.

The identity and non-identity features can be rebalanced

from the rich feature embedding by minimizing the self and

cross reconstruction loss under the cross-entropy constraint:

argmin
θi,θn,θc

∑

pair

− γi
[

yi
1
log softmax(wiT ei

1
)
]

+ γs‖er
11

− er
1
‖2
2
+ γc‖er

21
− er

1
‖2
2
, (3)

where γi, γs and γc weigh different constraints. Note that

compared to (2), here we only finetune {θi, θn} (as well as

θc) to rebalance the identity and non-identity features while

keeping θr fixed, which is an important strategy to maintain

the previously learned rich embedding.

In (3), we regularize both self and cross reconstructions

to be close to the near-frontal rich embedding er
1
. Thus, por-

tions of er
2

to ei
2

and en
2

are dynamically rebalanced to make

the non-frontal peer ei
2

to be similar to the near-frontal refer-

ence ei
1
. In other words, we encourage the network to learn

a normalized feature representation across pose variations,

thereby disentangling pose information from identity.

The proposed feature-level reconstruction is significantly

different from former methods [32, 9] that attempt to frontal-

ize faces at the image level. It can be directly optimized for

pose invariance without suffering from artifacts that are com-

mon issues in face frontalization. Besides, our approach is

an end-to-end solution that does not rely on extensive prepro-

cessing usually required for image-level face normalization.

Our approach is also distinct from existing methods

[20, 19] that synthesize pose-variant faces for data augmen-

tation. Instead of feeding the network with a large num-

ber of augmented faces and letting it automatically learn

pose-invariant or pose-specific features, we utilize the re-

construction loss to supervise the feature decoupling pro-

cedure. Moreover, factors of variation other than pose are

also present in training, even though we only use pose as

the driver for disentanglement. The cross-entropy loss in

(3) plays an important role in preserving the discriminative

power of identity features across various factors.

4. Implementation Details

Pose-variant face generation A deep network is em-

ployed to predict 3DMM parameters of a near-frontal face as

shown in Figure 2 (a). The network has a similar architecture

as VGG16 [35]. We use pre-trained weights learned from

ImageNet [15] to initialize the network instead of training

from scratch. To further improve the performance, we make

two important changes: (1) we use stride-2 convolution in-

stead of max pooling to preserve the structure information

when halving the feature maps; (2) the dimension of 3DMM

parameters is changed to 66-d (30 identity, 29 expression

and 7 pose) instead of 235-d used in [49]. We evenly sam-

ple new viewpoints in every 5◦ from near-frontal faces to

1627



left/right profiles to cover the full range of pose variations.

Rich feature embedding The network is designed based

on CASIA-net [44] with some improvements. As illustrated

in Figure 3, we change the last fully connected layer to 512-d
for the rich feature embedding, which is then branched into

256-d neurons for the identity feature and 128-d neurons for

the non-identity feature. To utilize multi-source supervision,

the non-identity feature is further forked into 7-d neurons

for the pose embedding and 136-d neurons for the landmark

coordinates. Three different datasets are used to train the

network: CASIA-WebFace, 300WLP and MultiPIE. We use

Adam [14] stochastic optimizer with an initial learning rate

of 0.0003, which drops by a factor of 0.25 every 5 epochs

until convergence. Note that we train the network from

scratch on purpose, since a pre-trained recognition model

usually has limited ability to re-encode non-identity features.

Disentanglement by reconstruction Once {θr, θi, θn}
are learned in the rich feature embedding, we freeze θr and

finetune θi and θn to rebalance the identity and non-identity

features as explained in Figure 4 and (3). The network takes

the concatenation (384-d) of ei and en and outputs the re-

constructed embedding (512-d). The mapping is achieved

by rolling though two fully connected layers and each of

them has 512-d neurons. We have tried different network

configurations but get similar performance. The initial learn-

ing rate is set to 0.0001 and the hyper-parameters γi,s,c are

determined via 5-fold cross-validation. We also find that it

is import to do early stopping for effective reconstruction-

based regularization. In (2) and (3), we use the cross-entropy

loss to preserve the discriminative power of the identity fea-

ture. Other identity regularizations, e.g. triplet loss [32], can

be easily applied in a plug-and-play manner.

5. Experiments

We evaluate our feature learning method on three main

pose-variant databases, MultiPIE [7], 300WLP [49] and

CFP [33]. We also compare with two top general face

recognition frameworks, VGGFace [22] and N-pair loss face

recognition [36], and three state-of-the-art pose-invariant

face recognition methods, namely, MvDA [13], GMA [34]

and MvDN [12]. Further, we present an ablation study to

emphasize the significance of each module that we carefully

designed and a cross-database validation demonstrates the

good generalization ability of our method.

5.1. Evaluation on MultiPIE

MultiPIE [7] is composed of 754,200 images of 337 sub-

jects with different factors of variation such as pose, illumi-

nation, and expression. There are 15 different head poses set

up, where we only use images of 13 head poses with yaw

angle changes from −90◦ to 90◦, with 15◦ difference every

consecutive pose bin in this experiment.

We split the data into train and test by subjects, of which

the first 229 subjects are used for training and the remaining

Method 15
◦

30
◦

45
◦

60
◦

75
◦

90
◦ Avg

VGGFace [22] 0.972 0.961 0.926 0.847 0.628 0.342 0.780

N-pair [36] 0.990 0.983 0.971 0.944 0.811 0.468 0.861

MvDA [13]† 1.000 0.979 0.909 0.855 0.718 0.564 0.837

GMA [34]† 1.000 1.000 0.904 0.852 0.725 0.550 0.838

MvDN [12]† 1.000 0.991 0.921 0.897 0.810 0.706 0.887

Ours (P1) 0.972 0.966 0.956 0.927 0.857 0.749 0.905

Ours (P2) 1.000 1.000 0.995 0.982 0.931 0.817 0.954

Table 1. Rank-1 recognition accuracy on MultiPIE at different yaw

angles. The numbers in the entry with † are obtained from [12]. We

evaluate our method using gallery set composed of 2 frontal face

images per subject (P1) as well as entire frontal face images (P2).

Method 15
◦

30
◦

45
◦

60
◦

75
◦

90
◦ Avg

VGGFace [22] 0.994 0.998 0.996 0.956 0.804 0.486 0.838

N-Pair [36] 1.000 0.996 0.993 0.962 0.845 0.542 0.859

Ours 1.000 0.999 0.995 0.994 0.978 0.940 0.980

Table 2. Recognition performance on 300WLP, the proposed

method with two general state-of-the-art face recognition frame-

works, i.e. VGG Face Recognition Network (VGGFace) and N-pair

loss face recognition (N-pair).

108 are used for testing. This is similar to the experimental

setting in [12], but we use entire data including both illumi-

nation and expression variations for training while excluding

only those images taken with top-down views. Rank-1 recog-

nition accuracy of non-frontal face images is reported. We

take ±15◦ to ±90◦ as query and the frontal faces (0◦) as

gallery, while restricting illumination condition to be neutral.

To be consistent with the experimental setting of [12],

we form a gallery set by randomly selecting 2 frontal face

images per subject, of which there are a total of 216 images.

We evaluate the recognition accuracy for all query examples,

of which there are 619 images per pose. The procedure is

done with 10 random selections of gallery sets and mean

accuracy is reported.

Evaluation is shown in Table 1. The recognition accuracy

at every 15◦ interval of yaw angle is reported while averaging

its symmetric counterpart with respect to the 0-yaw axis. For

the two general face recognition algorithms, VGGFace [22]

and N-pair loss [36], we clearly observe more than 30%

accuracy drop when the head pose approaches 90◦ from 75◦.

Our method significantly reduces the drop by more than 20%.

The general methods are trained with very large databases

leveraging across different poses, but our method has the

additional benefit of explicitly aiming for a pose invariant

feature representation.

The pose-invariant methods, GMA, MvDA, and MvDN

demonstrate good performance within 30◦ yaw angles, but

again the performance starts to degrade significantly when

yaw angle is larger than 30◦. When comparing the accuracy

on extreme poses from 45◦ to 90◦, our method achieves

accuracy 3 ∼ 4% better than the best reported. Besides the

improved performance, our method has an advantage over
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Method
MultiPIE 300WLP

15
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◦
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◦
45

◦
60

◦
75

◦
90

◦ Avg

SS 0.908 0.899 0.864 0.778 0.487 0.207 0.690 0.945 0.934 0.884 0.753 0.567 0.330 0.679

SS-FT 0.941 0.936 0.919 0.883 0.799 0.681 0.860 1.000 0.999 0.992 0.973 0.934 0.839 0.944

MSMT 0.965 0.955 0.945 0.914 0.827 0.689 0.882 1.000 0.993 0.993 0.986 0.968 0.922 0.971

MSMT+L2 0.972 0.965 0.954 0.923 0.849 0.739 0.900 1.000 0.997 0.996 0.991 0.973 0.933 0.977

MSMT+SR 0.972 0.966 0.956 0.927 0.857 0.749 0.905 1.000 0.999 0.995 0.994 0.978 0.940 0.980

MSMT† 0.993 0.989 0.982 0.959 0.903 0.734 0.927 1.000 0.998 0.997 0.994 0.981 0.922 0.977

MSMT†+SR 0.994 0.990 0.982 0.960 0.906 0.745 0.929 1.000 0.998 0.999 0.997 0.988 0.953 0.986

Table 3. Recognition performance of several baseline models, i.e., single source trained model on CASIA database (SS), single source

model fine-tuned on the target database (SS-FT), multi-source multi-task models (MSMT), MSMT with direct identity feature ℓ2 distance

regularization (MSMT+L2), the proposed MSMT with Siamese reconstruction regularization models (MSMT+SR), MSMT with N-pair loss

instead of cross entropy loss (MSMT†) and MSMT† with SR, evaluated on MultiPIE (P1) and 300WLP.

Method Frontal-Frontal Frontal-Profile

Sengupta et al. [33] 96.40 84.91

Sankarana et al. [31] 96.93 89.17

Chen et al. [4] 98.67 91.97

DR-GAN [41] 97.84 93.41

Human 96.24 94.57

Ours 98.67 93.76

Table 4. Verification accuracy comparison on CFP dataset.

MvDN, since it does not require pose information at test

time. On the other hand, MvDN is composed of multiple

sub-networks, each of which is specific to a certain pose

variation and therefore requires additional information on

head pose for recognition.

5.2. Evaluation on 300WLP

We further evaluate on a face-in-the-wild database, 300

Wild Large Pose [49] (300WLP). It is generated from

300W [30] face database by 3DDFA [49], in which it es-

tablishes a 3D morphable model and reconstruct the face

appearance with varying head poses. It consists of overall

122,430 images from 3,837 subjects. Compared to MultiPIE,

the overall volume is smaller, but the number of subjects

is significantly larger. For each subject, images are with

uniformly distributed continuously varying head poses in

contrast to MultiPIE’s strictly controlled 15◦ head pose in-

tervals. The lighting conditions as well as the background

are almost identical. Thus, it is an ideal dataset to evaluate

algorithms for pose variation.

We randomly split 500 subjects of 8014 images as testing

data and the rest 3337 subjects of 106,402 images as the

training data. Among the testing data, two 0◦ head pose

images per subject form the gallery and the rest 7014 images

serves as the probe. Table 2 shows the comparison with

two state-of-the-art general face recognition methods, i.e.

VGGFace [22] and N-pair loss face recognition [36]. To

the best of our knowledge, we are the first to apply our

pose-invariant face recognition framework on this dataset.

Thus, we only compare our method with the two general

face recognition frameworks.

Since head poses in 300WLP continuously vary, we group

the test samples into 6 pose intervals, (0, 15◦), (15◦, 30◦),
(30◦, 45◦), (45◦, 60◦), (60◦, 75◦) and (75◦, 90◦). For short

annotation, we mark each interval with the end point, e.g.,

30◦ denotes the pose interval (15◦, 30◦). From Table 2,

our method achieves consistently better accuracy especially

when pose angle approaches 90◦, which is clearly con-

tributed by our feature reconstruction based disentanglement.

5.3. Evaluation on CFP

The Celebrities in Frontal-Profile (CFP) database [33]

focuses on extreme head pose face verification. It consists of

500 subjects, with 10 frontal images and 4 profile images for

each, in a wild setting. The evaluation is conducted by aver-

aging the performance of 10 randomly selected splits with

350 identical and 350 non-identical pairs. Our MSMT+SR

finetuned on MultiPIE with N-pair loss is the model evalu-

ated in this experiment. The reported human performance is

94.57% accuracy on the frontal-profile protocol and 96.24%

on the frontal-frontal protocol, which shows the challenge

of recognizing profile views.

Results in Table 4 suggest that our method achieves con-

sistently better performance compared to state-of-the-art. We

reach the same Frontal-Frontal accuracy as Chen et al. [4]

while being significantly better on Frontal-Profile by 1.8%.

We are slightly better than DR-GAN [41] on extreme pose

evaluation and 0.8% better on frontal cases. DR-GAN is a

recent generative method that seeks the identity preservation

at the image level, which is not a direct optimization on

the features. Our feature reconstruction method preserves

identity even when presented with profile view faces. In par-

ticular, as opposed to prior methods, ours is the only one that

obtains very high accuracy on both the evaluation protocols.

5.4. Control Experiments

We extensively evaluate recognition performance on vari-

ous baselines to study the effectiveness of each module in our

proposed framework. Specifically, we evaluate and compare

the following models:
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MultiPIE
MSMT 0.965 0.955 0.945 0.914 0.827 0.689 0.882 1.000 0.996 0.988 0.953 0.889 0.720 0.904

Ours 0.972 0.966 0.956 0.927 0.857 0.749 0.905 0.994 0.995 0.992 0.958 0.901 0.733 0.910

300WLP
MSMT 0.941 0.927 0.898 0.837 0.695 0.432 0.788 1.000 0.993 0.993 0.986 0.968 0.922 0.971

Ours 0.945 0.933 0.910 0.862 0.736 0.459 0.808 1.000 0.999 0.995 0.994 0.978 0.940 0.980

Table 5. Cross database evaluation on MultiPIE and 300WLP. The top two rows show the model of MSMT and our method trained on

CASIA and MultiPIE, while tested on both MultiPIE and 300WLP. The bottom two rows show the model of MSMT and our method trained

on CASIA and 300WLP, while tested on both MultiPIE and 300WLP.

• SS: trained on a single source (e.g., CASIA-WebFace)

using softmax loss only.

• SS-FT: SS fine-tuned on a target dataset (e.g., MultiPIE

or 300WLP) using softmax loss only.

• MSMT: trained on multiple data sources (e.g., CASIA +

MultiPIE or 300WLP) using softmax loss for identity and

L2 loss for pose.

• MSMT+L2: fine-tuned on MSMT models using softmax

loss and Euclidean loss on pairs.

• MSMT+SR: fine-tuned on MSMT models using softmax

loss and Siamese reconstruction loss.

• MSMT†: trained on the same multiple data sources as

MSMT, using N-pair [36] metric loss for identity and L2

loss for pose.

• MSMT†+SR: finetuned on MSMT† models with N-pair

loss and reconstruction loss.

The SS model serves as the weakest baseline. We observe

that simultaneously training the network on multiple sources

of CASIA and MultiPIE (or 300WLP) using multi-task ob-

jective (i.e., identification loss, pose or landmark estimation

loss) is more effective than single-source training followed

by fine-tuning. We believe that our MSMT learning can be

viewed as a form of curriculum learning [1] since multiple

objectives introduced by multi-source and multi-task learn-

ing are at different levels of difficulty (e.g., pose and land-

mark estimation or identification on MultiPIE and 300WLP

are relatively easier than identification on CASIA-WebFace)

and easier objectives allow to train faster and converge to

better solution.

As an alternative to reconstruction regularization, one

may consider reducing the distance between the identity-

related features of the same subject under different pose

directly (MSMT+L2). Learning to reduce the distance im-

proves the performance over the MSMT model, but is not

as effective as our proposed reconstruction regularization

method, especially on face images with large pose variations.

Further, we observe that employing the N-pair loss [36]

within our framework also boosts performance, which is

shown by the improvements from MSMT to MSMT† and

MSMT+SR to MSMT†+SR. We note that the MSMT† base-

line is not explored in prior works on pose-invariant face

recognition. It provides a different way to achieve simi-

lar goals as the proposed reconstruction method. Indeed,

a collateral observation through the relative performances

of MSMT and MSMT† is that the softmax loss is not good

at disentangling pose from identity, while metric learning

excels at it. Indeed, our feature reconstruction metric might

be seen as achieving a similar goal, thus, improvements over

MSMT† are marginal, while those over MSMT are large.

5.5. Cross Database Evaluation

We evaluate our models, which are trained on CASIA

with MultiPIE or 300WLP, on the cross test set 300WLP

or MultiPIE, respectively. Results are shown in Table 5

to validate the generalization ability. There are obvious

accuracy drops on both databases, for instance, a 7% drop

on 300WLP and 10% drop on MultiPIE. However, such

performance drops are expected since there exists a large

gap in the distribution between MultiPIE and 300WLP.

Interestingly, we observe significant improvements when

compared to VGGFace. These are fair comparisons since

neither networks is trained on the training set of the target

dataset. When evaluated on MultiPIE, our MSMT model

trained on 300WLP and CASIA database improves 0.8%
over VGGFace and the model with reconstruction regular-

ization demonstrates stronger performance, showing 2.8%
improvement over VGGFace. Similarly, we observe 6.6%
and 7.2% improvements for MultiPIE and CASIA trained

MSMT models and our proposed MSMT+SR, respectively,

over VGGFace when evaluated on the 300WLP test set. This

partially confirms that our performance is not an artifact of

overfitting to a specific dataset, but is generalizable across

different datasets of unseen images.

6. Conclusion

In the paper, we propose a new reconstruction loss to

regularize identity feature learning for face recognition. We

also introduce a data synthesization strategy to enrich the

diversity of pose, requiring no additional training data. Rich

embedding has already shown promising effects revealed

by our control experiments, which is interpreted as curricu-

lum learning. The self and cross reconstruction regular-

ization achieves successful disentanglement of identity and

pose, to show significant improvements on both MultiPIE,

300WLP and CFP with 2% to 12% gaps. Cross-database

evaluation further verifies that our model generalizes well

across databases. Future work will focus on closing the

systematic gap among databases and further improve the

generalization ability.
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