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Abstract

In this paper, we propose an attention-aware deep rein-

forcement learning (ADRL) method for video face recogni-

tion, which aims to discard the misleading and confounding

frames and find the focuses of attentions in face videos for

person recognition. We formulate the process of finding the

attentions of videos as a Markov decision process and train

the attention model through a deep reinforcement learning

framework without using extra labels. Unlike existing at-

tention models, our method takes information from both the

image space and the feature space as the input to make bet-

ter use of face information that is discarded in the feature

learning process. Besides, our approach is attention-aware,

which seeks different attentions of videos for the recognition

of different pairs of videos. Our approach achieves very

competitive video face recognition performance on three

widely used video face datasets.

1. Introduction

Video face recognition has attracted great attention in

computer vision over the past few years [4, 7, 8, 15, 24, 31,

32, 40, 41, 43]. There are many practical applications for

video face recognition such as access control, video search

and visual surveillance. Compared to still face recognition,

videos can capture human faces from multiple views, which

provide more useful information of a single face. Howev-

er, video faces usually suffer from uncontrolled variations

of poses, illuminations and etc., which leads to large intra-

class distances. Hence, it is desirable to design a model to

integrate information across frames and reduce intra-class

distances for effective and robust video face recognition.

There have been a variety of studies on how to effective-

ly integrate information across frames for video face rep-

resentation [6, 18, 21, 28, 43]. These methods exploit video

information from all frames, which is usually considered
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Figure 1. Flow-chart of our proposed method for video face recog-

nition. Our approach takes a pair of face videos as the input and

produces the temporal-spatial representations for each frame by

using multiple stacked modules, including a convolutional neural

network (CNN), a recurrent layer and a pooling layer with local-

ity constraints, respectively. Then, a hard attention model with

a frame evaluation network is trained by the proposed deep rein-

forcement learning method, which finds the attentions of the video

pair for face verification.

as equal importance. However, some features are mislead-

ing and confounding so that low quality frames may har-

m the performance of recognition. To address this, Yang

et al. [43] proposed an attention-based method to find the

weights of features by using the information from features

themselves. However, the information of image quality is

reduced in the feature learning process [40], where infor-

mation from the feature space is not reliable enough to find

the most important parts (precise focuses of attention) in

videos.

In this work, we propose a new approach by introducing

the Markov decision process (MDP) [3] to remove these

misleading and confounding frames step by step with the
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deep reinforcement learning method [30]. Instead of learn-

ing attentions only from the feature space, we compute the

representation of videos by using the information from both

the feature space and the image space. Our attention mod-

el is attention-aware because we take a pair of face videos

instead of a single video as the input of the attention model

because different situations may lead to different attentions

in the recognition task. Motivated by the fact that convo-

lutional neural network (CNN) has achieved state-of-the-

art results on face recognition in recent years [31, 32, 35],

we propose a local temporal representation for video face

recognition by combining the CNN feature with recurrent

layers with locality constraints to make better use of tempo-

ral information. Figure 1 shows the flow-chart of our pro-

posed approach. Experimental results on three video face

datasets show the effectiveness of the proposed ADRL.

2. Related Work

Video Face Recognition: Most existing video face

recognition methods [6, 17, 18, 19, 20, 21, 26, 27, 28, 38, 43]

usually consider each video as an image set and employ im-

age set matching methods for video face recognition. These

methods can be categorized into two classes: manifold-

based and instance-based. For the first category, each video

or image set is modeled as a manifold, and the similarity or

distance between each video pair is computed by measuring

the distance between manifolds. In previous works, many

models have been used for manifold modeling such as affine

hull [6], SPD models [18, 20], Grassmann manifolds [21]

and n-order statistics [27, 38]. In these methods, image

frames are considered of equal importance. When the num-

ber of low quality image frames increases, these models are

easily misled. For the second category, each video or image

set is modeled as a set of instances, which aims to exploit

the relationship between instances in videos in the learning

and recognition process. For example, Lu et al. trained a

parametric model for discriminative representations of in-

stances in each image set [26]. Sivic et al. employ a simple

and effective thresholding method to get reliable features

from video frames [33]. Yang et al. proposed an attention-

based model to aggregate features of video frames [43]. Un-

like these methods, our attention model is trained by using

the information from both the manifold and instance levels,

which are the representations of the whole video and single

frames, respectively.

Deep Reinforcement Learning: Reinforcement learn-

ing has been originated from our understanding of humans’

decision making process [25], which aims to enable the a-

gent to decide the behavior from its experiences. Unlike

conventional supervised machine learning methods, rein-

forcement learning is supervised through the reward signals

of actions. Deep reinforcement learning [30] is a combi-

nation of deep learning and reinforcement learning, which

has been used in various applications in recent years. For

examples, Mnih et al. combined reinforcement learning

with CNN and achieved the human-level performance in

the Atari game [30]. Caicedo et al. introduced reinforce-

ment learning for active object localization [5]. Zhang et

al. employed reinforcement learning for vision control in

robotics [45]. However, little progress has been made in

reinforcement learning for visual recognition, especially in

face recognition.

3. Proposed Approach

Figure 1 illustrates the flow-chart of our proposed ap-

proach. Our framework is composed of two parts: feature

learning and attention learning. The feature learning part

is a network which takes an entire video as the input. The

network processes the whole video with a deep CNN mod-

el, a recurrent layer, and a temporal pooling layer to pro-

duce temporal representations of each frame in the video,

respectively. The attention part is a frame evaluation net-

work, which is designed to produce the values of frames.

The values are used to find the most representative frames,

which are the attentions of the video. In our work, we for-

mulate the process of finding attentions in video pairs as a

Markov decision process (MDP) and introduce a reinforce-

ment learning method to train the evaluation network. The

input information of the frame evaluation network comes

from both the image space and the feature space. Moreover,

we take the mutual relationship between both videos into

the state evaluation of the MDP.

3.1. Temporal Representation Learning

Relationship between frames provides important hints

for face recognition, and also extracts robust descriptors.

Instead of taking the whole video into the recurrent layer as

the input, we introduce a more flexible local bi-directional

recurrent layer and a local temporal-pooling layer, which

combine a few neighboring frames into a temporal repre-

sentation from both directions and consider other frames as

irrelevances.

Assume the video A containing NA frames XA =
[xA

1 , x
A
2 , ..., x

A
NA ], C1(x) is a CNN feature representation,

each frame xA
i has a corresponding convolutional feature

representation fA
i = C1(x

A
i ). We employ the widely used

long short-term memory (LSTM) as the recurrent layer and

mean-pooling strategy to combine features, so that the tem-

poral representation of frame xA
i becomes

hA
i =

1

1 + 2r

i+r
∑

k=i−r

mA
k , (1)

and

[mA
i−r, ...,m

A
i , ...,m

A
i+r] = R([fA

i−r, ..., f
A
i , ..., fA

i+r]),

3932



state t
action t
drop

state t+ϭ
action t+ϭ
drop

state t+Ϯ state T
end

R R

end end

… …

Figure 2. Markov decision process (MDP) of finding the focuses of attentions. States represent remaining frames after t steps, actions

represent the decisions of dropping frames. Action at may lead to two states: state st+1 and termination. Reward signal (R) is decided by

the face recognition network C1 depending on states and actions. States, actions, reward signals and terminations in MDP are illustrated

by circles, rectangles, rhombuses and rounded rectangles, respectively.

where R is a bi-directional LSTM [11] that takes a sequence

of features as the input and produces a sequence of activa-

tions [mA
i−r, ...,m

A
i , ...,m

A
i+r], r is the range of neighbor-

ing frames, hA
i is the corresponding temporal representa-

tion. In the remaining text, we use C1 to represent the CNN

and temporal layers.

For each video, we extract the feature representations of

each frame using our feature representation network, where

the representation is a combination of the single frame fea-

ture and the inter-frame feature. In practice, the CNN model

and the recurrent layer are trained separately. In other word-

s, we employ the CNN model developed for still face recog-

nition as convolutional feature extractor because sufficient

labeled training samples can be used to train the model.

3.2. Attention-aware Deep Reinforcement Learning

Face frames in videos are often of large variations in

pose, illumination, expression and image quality. Hence,

not all image frames in a video are helpful for recognition.

In other words, some frames are valueless. It is desirable to

consider using a subset of frames from each video to mea-

suring the distance between videos to avoid the adverse ef-

fect from low-quality image frames.

Attention models have been widely used in various com-

puter vision applications [29, 42]. In our approach, we

consider the process of finding the focuses of attentions as

the process of finding the most representative frames from

video pairs. In previous works, a video is usually modeled

as a manifold and the distance metric between manifolds is

utilized to compute the distance between two videos. By

introducing the attention model, we redefine the distance

metric between manifolds as the distance between the at-

tentions of videos:

distance(XA, XB) = distance(pA, pB),

where pA and pB are decided by a hard attention model:

pA =

∑NB

i=1
aAi h

A
i

∑NB

i=1
aAi

, pB =

∑NB

i=1
aBi h

B
i

∑NB

i=1
aBi

, (2)

aAi , a
B
i ∈ {0, 1}

where aAi and aBi are the weights of attentions suggesting

whether corresponding frames are the focuses of attentions.

In many previous works [1, 9, 43], the weights of atten-

tions are obtained by using the relationship between fea-

ture vectors. However, it is not appropriate for face recog-

nition because one of the goals for feature learning is to

minimize the intra-class distances [40], which aims to re-

duce the influence brought by frame situations like pos-

es and expressions. Therefore, our attention model takes

the information from frames directly to guarantee that we

can find the precise attentions of videos. Moreover, the

focuses of videos should be different for different videos

pairs, so that ai should be decided by information from both

videos in our framework. Hence, we propose a deep model

Qi = C2(Ii,Mi) to evaluate the frame situation of xi and

decide the weights of attentions, which takes both informa-

tion Ii from the image space and Mi from the feature space

as the input and produces the value Qi. To train C2 without

additional supervision, we consider C1 as an expert in face

recognition, and design an algorithm to teach C2 by C1 as

the recognition performance of C1 indicates the qualities of

input frames.

There are two strategies for human to find the most rep-

resentative frames from two videos. One is to directly grade

each frame and then decide the most representative frames

from each video. The other is to remove the worst frame

step by step, and the remaining frames are the most repre-

sentative ones. For the first strategy, it is difficult to choose

a good value for Qi and train C2 with no extra labels. It is

obvious that finding the worst frame among two videos is

much easier than directly finding the most important parts.
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Convolutional layer

Max Pooling layer

Fully Connected layer

Figure 3. The architecture of frame evaluation network. The kernel

sizes of convolution layers are 9×9, 4×4 and 3×3, respectively.

Both the max pooling layers have kernel size 2 × 2 and stride

2. The feature dimension of the first two fully connected layers

are set as 64. All hidden layers use PReLU [13] as the activation

functions.

Therefore, we adopt the second strategy and formulate the

process of finding attentions as a Markov decision process.

We denote the remaining frames after t times dropping

as state st, the action of dropping frame as at. Dropping a

frame may lead to two states: st+1 and termination, where

termination means that we already find a set of the most

representative frames or there is only a pair of frames from

each video. Evaluative feedback from environment ri for

(st, at) is decided by expert C1. In practice, we use the

cosine similarity computed by mean-pooling features as the

metric for two different videos

S(XA, XB |st) = cos(pA|st, p
B |st), (3)

where pA|st and pB |st are the mean-pooling of remaining

feature vectors of video A and B at state st, respectively,

which are formulated as:

aAi |st =

{

1 xA
i remains at st,

0 xA
i has been dropped at st.

(4)

We define ri as the improvement in verification brought

from action at at state st

rt = lAB(S(X
A, XB |st+1)− S(XA, XB |st)). (5)

where lAB is the label either 1 or -1 denoting positive or

negative pairs. Termination criteria defined by rt is

r(st, at) < 0, ∀at. (6)

The Markov decision process of finding attentions is shown

in Figure 2.

The key step of the Markov decision model is to de-

cide the best action at certain states (the decision policy).

By introducing the Q-learning method [30, 39], we define

Qi as the expectation value of action at at st, where the

action at drops the frame xi. The policy is defined as

π = argmaxai
Qi. Therefore, Qi can be rewritten as

Qi = Q(st, at) = max
π

E[rt+γrt+1+γ2rt+2+...|π]. (7)

where γ is the discount factor in Q-learning, which takes

a trade-off between the immediate reward and the predic-

tion of feature reward. As introduced by [30], we employ a

deep neural network to estimate Q∗(st, at) = C2(st, at). If

the estimation is good enough, we can regard Q∗(st, at) as

Q(st, at).
There are two ways to design the architecture of the deep

Q-network (DQN) C2, one is taking the state st as the input

and producing the Q-value of all possible actions, which is

used in [30]. The other is taking both the state st and the

action at as the input and producing single Q-value of the

action.

During the process of frame dropping, the number of

possible actions is changing (decreasing) and it is difficult

to describe the state si as the input of neural network while

the action ai is clearer as the frame will be dropped. In or-

der to attenuate the effect brought from our description of

states, we adopt the second architecture as the frame eval-

uation network. As shown in Figure 3, our frame evalua-

tion network takes the dropping frame xi and a vector vi
which describe the geometry relationship among the drop-

ping frames and two videos in the feature space. Frame

evaluation network firstly represents xi as a deep feature by

a convolutional network, and then concatenates the feature

with vector vi and takes the concatenated feature into a ful-

ly connected network to produce Q(st, at). In practice, vi
is composed of 4 parts which are the 1-order and 2-order

statistics of each videos respectively. For video A, the 1-

order statistic feature is computed as

vA1-order = tanh(W1(p
A|st − ha) + b1) (8)

where ha is the feature vector of the dropping frame.

The 2-order statistic feature is computed as

vA2-order = tanh(W2σ
A|st + b2) (9)

where σA|st is the variance of features of remaining frames

in each dimension. Weights W1,W2, b1 and b2 are shared

for all videos.

According to the Bellman equation [2], we apply the Q-

learning method to train the frame evaluation network by

min
θ

H = E[r(si, ai) + γ max
ai+1

Q(si+1, ai+1)−Q(si, ai)]
2,

(10)

where θ is the set of weights in frame evaluation network

C2. In our proposed framework, we create any states as the

training data, so that we constitute mini-batch by random
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Algorithm 1 ADRL

Input: Temporal representation {hA
i } of training set

{XA}, list of labeled video pairs list = {(A,B, lAB)}
Output: Weights of frame evaluation network θ

1: initialize θ with small random values

2: for i ← 1, 2, ...,M do

3: Sample random minibatch {(A,B, lAB)} from list

4: Create random states and ǫ-greedy actions {st, at}
5: Compute corresponding rewards {rt} with {hA

i }
6: for st, at in {st, at} do

7: if termination then

8: yt ← rt
9: else

10: yt ← rt + γ maxat+1
Q(st+1, at+1)

11: end if

12: end for

13: Update θ with gradient ▽θEbatch[Q(st, at)− yt]
2

14: end for

15: return θ

states and ǫ-greedy actions that select actions following π

with probability ǫ and random actions with probability 1−ǫ.

The details of the proposed attention-aware deep rein-

forcement learning (ADRL) method are summarized in Al-

gorithm 1.

3.3. Verification

Given a test video pair (A,B) where xA
i is the i-th frame

in video A and xB
j is the j-th frame in video B, we first

employ C1 to compute their temporal representations {hA
i }

and {hB
j }, and then use the frame evaluation network C2 to

find the attentions of each video by the aforementioned step

by step frame dropping process with frame number thresh-

old th. Assume the process is terminated at sT , the similar-

ity of this pair of video pair can be calculated by the cosine

similarity between pA|sT and pB |sT .

The step by step frame dropping algorithm with thresh-

olding is summarized in Algorithm 2.

3.4. Implementation Details

To train the recurrent layer, we adopt the triplet loss [32]

with the cosine similarity to minimize the following objec-

tive:

minL = Eh[max(0, α− cos(h, hp)+ cos(h, hn))], (11)

where h is the temporal representation of an anchor., hp and

hn are the temporal representations of the positive and neg-

ative samples, respectively. Given the h from the video XA,

we simply choose a random frame from another video of the

same subject in the training set to extract hp and a random

frame from videos of different subjects in the training set to

Algorithm 2 Frame Dropping with Thresholding

Input: Temporal representations {hA
i } and {hB

j } , videos

XA and XB of test pair (A,B), threshold th

Output: Terminated state sT
1: t ← 0
2: while True do

3: with constraints #XA ≥ th and #XB ≥ th

4: Find all possible actions T = {ai}
5: at ← argmaxat∈T Q(st, at)
6: Update st to st+1 according to at
7: Update XA and XB according to at
8: Compute Qmax ← maxat+1

Q(st+1, at+1)
9: if Qmax < 0 or min(#XA,#XB) ≤ th then

10: sT ← st+1

11: break

12: else

13: t ← t+ 1
14: end if

15: end while

16: return sT

extract hn. TO train the recurrent layer, we use the standard

stochastic gradient descent (SGD) and set the learning rate,

momentum and α as 0.001, 0 and 0.4, respectively.

For the frame evaluation network, we use the RMSprop

solver [36] and set the learning rate and RMS decay as 10−6

and 0.9, respectively. To improve the stability of the train-

ing stage, we clip gradient to the range between −0.5 to 0.5
and set the size of mini-batch as 64. The ǫ-greedy probabil-

ity ǫ is annealed linearly from 1.0 to 0.1 in the first 1, 000
batches and fixed at 0.1 thereafter, as [30]. We set the dis-

count factor of MDP γ and frame dropping threshold th as

0.98 and 30, respectively.

3.5. Discussion

Hard Attention vs. Soft Attention: Different from

the soft attention model, hard attention model may destroy

the structure of videos. In other words, the relationship a-

mong frames is ignored when using the hard attention mod-

el. Therefore, we add the temporal representation learning

part to our proposed framework to help the framework take

both the local and global information in video into accoun-

t. Moreover, soft attention model is differentiable, thus at-

tention model together with feature representation network

can be trained end-to-end by using the standard SGD al-

gorithm. To address the problem of undifferentiable hard

attention model, we employ the deep reinforcement method

and design an evaluative supervision signal by C1 to train

the attention model without extra labels. Furthermore, step-

by-step frame evaluation is more effective than deciding the

qualities of all frames directly. Experiments in Section 4.2

also demonstrate this point.
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Attention Model vs. Manifold Model: Unlike still face

recognition, video face recognition usually has more infor-

mation as well as noise of the subjects. Unlike conventional

manifold models that take the entire video into account, the

attention model can discard valueless information of videos,

which can denoise the input video effectively. Therefore,

our attention model is more robust and effective in practical

video face recognition applications.

4. Experiments

We conducted experiments on three widely used dataset-

s including the YouTube Face dataset (YTF) [41], Point-

and-Shoot Challenge (PaSC) [4] and Youtube celebrities

dataset (YTC) [23] to evaluate our proposed ADRL method,

and compared it with state-of-the-art video face recognition

methods. The following describes the details of the experi-

ments and results.

4.1. Experiments Settings

In our experiments, we used the still face recognition net-

work model provided by authors of [40], which is a residu-

al convolutional network [14] trained by the joint signals of

center loss and softmax proposed in their work. As suggest-

ed in their work, we employed the recently proposed algo-

rithm MTCNN [46] to detect 5 points landmarks for faces in

frames and images. We used the provided landmarks if de-

tection fails in the testing stage. Faces in frames are aligned

by similarity transformation according to the landmarks and

cropped to 112×96 to remove the background information.

For the verification task on the YTF and PaSC dataset-

s, we used the cosine similarity and threshold comparison

as described in Algorthm 2, where thresholds are computed

from the training set. For the identification task on the YTC

dataset, we computed the cosine similarity between exam-

ples in training set and examples in testing set and decided

the categories according to the nearest neighbor rule.

Many previous works [31, 40] used the mean-pooling of

CNN features as the representation of the video, so we set

the mean-pooling of the still face recognition network as

the baseline in our experiments. The performance of our

approach was evaluated by comparisons with state-of-the-

art methods and the baseline method.

To further show the effectiveness of our method, we

have conducted additional experiments by fine-tuning CN-

N model following [10], which we referred to as ADRL-

finetune. Our CNN model was fine-tuned on training set of

the corresponding video face dataset as [10] and supervised

by the triplet loss with the learning rate 0.001. All other

settings remained unchanged.

4.2. Results on YouTube Face Dataset

We first evaluated our method on the YTF dataset, which

contains 3,425 videos of 1,595 different subjects. There

(a) (b)

Figure 4. The verification accuracy under varying (a) r and (b) th

on the YTF dataset split 1.

Table 1. Comparisons of the average verification accuracy with the

state-of-the-art results on the YTF dataset.

Method Accuracy Year

LM3L [16] 81.3± 1.2 2014

DDML [15] 82.3± 1.2 2014

EigenPEP [24] 84.8± 1.4 2014

DeepFace-single [35] 91.4± 1.1 2015

DeepID2+ [34] 93.2± 0.2 2015

FaceNet [32] 95.12± 0.39 2015

Deep FR [31] 97.3 2015

NAN [43] 95.72± 0.64 2016

Wen et al. [40] 94.9 2016

TBE-CNN [10] 94.96± 0.31 2017

ADRL 95.96± 0.59

ADRL-finetune 96.52± 0.54

are many challenging videos in this dataset, including a-

mateur photography, occlusions, problematic lighting, pose

and motion blur. The length of videos in this dataset vary

from 48 to 6,070 frames, and the average length of al-

l videos is 181.3 frames. We followed the standard veri-

fication protocol and tested our approach for unconstrained

face verification with 5,000 given video pairs and 10 split-

s, where each split has around 250 intra-personal pairs and

around 250 inter-personal pairs. For the YTF dataset, we

set the range of contiguous frames r as 3.

Comparison with the state-of-the-art: We compared

our method with nine state-of-the-art face recognition meth-

ods, which are presented in Table 1. We see that our pro-

posed ADRL method outperforms all other state-of-the-art

methods except the deep FR method. The reason is that the

deep FR method benefits a lot from front face selection and

triplet loss embedding with carefully selected triplets. Com-

pared to their work, our embedding method is more easy

to implement and our faces selection model can be trained

without extra labels.

Comparison with the other attention-based model:

Different from still face recognition, NAN is an attention-

based framework designed for video face recognition. We
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(a) (b)

Figure 6. The ROC curve of our proposed method on the (a) YTF dataset split 1 and (b) PaSC.

Table 2. Comparisons of the average verification accuracy (%)

with the other attention-based model on the YTF dataset. CNN

is the result of mean-pooling CNN feature, TR is the result of tem-

poral representation learning.

Method Accuracy

NAN-CNN 95.20± 0.76

NAN 95.72± 0.64

Ours-CNN 93.64± 1.07

Ours-CNN (finetuned) 94.12± 0.76

Ours-TR 94.78± 0.85

Ours-TR+ADRL 95.96± 0.59

Ours-TR+ADRL (finetuned) 96.52± 0.54

compared our method with NAN in Table 2. We see that our

ADRL outperforms NAN on both the verification accuracy

and the standard deviation. We also compared our method-

s with our baseline CNN and presented the ROC curve in

Figure 6. The TR and ADRL methods improve the baseline

method by 1.18% and 2.32%, and reduce the error rate of

the baseline method by 18.6% and 36.5%, respectively. In

their work, they used a more powerful baseline model, and

improved less compared to our proposed method because

they didn’t make use of the temporal and structural infor-

mation in video pairs, and their attention model is designed

only in the feature space. Besides, their model directly de-

cides the qualities of the input video frames by using feature

vectors. Their method is faster but less effective compared

to our method. When we fine-tuned our model, the per-

formance of our CNN model approaches their CNN model,

and ADRL can further boost the final performance and out-

perform NAN more.

Analysis on temporal representation learning: Tem-

poral representation takes the relationship between video

frames into consideration. We tested our TR model vary-

ing different r from 0 to 4 on the YTF dataset split 1. When

r = 0, TR leaning is the same as triplet loss embedding

proposed in [32]. We presented the results in Figure 4(a).

We see that the proposed TR learning method is better than

Figure 5. Examples from the YTF dataset. Faces in left column are

the first three frames dropped from videos, faces in right column

are the remaining frames that have the smallest Q, faces are sorted

by Q.

previous embedding learning methods for video face recog-

nition.
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Table 3. Comparisons of the verification rate (%) with the state-of-

the-art methods on the PaSC at a false accept rate(FAR) of 0.01.

Method Control Handheld

PittPatt 48.00 38.00

DeepO2P [22] 68.76 60.14

VGGFace 78.82 68.24

SPDNet [18] 80.12 72.83

GrNet [21] 80.52 72.76

TBE-CNN [10] 97.80 96.12

Ours-CNN 91.02 79.91

Ours-CNN (finetuned) 93.76 91.34

Ours-TR 91.92 82.43

Ours-ADRL 93.13 83.69

Ours-ADRL (finetuned) 95.67 93.78

Analysis on deep reinforcement learning: To show the

robustness of our proposed method, we tested our attention

model at varying values of th from 1 to 50 on the YTF

dataset split 1, and the results are shown in Figure 4(b). We

see that our method performs stably over a wide range of th

from 10 to 40.

Figure 5 shows the examples of our MDP results. We

see that our attention model learns to find the low quality

frames from video and keep relatively high quality frames.

4.3. Results on Point-and-Shoot Challenge

Point-and-Shoot Challenge (PaSC) is a standard video

face dataset, which contains 2,802 videos of 265 subject-

s balanced with varied factors such as the distance to the

camera, viewpoints, the sensor types and etc. Two halves

of the dataset are taken by control and handheld cameras

respectively. Compared to the YTF dataset, PaSC is more

challenging because faces in this dataset have full pose vari-

ation. For the PaSC dataset, we set the range of contiguous

frames r as 1 because of the large pose variation.

Since the PaSC dataset does not have the training set, we

directly used our models trained on the YTF dataset to e-

valuate our method on PaSC and compared them with other

methods. Following the standard protocol, we reported the

results at a false accept rate of 0.01, which are presented in

Table 3. Figure 6 shows the ROC curves of our proposed

methods. We used the results of PittPatt presented in [43]

and the results of DeepO2P [22] and VGGFace presented

in [18]. We can see that our proposed methods achieve very

competitive performance compared state-of-the-art method-

s on the PaSC dataset without highly-engineered model.

4.4. Results on Youtube Celebrities

We used the the YouTube Celebrities (YTC) dataset to

evaluate the performance of our methods on the video face

classification task. This dataset contains 1,910 videos of 47

subjects and the number of frames varies from 8 to 400. We

Table 4. Comparisons of the classification accuracy (%) with the

other compared state-of-the-art methods on the YTC dataset.

Method Accuracy

MDA [37] 67.2± 4.0

LMKML [28] 70.31± 2.52

MMDML [26] 78.5± 2.8

GJRNP [44] 81.3± 2.0

DRM-WV [12] 88.32± 2.14

Ours-CNN 96.88± 0.99

Ours-TR 97.13± 0.52

Ours-ADRL 97.82± 0.51

followed the protocol of the standard ten-fold cross valida-

tion. For each subject in each fold, we conducted exper-

iments by selecting 3 videos for training and 6 videos for

testing randomly. In our experiments, we used the mod-

el trained on the YTF dataset with r = 3. Table 4 shows

the results of different methods in our experiments. We see

that our proposed methods outperform other state-of-the-

art methods on both the classification accuracy and the s-

tandard deviation, which clearly show that our methods are

more effective and robust.

5. Conclusion

In this paper, we have presented a new attention-aware

deep reinforcement learning (ADRL) method for video

face recognition, which aims to discard the misleading and

confounding frames and find the focuses of attention in

video. Our method achieves very competitive performance

of video face recognition on the widely used YTF, PaSC

and YTC datasets.

While our method is designed for video face recognition,

it can also be applied in other computer vision tasks, espe-

cially for other video-based visual recognition applications

such as video action recognition, event detection and visual

tracking, which is an interesting future work.
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