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Abstract

Motivated by product detection in supermarkets, this pa-

per studies the problem of object proposal generation in

supermarket images and other natural images. We argue

that estimation of object scales in images is helpful for

generating object proposals, especially for supermarket im-

ages where object scales are usually within a small range.

Therefore, we propose to estimate object scales of images

before generating object proposals. The proposed method

for predicting object scales is called ScaleNet. To validate

the effectiveness of ScaleNet, we build three supermarket

datasets, two of which are real-world datasets used for test-

ing and the other one is a synthetic dataset used for training.

In short, we extend the previous state-of-the-art object pro-

posal methods by adding a scale prediction phase. The re-

sulted method outperforms the previous state-of-the-art on

the supermarket datasets by a large margin. We also show

that the approach works for object proposal on other natu-

ral images and it outperforms the previous state-of-the-art

object proposal methods on the MS COCO dataset. The su-

permarket datasets, the virtual supermarkets, and the tools

for creating more synthetic datasets will be made public.

1. Introduction

There is an exciting trend in developing intelligent shop-

ping systems to reduce human intervention and bring con-

venience to human’s life, e.g., Amazon Go1 system, which

makes checkout-free shopping experience possible in physi-

cal supermarkets. Another way to enhance the shopping ex-

perience in supermarkets is setting customer free from find-

ing and fetching products they want to buy, which drives the

demand to develop shopping navigation robots. This kind

of robots can also help visually impaired people shop in su-

permarkets. The vision system of such a robot should have

the abilities to address two problems sequentially. The first

is generating object proposals for products in images cap-

tured by the equipped camera (Fig. 1), and the second is

1https://www.amazon.com/b?node=16008589011

Figure 1: Example Object Annotations in the Supermarket

Datasets (Left) and the MS COCO Datasets [26] (Right). Yellow:

object scale is between 20% and 30% of the image scale; red: be-

tween 10% and 20%; green: less than 10%. The ratio is calculated

as the maximum of the width and the height of the object divided

by the maximum of the width and the height of the image. No

other object scales appear in the examples.

identifying each product proposal. In this paper, we focus

on the first problem.

There are many object proposal methods for general nat-

ural images [33, 34, 42, 46]. However, scenes of super-

markets are usually very crowded, e.g., one image taken

in supermarkets could have over 60 products. More chal-

lengingly, products of the same brands and categories are

usually placed together, i.e., the appearance similarities be-

tween adjacent products are often high, making the bound-

aries between them hard to detect. Consequently, the cur-

rent object proposal detection methods, including super-

pixel grouping based [1, 20, 42], edge or gradient com-

putation based [7, 46] and saliency and attention detection

based [2, 4, 5, 24, 28], are less effective and require a large

number of proposals to achieve reasonable recall rates.

However, we observe that the products in supermarkets

typically occur at a limited range of scales in the image.

To demonstrate this, we plot the distribution of the number

of object scales in real-world supermarkets (Fig. 2). This

suggests a strategy where we estimate object scales and use

them to guide proposals rather than exhaustive searching on

all scales. The same strategy of reducing search space of

scales is also applicable to other natural images in the MS

COCO [26], and it becomes very effective especially for

those that have sparse object scales (Fig. 2), for which an

effective scale prediction can reduce the search space and
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Figure 2: Distributions of the Number of Different Object Scale

Ratios of One Image on the MS COCO [26] Dataset and the Real-

World Supermarket Dataset. The ratio of the object size (the max-

imum of width and height) to the image size (the maximum of

width and height) is partitioned evenly to 10 bins from 0 to 1. We

count the number of different scale ratios appeared in one image on

the datasets. The object scales of supermarket images are sparser

than that of images in the MS COCO. Since 97.5% supermarket

images have neighboring non-zero bins, the scale distributions are

within a small range compared to the entire scale space. Moreover,

a reasonable number of images in the MS COCO dataset also have

fairly sparse object sizes.

eliminate false positives at improper scales.

More precisely, we propose a scale-aware object pro-

posal detection framework to address the problem (Fig. 3).

Our framework consists of two sequential parts. The first

is a scale estimation network, called ScaleNet, which pre-

dicts the scale distribution of the objects appeared in an im-

age. The second is an object proposal detection network,

which performs detection on re-scaled images according to

the estimated scales. For the second part, we use a deep

learning based object proposal detection method Sharp-

Mask [34], which predicts objectness confidence scores and

object masks at each location of the input image at several

pre-defined scales. Since this method can output dense ob-

ject masks, it fits the supermarket images well.

We evaluate the proposed framework on general natu-

ral images and supermarket images. To evaluate our frame-

work on natural images, we test it on the MS COCO dataset.

For the supermarket images, we collect two real-world su-

permarket datasets, in which the bounding boxes of prod-

ucts are annotated by humans. The first dataset is called

Real-Far, which is composed of 4033 products labeled and

has less variation in object scales. The second dataset is

called Real-Near, which has 3712 products labeled with

more variation in scales. The objective of collecting two

datasets is to evaluate and compare the performances in dif-

ferent settings of object scales.

Since human labeling for crowded scenes is very time-

consuming and expensive, to generate enough training data,

we use a Computer Graphics technique [35] to generate a

synthetic dataset, which includes 154238 objects labeled

for training and 80452 objects for validation. The synthetic

dataset is used for training and validation and the two real-

world datasets are used only for testing.

To summarize, the contributions of this paper include

• A scale estimation method ScaleNet to predict the object

scales of an image.

• An object proposal framework based on ScaleNet that

outperforms the previous state-of-the-arts on the super-

market datasets and MS COCO.

• Two real-world supermarket datasets and a synthetic

dataset, where the model trained only on synthetic dataset

transfers well to the real-world datasets. The datasets and

the tools will be made public.

2. Related Work

In this section, we review the related work in the research

topics including object proposal methods and virtual envi-

ronment constructions.

2.1. Object proposal

The previous work usually falls into two categories: one

is bounding box based, and the other is object mask based.

Both can generate object proposals in the form of bounding

box. In bounding box based methods such as Bing [7] and

EdgeBox [46], local features such as edges and gradients

are used for assessing objectness of certain regions. Follow-

ing the success of CNNs in image classification [14, 22, 41],

DeepBox [23] re-ranks the object proposals generated by

EdgeBox [46], and DeepProposal [13] generates object pro-

posal by an inverse cascade from the final to the initial layer

of the CNN. MultiBox [10] and SSD [29] compute object

regions by bounding box regression based on CNN feature

maps directly. In SSD, YOLO [36] and RPN [37], anchor

bounding boxes are used to regress bounding boxes. Jie et

al. [18] proposed scale-aware pixel-wise proposal frame-

work to handle objects of different scales separately. Al-

though some methods use multi-scales to generate propos-

als, they do not explicitly estimate the object scales.

Object mask based methods propose object bounding

boxes by segmenting the objects of interest from the cor-

responding background at pixel or region level. This type

of methods can detect objects by seed segmentation such

as GOP [20] and Learning to Propose Objects [21]. They

can also group over-segmented regions to propose objects

such as Selective Search [42] and MCG [1]. More re-

cently, DeepMask [33] assesses objectness and predicts ob-

ject masks in a sliding window fashion based on CNN fea-

tures, which achieved the state-of-the-art performance on

the PASCAL VOC [11] and the MS COCO [26] datasets.

SharpMask [34] further refines the mask prediction of

DeepMask by adding top-down refinement connection. Our

method extends the previous state-of-the-art SharpMask by

adding object scale prediction and outperforms them on the

supermarket dataset and on the MS COCO.
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Figure 3: The System Overview of the Proposed Object Proposal Framework. The system has two components: ScaleNet proposed in this

paper and SharpMask [34]. ScaleNet outputs a predication of the scale distribution of the input image, according to which the input image

is resized and fed to SharpMask. SharpMask then generates object proposals at the predicted scales. The image is best viewed in color.

2.2. Virtual environment construction

Using synthetic data for Computer Vision research has

attracted a lot of attention in recent work. Examples include

using synthetic data on semantic segmentation [38, 39], op-

tical flow [3, 8], stereo [31, 45], etc. To get virtual envi-

ronments, the first way is by taking advantages of the exist-

ing virtual environments [9, 19, 30, 38]. The second way

is to use open source platform such as UnrealCV [35] to

construct virtual worlds from scratch. We adopt the sec-

ond approach and use UnrealCV to build virtual supermar-

kets. When constructing virtual environment from scratch,

spatial modeling is important for creating realistic environ-

ments [12, 44]. The synthetic dataset introduced in this pa-

per builds the virtual environments from scratch with ran-

domness considered in spatial modeling, material and light-

ing conditions to create realistic images.

3. System Overview

This section presents the system overview of the object

proposal framework proposed in this paper, as shown in

Fig. 3. The system is composed of two sequential com-

ponents: the ScaleNet proposed in this paper and Sharp-

Mask [34]. The function of ScaleNet is to predict the scales

that best describe the statistics of the image so that Sharp-

Mask can utilize the predicted scales to find objects better in

the image and outputs proposals. ScaleNet looks at the in-

put image only once to predict the distribution of the object

scales while SharpMask looks at the input image multiple

times at the scales that are predicted by ScaleNet.

The main difference between the proposed framework

and SharpMask alone is the way they handle scales. Sharp-

Mask exhaustively searches a pre-defined scale set and gen-

erates object proposals from that. By contrast, this paper

refines the scale set so that SharpMask can take the image

at a finer range of scales for object proposal generation.

4. Scale Distribution Prediction

This section formulates the problem of scale distribution

prediction, presents the architecture of the proposed method

ScaleNet, and connects ScaleNet to SharpMask.

4.1. Problem formalization

Given an image I , we denote the objects of interest in the

image I as O = {o1, o2, ..., on}. Let mi denote the max-

imum of the width and the height of the bounding box of

object oi, for i = 1, ..., n. Suppose the object oi can be best

detected when the image is resized such that mi is equal

to an ideal size denoted as D. This is aiming at work in

which there is a set of object sizes that models are trained at

[6, 16, 27, 33, 34, 43]. Then the scale that image I needs to

be resized to favor detecting object oi is gi = D/mi. Note

that gi is continuous, and finding scales for every object oi
is inefficient. Therefore, instead of formulating the prob-

lem as a regression problem, we discretize the scales into

several integer bins and model the problem as a distribution

prediction problem.

Suppose for scale distribution we have integer bins B =
{b1, b2, ..., bl} with discretization precision σ ∈ Z

+, where

bi+1 = bi + 1, i = 1, ..., l − 1, and for every possible scale

gi in the dataset b1 < −σ log2 gi < bl. Then, the ground

truth scale distribution P = {p1, p2, ..., pl} over the integer

bins B = {b1, b2, ..., bl} is defined by

pi =

∑
1≤j≤n max (0, 1− |bi + σ log2 gj |)∑

1≤k≤l

∑
1≤j≤n max (0, 1− |bk + σ log2 gj |)

(1)

Let Q = {q1, q2, ..., ql} denote the predicted distribu-

tion. We formulate the problem of scale prediction as min-

imizing Kullback-Leibler divergence (cross entropy) from
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Q to P defined by

D(Q,P ) =
∑

1≤i≤l

pi · (log pi − log qi) (2)

We now justify Eq. 1 in details. SharpMask [34] is a

scale-sensitive method, which can generate correct object

proposals only if the image is properly resized. For each

object size, there is a narrow range of image sizes within

which the object can be detected. This is where gi comes

from. The rest of Eq. 1 comes naturally.

4.2. ScaleNet architecture

To devise a model that outputs Q which minimizes Eq. 2,

we propose a deep neural network called ScaleNet. This

section presents the architecture of ScaleNet and discusses

the motivations behind the design.

The input size of ScaleNet is 192× 192 with RGB chan-

nels. Given input image I of size w × h, we first resize the

image to fit the input of ScaleNet I ′. More specifically, we

compute d = max(w, h), then resize the image such that

d = 192. Next, we copy the resized I to the center of I ′,
and pad I ′ with a constant value. I ′ is then fed into ResNet

[14] to extract image features. Here, the fully connected

layers and the last convolutional stage have been removed

from ResNet. After extraction, the features from ResNet

go through two 1 × 1 convolutional stages which serve as

local fully connected layers to further process the features

separately at each location on the feature map. ReLU [32]

and batch normalization [17] are used in the two stages to

stabilize and speed up training. At the end, a global av-

erage pooling layer [25] collects features at each location

of the feature map from the two convolutional stages, then

outputs scale distribution by a SoftMax operation.

The intuition is to learn the object scales at each location

of the image then combine them into one image property.

The global average pooling applied at the end of ScaleNet

distributes this learning problem to different locations of the

image. The distributed tasks can be learned separately by

fully connected layers on top of each location of feature

map from the last convolutional stage of ResNet. 1×1 con-

volutional operation then serves as a local fully connected

layer to process the features. Similar to the fully connected

layers of VGGNet [41], we deploy two 4096 dimension fea-

ture extractors. The main difference is that the extracted

features in ScaleNet have 4096 features for each location of

feature map instead of the whole image.

4.3. Connecting ScaleNet to SharpMask

For an image I , ScaleNet is able to predict a scale dis-

tribution Q = {q1, ..., ql}. This is a probability density

function, which we denote as q(x). We assume that the

optimal number of scales needed by SharpMask is h (usu-

ally h ∼ 8). To exploit Q for SharpMask, the task is to

choose a set of scales S = {s1, ..., sh} to resize I as the

input of SharpMask. The intuition is to densely sample

scales around the scales bi that have high probability qi. To

achieve this, we consider the cumulative distribution func-

tion of q, i.e.,

F (s) =

∫ s

−∞

q(x) dx (3)

Then we sample scales in the space of F (s) such that

F (si) =
i

h+ 1
, for i = 1, ..., h (4)

Before sampling, the distribution q can be smoothed by

q′(x) =
q(x)λ∫
q(x)λ dx

(5)

where λ is the smoothing parameter.

5. Supermarket Datasets

5.1. Real-world datasets

We aim to study the importance of the scales to the ex-

isting object proposal methods; therefore, we prepared two

real-world datasets, each of which focuses on one setting

of object scales. The first dataset, which we call Real-Far,

is composed of 4033 products labeled in bounding boxes.

The images in this dataset were taken from a far distance

with less variation in scales, thus usually having more ob-

jects within one image. On average, one image contains

58 objects. The second dataset is called Real-Near, which

contains 3712 products annotated. For this dataset, we took

the images from a near distance and the images have more

variation in object scales. The images in Real-Near have

27 products for each on average. Two professional labelers

worked on the datasets during collection. In total, we have

7745 products labeled for testing.

5.2. Synthetic dataset

Labeling images in supermarkets can be very time-

consuming since there are usually 30 to 60 objects in one

typical image. Although for SharpMask the number of

training examples grows linearly with respect to the number

of the annotated objects, ScaleNet considers one image la-

beled as one example, thus requiring more data for training;

what’s more, SharpMask is a mask-based proposal method,

which needs objects annotated in object masks, making an-

notation much harder for humans. Our solution is to build a

virtual supermarket to let models learn in this virtual envi-

ronment. The training and the validation of models are all

done in the virtual supermarket. The models are then tested

directly on the real-world datasets without fine-tuning. By

doing this, we can significantly reduce human labeling, but

we need to be very careful when designing the virtual en-

vironments so that the models can transfer well to the real-

world data from the synthetic data.
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Figure 4: Comparison of Product Arrangements with Different Proximities. Left: an example of product arrangement result with proximity

set to 0; right: an example of product arrangement result with proximity set to 1. Setting proximity to a lower value makes the arrangement

look more random while setting to a higher value will get a more organized arrangement. The valid range of proximity is within 0 to 1.

Realism The first aspect we consider is the realism of the

rendered images. Although some work suggested that re-

alism might not be critical for some vision tasks [8], it is

a high priority in this paper since we do not fine-tune on

the real-world data. The rendering engine we chose is Un-

real Engine2 for its flexibility of object manipulation and

high rendering quality. UnrealCV [35] is used to extract the

ground truth of object masks. To fully exploit the power of

Unreal Engine, all the objects in the virtual supermarket are

set to be static and the lighting is baked (i.e. pre-computed)

before the game is run.

Randomness of placement The products in a real super-

market are usually placed according to certain rules. How-

ever, since the generalizability must be taken care of when

generating a virtual dataset, the randomness of placement is

introduced into the rules that guide the construction of the

virtual environment.

Similar to some 3D object arrangement methods [12,

44], we specify a stochastic grammar of spatial relationship

between products and shelves. First, the products are ini-

tially located at a position that is not in the rendering range.

Next, given a shelf that products can be placed on, the prod-

ucts will be moved to fill the shelf one by one. Note that

similar products are usually placed together in supermar-

kets. Therefore, before placing the products, for a group of

the products, we first find an anchor point on the shelf. Then

we specify a parameter, which we call proximity, to denote

the probability that the next product will be placed near that

anchor point or will be placed randomly somewhere on the

shelf. Fig. 4 demonstrate the placing arrangements with

different proximities.

Product overlapping Product arrangement must prevent

overlapping. Motivated by reject sampling, we first ran-

domly create arrangements then reject those that have over-

lapping products. To efficiently detect overlapping while

2https://www.unrealengine.com/

preserving concave surfaces, convex decomposition is ap-

plied to the 3D models before calculating overlapping.

Figure 5: A Zoom-In Example of the Ground Truth Extracted by

UnrealCV [35] with Heavily Occluded Objects Ignored. The vir-

tual dataset is compatible with the MS COCO dataset [26]. The

visualization result shown here uses the COCO API. The occlu-

sion threshold is set to 0.9.

Occlusion A problem of using synthetic dataset is that all

objects will be labeled, including extremely occluded ob-

jects that are usually ignored in building real-world datasets.

Our solution to this problem is to calculate the ratio of oc-

clusion for each object, then ignore the objects of occlu-

sion under threshold µ when extracting the ground truth. To

achieve this, we implement a standard rendering pipeline of

vertex shader and fragment shader for computing occlusion.

To gather data at high speed, we approximate the occlusion

calculation by projecting the objects to the surface parallel

to the shelf and calculating them only once.

Object scales The object scales can be controlled by

modifying the distance between the camera and the shelf.

We set the camera to be at distance ν · dmax, where dmax

is the distance at which the camera can exactly take in one

shelf completely. Then we can modify ν to generate data

with different object scales.

Lighting and material randomness To augment the vir-

tual dataset, lighting and materials for objects are changed
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randomly during data gathering.

Summary This section presents how the synthetic dataset

is constructed with the above aspects taken into account. We

develop a plugin for Unreal Engine to construct virtual su-

permarket stochastically by only one click. We also modify

the COCO API to integrate the virtual supermarket dataset

into the MS COCO dataset [26]. Fig. 5 demonstrates the

visualization of the mask annotations using the COCO API

with the occlusion threshold set to 0.9.

6. Implementation Details

This section presents the implementation details of

ScaleNet, the object proposal system, the generation of the

virtual supermarket dataset, and the data sampling strategy.

6.1. Virtual supermarket

We bought 1438 3D models3 for products and shelves to

construct the virtual supermarket. During the data collec-

tion, two parameters are manually controlled while others

are drawn randomly from a uniform distribution. The two

parameters are the occlusion threshold µ and the distance

ratio ν. The range of µ is {0.9, 0.8, 0.7, 0.6, 0.5}, and

the range of ν is {1, 1/1.5, 1/2, 1/2.5, 1/3}. Combining

different µ and different ν results in 25 configurations, for

each we use different product arrangements, and random

lighting/material settings at each frame to generate 200 im-

ages. The above process generates 5000 synthetic images

and 234690 objects labeled in total. We denote this virtual

dataset as dataset V. We split dataset V into Vtrain and Vval

for training and validation, respectively. The dataset Vtrain

has 3307 images and 154238 objects while the dataset Vval

has 1693 images and 80452 objects.

6.2. ScaleNet

We use Torch7 to build and test ScaleNet. Before

training ScaleNet, the ResNet component is pre-trained

on ImageNet [40]. The discretization precision σ is

set to 1, while the discrete scale bins are set to B =
{−32,−31, ..., 0, ..., 31, 32}. To accommodate the parame-

ters used in SharpMask [34], D is set to 640/7.

During training, we resize the image to fit the input

of ScaleNet, and calculate the scale distribution P as the

ground truth. The mean pixel calculated on ImageNet is

subtracted from input image before feeding into ScaleNet.

All layers are trained, including the ResNet component. We

train two ScaleNet models for the supermarket datasets and

the MS COCO [26] dataset, individually. We use the corre-

sponding models when evaluating the performances on dif-

ferent datasets. The training dataset for ScaleNet for super-

market datasets is COCOtrain + Vtrain while the validation

dataset is COCOval + Vval. For the MS COCO, the datasets

3https://www.turbosquid.com/

Methods Real-Far Real-Near

EdgeBox@100 [46] 0.006 0.015

Selective Search@100 [42] 0.019 0.043

DeepMask@100 [33] 0.183 0.198

SharpMask@100 [34] 0.191 0.205

DeepMask-ft@100 0.209 0.231

SharpMask-ft@100 0.224 0.249

ScaleNet+DeepMask@100 0.256 0.342

ScaleNet+DeepMask-ft@100 0.278 0.373

ScaleNet+SharpMask@100 0.269 0.361

ScaleNet+SharpMask-ft@100 0.298 0.396

EdgeBox@1000 0.203 0.324

Selective Search@1000 0.225 0.328

DeepMask@1000 0.472 0.488

SharpMask@1000 0.499 0.518

DeepMask-ft@1000 0.497 0.533

SharpMask-ft@1000 0.526 0.567

ScaleNet+DeepMask@1000 0.542 0.593

ScaleNet+DeepMask-ft@1000 0.561 0.621

ScaleNet+SharpMask@1000 0.570 0.625

ScaleNet+SharpMask-ft@1000 0.589 0.651

Table 1: The Comparison of the Average Recalls [15] of Object

Proposal Methods Tested on the Real-World Supermarket Datasets

Real-Far and Real-Near. The method name indicates what method

is used and how many proposals are considered in computing re-

call rates, e.g., EdgeBox@100 means EdgeBox with the number

of object proposals limited to 100. Methods that have suffix -ft are

trained on the MS COCO and the synthetic supermarket dataset.

used for training and validation include only the MS COCO

itself. Here, COCOtrain and COCOval are the training and

the validation set of the MS COCO, respectively. To con-

nect ScaleNet to SharpMask, h is set to 6 for the super-

market datasets, and 10 for the MS COCO. The smoothing

factor λ is set to 0.9 for the supermarket datasets, and 0.25
for the MS COCO.

6.3. Data sampling

In the original data sampling strategy adopted in both

DeepMask and SharpMask, each image has the same prob-

ability for objectness score training and each category has

the same probability for object mask training. Instead, we

propose to train both the objectness score and object mask

so that each annotation has the same probability of being

sampled. Following this strategy, the performance can be

slightly improved. We denote SharpMask trained in this

way as SharpMask-Ours.

7. Experimental Results

7.1. Object proposal on supermarket datasets

We first present the performance of our model on the su-

permarket datasets while only trained on the combination of
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Figure 6: Proposals Generated by Our Method ScaleNet+SharpMask-ft with Highest IoU to the Ground Truth on the Selected Real-World

Supermarket Images. Top images are selected from dataset Real-Far while bottom images are selected from dataset Real-Near. Green

bounding boxes are from top 100 proposals. Blue bounding boxes are from proposals ranked between 101 and 1000. Red bounding boxes

are ground truth of objects not found by our method within 1000 proposals. The IoU threshold is set to 0.7.

the MS COCO training dataset and the virtual supermarket

training dataset. We evaluated the methods on the dataset

Real-Near and Real-Far. Qualitative results of our method

are shown in Fig. 6.

Metrics The metric used to evaluate the performance of the

object proposal methods is the Average Recalls (AR) [15]

over 10 intersection over union thresholds from 0.5 to 0.95
with 0.05 as step length.

Methods We compare the performance of the proposed

method with the top methods of proposing bounding boxes

for objects: DeepMask [33], SharpMask [34], Selective

Search [42], and EdgeBox [46].

transferability Table 1 demonstrates the improvements of

performances of the model trained using virtual supermar-

ket dataset. Methods that have suffix -ft are trained on the

MS COCO and the synthetic supermarket dataset. It’s worth

noting that the models trained solely on the combination of

the general purpose dataset and the task specific synthetic

dataset exhibit consistent improvements on the task specific

real-world datasets even none of them has a look at the real-

world data.

Scales Table 1 compares the different object proposal meth-

ods on the two real-world dataset Real-Near and Real-

Far. Without the help of ScaleNet to narrow down the

search space of scales, DeepMask and SharpMask actu-

ally have similar performances on them. Instead, our pro-
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Figure 7: Recall versus IoU Threshold for Different Number of Bounding Box Proposals on the MS COCO Dataset.

Methods AR@10 AR@100 AR@1k

DeepMask-VGG [33] 0.153 0.313 0.446

DeepMaskZoom-VGG [33] 0.150 0.326 0.482

DeepMask-Res39 [34] 0.180 0.348 0.470

SharpMask [34] 0.197 0.364 0.482

SharpMaskZoom [34] 0.201 0.394 0.528

SharpMask-Ours 0.216 0.392 0.510

ScaleNet+SharpMask 0.201 0.416 0.557

ScaleNet+SharpMask-Ours 0.220 0.439 0.578

Table 2: Comparison of Our Framework to DeepMask [33] and

SharpMask [34] on Bounding Box Object Proposals on the MS

COCO validation dataset [26].

posed method exhibit stronger improvements on Real-Near

in which the image has fewer objects, thanks to the accurate

prediction by ScaleNet of the scales to resize images.

In short, Table 1 demonstrates the significant perfor-

mance improvements by using our proposed framework.

7.2. Object proposal on the MS COCO dataset

Next, we evaluate our method on the MS COCO dataset.

Following the evaluations done in DeepMask [33] and

SharpMask [34], the recall rates are evaluated on the first

5000 images on the validation set.

Methods We compare the performance of the pro-

posed method with the state-of-the-art methods of propos-

ing bounding boxes for objects: DeepMask-VGG [33],

DeepMaskZoom-VGG [33], DeepMask-Res39 [34], Sharp-

Mask [34], SharpMaskZoom [34].

Metrics We adopt the same metrics used for evaluating per-

formances on the supermarket datasets. The performances

are evaluated when the number of proposals is limited to 10,

100 and 1000.

Results Table 2 summarizes the performance comparisons

on the MS COCO dataset. Since the object scales in

these natural images are not always sparse, we do not ex-

pect significant improvements as shown in the supermar-

ket datasets. However, consistent improvements can be

observed at all number of proposals. More notably, our

method demonstrates stronger performance improvements

compared with that between SharpMask and DeepMask.

Fig. 7 shows the additional performance plots comparing

our methods with the previous state-of-the-art. Our frame-

work improves the recall rates significantly at 1000 pro-

posals, e.g., the recall rate increases from 0.714 to 0.843
when IoU threshold is set to 0.5, and from 0.575 to 0.696
at 0.7 IoU threshold. We also observe strong performance

increases at 100 proposals: the recall rate at 0.5 IoU thresh-

old increases from 0.574 to 0.682, and from 0.431 to 0.521
at 0.7 IoU threshold.

8. Conclusion

In this paper, we study the problem of object proposal

generation in supermarket images and other natural images.

We introduce three supermarket datasets – two real-world

datasets and one synthetic dataset. We present an innova-

tive object proposal framework, in which the object scales

are first predicted by the proposed scale prediction method

ScaleNet. The experimental results demonstrate that the

model trained solely on the combination of the MS COCO

dataset and the synthetic supermarket dataset transfers well

to the two real-world supermarket datasets. The proposed

scale-aware object proposal method is evaluated on the real-

world supermarket datasets and the MS COCO dataset. Our

proposed method outperforms the previous state-of-the-art

by a large margin on these datasets for the task of object

detection in the form of bounding box.
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[1] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and

J. Malik. Multiscale combinatorial grouping. In CVPR,

2014. 1, 2

[2] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object

detection: A benchmark. TIP, 24(12):5706–5722, 2015. 1

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In ECCV, 2012. 3

[4] K. Chang, T. Liu, H. Chen, and S. Lai. Fusing generic ob-

jectness and visual saliency for salient object detection. In

ICCV, 2011. 1

[5] K. Chang, T. Liu, and S. Lai. From co-saliency to co-

segmentation: An efficient and fully unsupervised energy

minimization model. In CVPR, 2011. 1

[6] L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

CoRR, abs/1511.03339, 2015. 3

[7] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. Bing: Bina-

rized normed gradients for objectness estimation at 300fps.

In CVPR, 2014. 1, 2

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas,
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