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Abstract

This paper introduces a novel approach for modeling vi-

sual relations between pairs of objects. We call relation a

triplet of the form (subject, predicate, object) where the

predicate is typically a preposition (eg. ’under’, ’in front

of’) or a verb (’hold’, ’ride’) that links a pair of objects

(subject, object). Learning such relations is challenging

as the objects have different spatial configurations and ap-

pearances depending on the relation in which they occur.

Another major challenge comes from the difficulty to get an-

notations, especially at box-level, for all possible triplets,

which makes both learning and evaluation difficult. The

contributions of this paper are threefold. First, we design

strong yet flexible visual features that encode the appear-

ance and spatial configuration for pairs of objects. Second,

we propose a weakly-supervised discriminative clustering

model to learn relations from image-level labels only. Third

we introduce a new challenging dataset of unusual relations

(UnRel) together with an exhaustive annotation, that en-

ables accurate evaluation of visual relation retrieval. We

show experimentally that our model results in state-of-the-

art results on the visual relationship dataset [32] signifi-

cantly improving performance on previously unseen rela-

tions (zero-shot learning), and confirm this observation on

our newly introduced UnRel dataset.

1. Introduction

While a great progress has been made on the detection

and localization of individual objects [41, 53], it is now time

to move one step forward towards understanding complete

scenes. For example, if we want to localize “a person sitting

on a chair under an umbrella”, we not only need to detect the

objects involved : “person”, “chair”, “umbrella”, but also

need to find the correspondence of the semantic relations

“sitting on” and “under” with the correct pairs of objects

in the image. Thus, an important challenge is automatic
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person ride dog person on top of traffic light

Figure 1: Examples of top retrieved pairs of boxes in UnRel

dataset for unusual queries (indicated below each image)

with our weakly-supervised model described in 3.2.

understanding of how entities in an image interact with each

other.

This task presents two main challenges. First, the ap-

pearance of objects can change significantly due to inter-

actions with other objects (person cycling, person driving).

This visual complexity can be tackled by learning “visual

phrases” [44] capturing the pair of objects in a relation as

one entity, as opposed to first detecting individual entities in

an image and then modeling their relations. This approach,

however, does not scale to the large number of relations

as the number of such visual phrases grows combinatori-

ally, requiring large amounts of training data. To address

this challenge, we need a method that can share knowledge

among similar relations. Intuitively, it seems possible to

generalize frequent relations to unseen triplets like those de-

picted in Figure 1 : for example having seen “person ride

horse” at training could help recognizing “person ride dog”

at test time.

The second main challenge comes from the difficulty to

provide exhaustive annotations on the object level for re-

lations that are by their nature non mutually-exclusive (i.e.

“on the left of” is also “next to”). A complete labeling of R
relations for all pairs of N objects in an image would indeed
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require O(N2R) annotations for each image. Such diffi-

culty makes both learning and evaluation very challenging.

For learning, it would be desirable to learn relations from

image-level annotations only. For evaluation, current large-

scale datasets [28, 32] do not allow retrieval evaluation due

to large amount of missing annotations.

Contributions. The contributions of this work are three-

fold. First, to address the combinatorial challenge, we de-

velop a method that can handle a large number of relations

by sharing parameters among them. For example, we learn

a single “on” classifier that can recognize both “person on

bike” and “dog on bike”, even when “dog on bike” has not

been seen in training. The main innovation is a new model

of an object relation that represents a pair of boxes by ex-

plicitly incorporating their spatial configuration as well as

the appearance of individual objects. Our model relies on a

multimodal representation of object configurations for each

relation to handle the variability of relations. Second, to

address the challenge of missing training data, we develop

a model that, given pre-trained object detectors, is able to

learn classifiers for object relations from image-level super-

vision only. It is, thus, sufficient to provide an image-level

annotation, such as “person on bike”, without annotating

the objects involved in the relation. Finally, to address the

issue of missing annotations in test data, we introduce a new

dataset of unusual relations (UnRel), with exhaustive anno-

tation for a set of unusual triplet queries, that enables to

evaluate retrieval on rare triplets and validate the general-

ization capabilities the learned model.

2. Related Work

Alignment of images with language. Learning corre-

spondences between fragments of sentences and image re-

gions has been addressed by the visual-semantic alignment

which has been used for applications in image retrieval and

caption generation [6, 25, 26]. With the appearance of new

datasets providing box-level natural language annotations

[27, 28, 33, 38], recent works have also investigated cap-

tion generation at the level of image regions for the tasks

of natural language object retrieval [20, 33, 42] or dense

captioning [22]. Our approach is similar in the sense that

we aim at aligning a language triplet with a pair of boxes

in the image. Typically, existing approaches do not explic-

itly represent relations between noun phrases in a sentence

to improve visual-semantic alignment. We believe that un-

derstanding these relations is the next step towards image

understanding with potential applications in tasks such as

Visual Question Answering [2].

Learning triplets. Triplet learning has been addressed in

various tasks such as mining typical relations (knowledge

extraction) [7, 43, 52, 54], reasoning [21, 35, 45], object de-

tection [17, 44], image retrieval [23] or fact retrieval [11].

In this work, we address the task of relationship detection in

images. This task was studied for the special case of human-

object interactions [9, 10, 18, 39, 40, 49, 50, 51], where

the triplet is in the form (person, action, object). Contrary

to these approaches, we do not restrict the subject to be a

person and we cover a broader class of predicates that in-

cludes prepositions and comparatives. Moreover, most of

the previous work in human-object interaction was tested

on small datasets only and does not explicitly address the

combinatorial challenge in modeling relations [44]. Re-

cently, [32] tried to generalize this setup to non-human sub-

jects and scale to a larger vocabulary of objects and rela-

tions by developing a language model sharing knowledge

among relations for visual relation detection. In our work

we address this combinatorial challenge by developing a

new visual representation that generalizes better to unseen

triplets without the need for a strong language model. This

visual representation shares the spirit of [14, 23, 30] and

we show it can handle multimodal relations and generalizes

well to unseen triplets. Our model also handles a weakly-

supervised set-up when only image-level annotations for

object relations are available. It can thus learn from com-

plex scenes with many objects participating in different re-

lations, whereas previous work either uses full supervision

or typically assumes only one object relation per image, for

example, in images returned by a web search engine. Fi-

nally, we also address the problem to evaluate accurately

due to missing annotations also pointed out in [11, 32]. We

introduce a new dataset of unusual relations exhaustively

labeled for a set of triplet queries, the UnRel dataset. This

dataset enables the evaluation of relation retrieval and local-

ization. Our dataset is related to the “Out of context” dataset

of [8] which also presents objects in unusual configurations.

However, the dataset of [8] is not annotated with relations

and does not match the vocabulary of objects in [32], which

prevents direct comparisons with existing methods that use

data from [32] for training.

Weak supervision. Most of the work on weakly-

supervised learning for visual recognition has focused on

learning objects [4, 12, 36]. Here, we want to tackle the

task of weakly-supervised detection of relations. This task

is more complex as we need to detect the individual objects

that satisfy the specific relation. We assume that pre-trained

detectors for individual objects are available and learn rela-

tions among objects with image-level labels. Our work uses

a discriminative clustering objective [3], that has been suc-

cessful in several computer vision tasks [5, 24], but has not

been so far, to the best of our knowledge, used for modeling

relations.

Zero-shot learning. Zero-shot learning has been mostly

explored for object classification [13, 29, 46, 48]

and recently for the task of describing images with

novel objects [19, 47]. In our work, we address

zero-shot learning of relations in the form of triplets

(subject, predicate, object), where each term has already
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Figure 2: Our visual representation is the composition of

appearance features for each object [a(os),a(oo)] and their

spatial configuration r(os,oo) represented by the green ar-

row.

been seen independently during training, but not in that spe-

cific combination. We develop a model to detect and local-

ize such zero-shot relations.

3. Representing and learning visual relations

We want to represent triplets t = (s, r, o) where s is the

subject, o the object and r is the predicate. s and o are nouns

and can be objects like “person”, “horse”, “car” or regions

such as “sky”, “street”, “mountain”. The predicate r is a

term that links the subject and the object in a sentence and

can be a preposition (“in front of”, “under”), a verb (“ride”,

“hold”) or a comparative adjective (“taller than”). To detect

and localize such triplets in test images, we assume that the

candidate object detections for s and o are given by a de-

tector trained with full supervision. Here we use the object

detector [15] trained on the Visual Relationship Detection

training set [32]. In 3.1, we will explain our representation

of a triplet t = (s, r, o) and show in 3.2 how we can learn

to detect triplets in images given weak image-level supervi-

sion for relations.

3.1. Visual representation of relations

A triplet t = (s, r, o) such as “person next to surfboard”

in Figure 2 visually corresponds to a pair of objects (s, o) in

a certain configuration. We represent such pairs by the spa-

tial configuration between object bounding boxes (os,oo)
and the individual appearance of each object.

Representing spatial configurations of objects. Given

two boxes os = [xs, ys, ws, hs], oo = [xo, yo, wo, ho],
where (x, y) are the coordinates of the center of the box,

and (w, h) are the width and height of the box, we encode

the spatial configuration with a 6-dimensional vector:

r(os,oo) = [
xo − xs√
wshs

︸ ︷︷ ︸

r1

,
yo − ys√
wshs

︸ ︷︷ ︸

r2

,

√

woho

wshs
︸ ︷︷ ︸

r3

,

os ∩ oo

os ∪ oo

︸ ︷︷ ︸

r4

,
ws

hs
︸︷︷︸

r5

,
wo

ho
︸︷︷︸

r6

]

(1)

where r1 and r2 represent the renormalized translation be-

tween the two boxes, r3 is the ratio of box sizes, r4 is the

overlap between boxes, and r5, r6 encode the aspect ratio

of each box respectively. Directly adopting this feature as

our representation might not be well suited for some spa-

tial relations like “next to” which are multimodal. Indeed,

“s next to o” can either correspond to the spatial configura-

tion “s left of o” or “s right of o”. Instead, we propose to

discretize the feature vector (1) into k bins. For this, we as-

sume that the spatial configurations r(os,oo) are generated

by a mixture of k Gaussians and we fit the parameters of the

Gaussian Mixture Model to the training pairs of boxes. We

take the scores representing the probability of assignment

to each of the k clusters as our spatial representation. In

our experiments, we use k = 400, thus the spatial repre-

sentation is a 400-dimensional vector. In Figure 3, we show

examples of pairs of boxes for the most populated compo-

nents of the trained GMM. We can observe that our spatial

representation can capture subtle differences between con-

figurations of boxes, see row 1 and row 2 of Figure 3, where

“person on board” and “person carry board” are in different

clusters.

Representing appearance of objects. Our appearance

features are given by the fc7 output of a Fast-RCNN [15]

trained to detect individual objects. In our experiments, we

use Fast-RCNN with VGG16 pre-trained on ImageNet. As

the extracted features have high dimensionality, we perform

PCA on the L2-normalized features to reduce the number

of dimensions from 4096 to 300. We concatenate the ap-

pearance features of the subject and object and apply L2-

normalization again.

Our final visual feature is a concatenation of the spa-

tial configuration r(os,oo) and the appearance of objects

[a(os),a(oo)]. In our experiments, it has a dimensionality

of d = 1000. In the fully supervised setup, where each re-

lation annotation is associated with a pair of object boxes in

the image, we use ridge regression to train a multi-way re-

lation classifier to assign a relation to a given visual feature.

Training is performed jointly on all relation examples of the

training set.

In the next section, we describe how we learn relation

classifiers with only weak, image-level, annotations.

3.2. Weakly­supervised learning of relations

Equipped with pre-trained detectors for individual ob-

jects, our goal here is to learn to detect and localize rela-

tions between objects, given image-level supervision only.

For example, for a relation “person falling off horse” we are

given (multiple) object detections for “person” and “horse”,

but do not know which objects participate in the relation,

as illustrated in Figure 4. Our model is based on a weakly-

supervised discriminative clustering objective [3], where we

introduce latent variables to model which pairs of objects
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Figure 3: Examples for different GMM components of our spatial configuration model (one per row). In the first column we

show the spatial configuration corresponding to the mean of the pairs of boxes per component. Note that our representation

can capture subtle differences between spatial configurations, see e.g., row 1 and 2.

participate in the relation. We train a classifier for each

predicate r and incorporate weak annotations in the form of

constraints on latent variables. Note that the relation clas-

sifiers are shared across object categories (eg. the relations

“person on horse” and “cat on table” share the same classi-

fier “on”) and can thus be used to predict unseen triplets.

Discriminative clustering of relations. Our goal is to

learn a set of classifiers W = [w1, ...,wR] ∈ R
d×R where

each classifier wr predicts the likelihood of a pair of objects

(s, o) to belong to the rth predicate in a vocabulary of R
predicates. If strong supervision was provided for each pair

of objects, we could learn W by solving a ridge regression :

min
W∈Rd×R

1

N
‖Z −XW‖2F + λ‖W‖2F (2)

where Z ∈ {0, 1}N×R are the ground truth labels for each

of the N pairs of objects across all training images, and

X = [x1, ...,xN]T is a N × d matrix where each row xk is

the visual feature corresponding to the kth pair of objects.

However, in a weakly-supervised setup the entire matrix Z
is unknown. Building on DIFFRAC [3], our approach is to

optimize the cost :

min
Z∈Z

min
W∈Rd×R

1

N
‖Z −XW‖2F + λ‖W‖2F (3)

which treats Z as a latent assignment matrix to be learnt

together with the classifiers W ∈ R
d×R. Minimizing the

first term encourages the predictions made by W to match

the latent assignments Z, while the second term is a L2-

regularization on the classifiers W . This framework enables

to incorporate weak annotations by constraining the space

of valid assignment matrices Z ∈ Z . The valid matrices

Z ∈ {0, 1}N×R satisfy the multiclass constraint Z1R = 1N

which assigns a pair of objects to one and only one predicate

r. We describe in the next paragraph how to incorporate the

weak annotations as constraints.

Weak annotations as constraints. For an image, we are

given weak annotations in the form of triplets t = (s, r, o) ∈
T . Having such triplet (s, r, o) indicates that at least one of

the pairs of objects with object categories (s, o) is in relation

r. Let us call Nt the subset of pairs of objects in the image

that correspond to object categories (s, o). The rows of Z
that are in subset Nt should satisfy the constraint :

∑

n∈Nt

Znr ≥ 1 (4)

This constraint ensures that at least one of the pair of

objects in the subset Nt is assigned to predicate r. For in-

stance, in case of the image in Figure 4 that contains 12

candidate pairs of objects that potentially match the triplet

t = (person, falling off, horse), the constraint (4) im-

poses that at least one of them is in relation falling off .

Triplet score. At test time, we can compute a score for a

pair of boxes (os,oo) relative to a triplet t = (s, r, o) as

S((os,oo) | t) = vrel((os,oo) | r) + αsubvsub(os | s)
+αobjvobj(oo | o) + αlangℓ((s, o) | r),

(5)

where vrel((os,oo)|r) = x(os,oo)wr is the score returned

by the classifier wr for predicate r (learnt by optimizing (3))

for the visual representation x(os,oo) of the pair of boxes.

vsub(os|s) and vobj(oo|o) are the object class likelihoods

returned by the object detector. ℓ((s, o)|r) is a score of a

language model that we can optionally combine with our

visual model.

Optimization. We optimize the cost in (3) on pairs of ob-

jects in the training set using a variant of the Frank-Wolfe al-

gorithm [34, 37]. The hyperparameters (αsub, αobj , αlang)
are optimized on an held-out fully-annotated validation set

which has no overlap with our training and test sets. In our

experiments we use the validation split of [22] of the Visual
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Figure 4: Image from the COCO dataset [31] associated

with caption : “A person falling off the side of a horse as it

rides”. The boxes correspond to the possible candidates for

object category person (blue) and horse (red). Our model

has to disambiguate the right pair for the relation “falling

off” among 12 candidate pairs.

Genome dataset [28]. Unless otherwise specified, the can-

didate pairs, both at training and test time, are the outputs of

the object detector [15] that we fine-tuned on the Visual Re-

lationship Detection dataset [32]. For each image, we keep

the object candidates whose confidence scores is above 0.3

among the top 100 detections. Non-maximum suppression

with threshold 0.3 is applied to handle multiple detections.

This results in an average of 18 object detections per image,

i.e. around 300 pairs of boxes.

4. Experiments

In this section, we evaluate the performance of our model

on two datasets for different evaluation setups. First, we

evaluate our new visual representation for relations on the

Visual Relationship Detection dataset [32]. We show results

with our weakly-supervised model learned from image-

level supervision and present large improvements over the

state of the art for detecting unseen triplets (zero-shot detec-

tion). Second, we evaluate our model for the task of unusual

triplets retrieval and localization on our new UnRel dataset.

4.1. Recall on Visual Relationship Detection dataset

Dataset. We evaluate our method on the Visual Relation-

ship Detection dataset [32] following the original experi-

mental setup. This dataset contains 4000 training and 1000

test images with ground truth annotations for relations be-

tween pairs of objects. Due to the specific train/test split

provided by [32], 10% of test triplets are not seen at train-

ing and allow for evaluation of zero-shot learning. Some

of these triplets are rare in the linguistic and visual world

(e.g. “laptop on stove”), but most of them are only infre-

quent in the training set or have not been annotated (e.g.

“van on the left of car”). Around 30K triplets are annotated

in the training set, with an average of 7.5 relations per im-

age. The dataset contains 100 objects and 70 predicates, i.e.

100 × 100 × 70 possible triplets. However there are only

6672 different annotated triplets.

Evaluation set-up. Following [32], we compute

recall@x which corresponds to the proportion of ground

truth pairs among the x top scored candidate pairs in each

image. We use the scores returned by (5) to sort the can-

didate pairs of boxes. The evaluation is reported for three

setups. In predicate detection, candidate pairs of boxes

are ground truth boxes, and the evaluation only focuses on

the quality of the predicate classifier. In the other two more

realistic setups, the subject and object confidence scores are

provided by an object detector and we also check whether

the candidate boxes intersect the ground truth boxes : either

both subject and object boxes should match (relationship

detection), or the union of them should match (phrase

detection). For a fair comparison with [32], we report

results using the same set of R-CNN [16] object detections

as them. The localization is evaluated with IoU = 0.5.

Benefits of our visual representation. We first evaluate

the quality of our visual representation in a fully supervised

setup where the ground truth spatial localization for each

relation is known, i.e. we know which objects in the im-

age are involved in each relation at training time. For this,

we solve the multi-label ridge regression in (2). Training

with one-vs-rest SVMs gives similar results. We compare

three types of features described in Section 3.1 in Table 1:

[S] the spatial representation (f.), [A] the appearance repre-

sentation (g.) and [S+A] the concatenation of the two (h.).

We compare with the Visual Phrases model [44] and several

variants of [32] 1 : Visual model alone (b.), Language (like-

lihood of a relationship) (c.), combined Visual+Language

model (d.). In row (e.) we also report the performance of the

full language model of [32], that scores the candidate pairs

of boxes based on their predicted object categories, that we

computed using the model and word embeddings provided

by the authors. Because their language model is orthogo-

nal to our visual model, we can combine them together (i.).

The results are presented on the complete test set (column

All) and on the zero-shot learning split (column Unseen).

Table 1 shows that our combined visual features [S+A] im-

prove over the visual features of [32] by 40% on the task of

predicate detection and more than 10% on the hardest task

of relationship detection. Furthermore, our purely visual

features without any use of language (h.) reach compara-

ble performance to the combined Visual+Language features

of [32] and reach state-of-the-art performance (i.) when

combined with the language scores of [32]. The good per-

formance of our spatial features [S] alone (f.) confirms the

observation we made in Figure 3 that our spatial clusters

group pairs of objects in similar relations. That could partly

explain why the visual model of [32] has low performance.

1When running the evaluation code of [32], we found slighlty better

performance than what is reported in their paper. See appendix [1] for

more details.
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Predicate Det. Phrase Det. Relationship Det.

All Unseen All Unseen All Unseen

Full sup.

a. Visual Phrases [44] 0.9 - 0.04 - - -

b. Visual [32] 7.1 3.5 2.2 1.0 1.6 0.7

c. Language (likelihood) [32] 18.2 5.1 0.08 0.00 0.08 0.00

d. Visual + Language [32] 47.9 8.5 16.2 3.4 13.9 3.1

e. Language (full) [32] 48.4 12.9 15.8 4.6 13.9 4.3

f. Ours [S] 42.2 22.2 13.8 7.4 12.4 7.0

g. Ours [A] 46.3 16.1 14.9 5.6 12.9 5.0

h. Ours [S+A] 50.4 23.6 16.7 7.4 14.9 7.1

i. Ours [S+A] + Language [32] 52.6 21.6 17.9 6.8 15.8 6.4

Weak sup.

j. Ours [S+A] 46.8 19.0 16.0 6.9 14.1 6.7

k. Ours [S+A] - Noisy 46.4 17.6 15.1 6.0 13.4 5.6

Table 1: Results on Visual Relationship Detection dataset [32] for R@50. See appendix [1] for results with R@100.

Their model learns a classifier only based on the appearance

of the union of the two object boxes and lacks information

about their spatial configuration.

Weak supervision. We evaluate our weakly-supervised

classifiers W learned on image-level labels as described in

Section 3.2. We use the ground truth annotations of the Vi-

sual Relationship Detection dataset as image-level labels.

We report the results using our combined spatial and ap-

pearance features (j.) in Table 1. We see that when switch-

ing to weak supervision the recall@50 only drops from

50.4% to 46.8% for predicate detection and has limited in-

fluence on the other tasks. This is an interesting result as

it suggests that, given pre-trained object detectors, weak

image-level annotations are enough to learn good classifiers

for relations. To investigate this further we have also tried

to learn relation classifiers directly from noisy image-level

labels without inferring at training time which objects par-

ticipate in which relation. For each triplet t = (s, r, o) in an

image containing candidate pairs of boxes (os,oo) we ran-

domly select one of the pairs as being in relation r and dis-

card the other object pairs. This is equivalent to training in

a fully-supervised setup but with noisy labels. The perfor-

mance obtained by this classifier (k.) is below our weakly-

supervised learning set-up but is surprisingly high. We be-

lieve that this is related to a particular bias present in the

Visual Relationship Detection dataset [32], which contains

many images with only two prominent objects involved in a

specific relation (more than half of the triplets fall into this

category). To underline the ability of the weakly-supervised

model to disambiguate the correct bounding boxes, we eval-

uate in a more difficult setup where we replace the candidate

test pairs of [32] by all candidate pairs formed by objects

of confidence scores above 0.3. This multiplies by 5 the

number of candidate pairs, resulting in an increased level

of ambiguity. In this more challenging setup, our approach

obtains a recall@50 for Phrase Detection (resp. Relation-

ship Detection) of 17.9% (resp. 12.0%) compared to the

”Ours [S+A] Noisy” baseline which drops to 15.3% (resp.

10.1%).

Unseen triplets. Following [32] we report results on the

“zero-shot split” of the test set containing only the test

triplets not seen in training. Results for both of our fully-

supervised and weakly-supervised methods are shown in

Table 1 (column Unseen). Interestingly, our fully super-

vised model almost triples the performance on the unseen

triplets compared to the Visual+Language model of [32].

Even using weak supervision, our recall of 19.0% is signifi-

cantly better than their fully supervised method. We believe

that this improvement is due to the strength of our visual

features that generalize well to unseen triplets.

Figure 5 shows examples of predictions of both seen and

unseen triplets (last row) by our model [S+A] trained with

weak-supervision. We note that many of the misclassified

relations are in fact due to missing annotations in the dataset

(yellow column). First, not all pairs of objects in the im-

age are labeled; second, the pairs that are labeled are not

labelled exhaustively, i.e. “person riding horse” can be la-

belled as “person on horse” and predicting “riding” for this

pair of objects is considered as an error. Not having ex-

haustive annotation per object pair is therefore an issue as

predicates are not necessary mutually exclusive. We tackle

this problem in the next section by introducing a new ex-

haustively labeled dataset that enables retrieval evaluation.

Our real errors (red column) are mostly due to two reasons:

either the spatial configuration is challenging (e.g.“person

on table”), or the spatial configuration is roughly correct

but the output predicate is incorrect (e.g. “van has car” has

similar configuration to ”person has bag”).

4.2. Retrieval of rare relations on UnRel Dataset

Dataset. To address the problem of missing annotations,

we introduce a new challenging dataset of unusual relations,

UnRel, that contains images collected from the web with
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Figure 5: Relationship detections on the test set of [32]. We show examples among the top scored triplets detected for each

relation by our weakly-supervised model described in 3.2. The triplet is correctly recognized if both the object detections and

the relation match ground truth (in green), else the triplet is incorrect (in red). We also show examples of correctly predicted

relations where the ground truth is erroneous : either missing or incomplete (in yellow). The last row shows zero-shot triplets

that are not in the training set. See the appendix [1] for additional qualitative results.

unusual language triplet queries such as “person ride gi-

raffe”. We exhaustively annotate these images at box-level

for the given triplet queries. UnRel dataset has three main

advantages. First, it is now possible to evaluate retrieval and

localization of triplet queries in a clean setup without prob-

lems posed by missing annotations. Second, as the triplet

queries of UnRel are rare (and thus likely not seen at train-

ing), it enables evaluating the generalization performance of

the algorithm. Third, other datasets can be easily added to

act as confusers to further increase the difficulty of the re-

trieval set-up. Currently, UnRel dataset contains more than

1000 images queried with 76 triplet queries.

Setup. We use our UnRel dataset as a set of positive pairs

to be retrieved among all the test pairs of the Visual Re-

lationship Dataset. We evaluate retrieval and localization

with mean average precision (mAP) over triplet queries t =
(s, r, o) of UnRel in two different setups. In the first setup

(with GT) we rank the manually provided ground truth

pairs of boxes (os,oo) according to their predicate scores

vrel((os,oo) | r) to evaluate relation prediction without the

difficulty of object detection. In the second setup (with

candidates) we rank candidate pairs of boxes (os,oo) pro-

vided by the object detector according to predicate scores

vrel((os,oo) | r). For this second setup we also evaluate

the accuracy of localization : a candidate pair of boxes is

positive if its IoU with one ground truth pair is above 0.3.

We compute different localization metrics : mAP–subj

computes the overlap of the predicted subject box with the

ground truth subject box, mAP–union computes the over-

lap of the predicted union of subject and object box with

the union of ground truth boxes and mAP–subj/obj com-

putes the overlap of both the subject and object boxes with

their respective ground truth. Like in the previous section,

we form candidate pairs of boxes by taking the top-scored

object detections given by [15]. We keep at most 100 can-

didate objects per image, and retain at most 500 candidate

pairs per image. For this retrieval task where it is important

to discriminate the positive from negative pairs, we found

it is important to learn an additional “no relation” class by

adding an extra column to W in (3). The negative pairs are

sampled at random among the candidates that do not match

the image-level annotations.

Results. Retrieval results are shown in Table 2. Our clas-

sifiers are trained on the training subset of the Visual Re-

lationship Dataset. We compare with two strong base-

lines. The first baseline is our implementation of [32] (their

trained models are not available online). For this, we trained

a classifier [41] to output predicates given visual features

extracted from the union of subject and object bounding

boxes. We do not use the language model as its score does

not affect the retrieval results (only adding a constant off-

set to all retrieved images). We verified our implementation

on the Visual Relationship Dataset where results of [32] are

available. As the second baseline, we use the DenseCap
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Figure 6: Top 3 retrieved pairs of boxes for a set of UnRel triplet queries (first line is best) with our weakly-supervised

model. The pair is marked as positive (green) if the candidate subject and object boxes coincide with a ground truth subject

and object boxes with IoU ≥ 0.3. We provide more qualitative results in appendix [1].

[22] model to generate region candidates for each image

and sort them according to the score of the given triplet

query. Note that this is a strong baseline as we use the

pre-trained model released by the authors which has been

trained on 77K images of [28] in a fully supervised man-

ner using localized language descriptions, compared to our

model trained on only 4K training images of [32]. Dense-

Cap outputs only a single bounding box (not a pair of boxes)

but we interpret its output as either a subject box or a union

of boxes. We cannot compare with the Visual Phrases [44]

approach as it requires training data for each triplet, which

is not available for these rare queries. We report the chance

as the performance given by random ordering of the propos-

als. Results in Table 2 show significant improvements of our

method over the baselines. Note that our weakly-supervised

method outperforms these strong baselines that are fully su-

pervised. This confirms our results from the previous sec-

tion that (i) our visual features are well suited to model re-

lations, (ii) they generalize well to unseen triplets, and (iii)

training from weak image-level supervision is possible and

results only in a small loss of accuracy compared to training

from fully supervised data. Examples of retrieved unusual

relations are shown in Figure 6.

5. Conclusion

We have developed a new powerful visual descriptor for

representing object relations in images achieving state-of-

the-art performance on the Visual Relationship Detection

dataset [32], and in particular significantly improving the

current results on unseen object relations. We have also de-

With GT With candidates

- union subj subj/obj

Chance 38.4 8.6 6.6 4.2

Full sup.

DenseCap [22] - 6.2 6.8 -

Reproduce [32] 50.6 12.0 10.0 7.2

Ours [S+A] 62.6 14.1 12.1 9.9

Weak sup.

Ours [S+A] 58.5 13.4 11.0 8.7

Ours [S+A] - Noisy 55.0 13.0 10.6 8.5

Table 2: Retrieval on UnRel (mAP) with IoU=0.3

veloped a weakly-supervised model for learning object re-

lations and have demonstrated that, given pre-trained object

detectors, object relations can be learnt from weak image-

level annotations without a significant loss of recognition

performance. Finally, we introduced, UnRel, a new eval-

uation dataset for visual relation detection that enables to

evaluate retrieval without missing annotations and assess

generalization to unseen triplets. Our work opens-up the

possibility of learning a large vocabulary of visual relations

directly from large-scale Internet collections annotated with

image-level natural language captions.
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