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Abstract

We present a robust algorithm for personalizing a sphere-

mesh tracking model to a user from a collection of depth

measurements. Our core contribution is to demonstrate

how simple geometric reasoning can be exploited to build

a shape-space, and how its performance is compara-

ble to shape-spaces constructed from datasets of care-

fully calibrated models. We achieve this goal by first re-

parameterizing the geometry of the tracking template, and

introducing a multi-stage calibration optimization. Our

novel parameterization decouples the degrees of freedom

for pose and shape, resulting in improved convergence

properties. Our analytically differentiable multi-stage cal-

ibration pipeline optimizes for the model in the natural

low-dimensional space of local anisotropic scalings, lead-

ing to an effective solution that can be easily embedded in

other tracking/calibration algorithms. Compared to exist-

ing sphere-mesh calibration algorithms, quantitative exper-

iments assess our algorithm possesses a larger convergence

basin, and our personalized models allows to perform mo-

tion tracking with superior accuracy.

1. Introduction

Recent developments in visualization and motion tracking

technologies are rapidly bringing virtual and augmented re-

ality products to the mainstream consumer market. Such

technologies have a much wider target than the gaming and

entertainment industry alone, with new exciting applica-

tions in a variety of fields, ranging from education to med-

ical industry. One of the main technical challenges that

VR/AR has to face is to be able to offer the user the ca-

pability of interacting naturally with the surrounding vir-

tual environment. In real life we interact with objects using

our hands: can hand tracking enable natural and accurate

interactions with virtual objects? This task is particularly

challenging, as hands are highly articulated, undergo fre-
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Figure 1: Our low-dimensional latent space directly en-

codes shape variations as local anisotropic scalings of a

template model. (left) A visualization of the shape-space,

encoding palm/finger length compression/stretching and

sphere-mesh radii. (right) Calibrating in the reduced shape-

space followed by a fine scale refinement leads to a robust

calibration algorithm – remaining errors are largely due to

sensor artefacts.

quent occlusions and self-occlusions, fingers have similar

appearance, and global pose is unconstrained. With the ad-

vent of consumer depth cameras, there has been substan-

tial progress towards the development of robust hand track-

ers [13, 21, 27, 28]. Most approaches leverage a combi-

nation of discriminative and generative algorithms, where

the former require no temporal history but can provide a

rough initialization, the latter can exploit such initialization,

temporal coherency, and shape priors to accurately resolve

alignment. The better the generative model can fit to the

user, the better tracking accuracy can be achieved.

Robust hand model calibration. State of the art tech-

niques such as [27, 28] achieve high-precision tracking by

personalizing the template to the given subject. Given (1)

a set of depth images and (2) a sufficiently close initializa-

tion, calibration optimization algorithms can be employed

to generate a personalized triangular-mesh [26] or sphere-

mesh [28] model of the observed user’s hand. Recently, Tan

et al. [24] relaxed the necessity to have a tight initialization
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Figure 2: (a) A basic sphere-mesh component whose sur-

face is the convex hull of spheres whose radii are defined

on the skeleton vertices. (b) The sphere-mesh hand topol-

ogy and (c) the rest-pose tracking template. (d) The posed

template, and a visualization of the kinematic frames {T̄ k}.

by proposing a robust calibration that leverages the shape-

space introduced by [7] – a robust calibration optimization

is one exhibiting few local minima, or, analogously, one

possessing a wide basin of convergence. The shape-space

of [7] regularizes the calibration optimization for use in un-

controlled setups, preventing it from converging towards

local minima. It was constructed from depth images col-

lected from a large set of users in a controlled laboratory

setup, and calibrating a consistent template to the data [26].

In our research we challenge these assumptions and pose

the question: “Is the construction of a data-driven shape-

space strictly necessary to achieve robust optimization?”

We approach this challenge by formulating our calibration

optimization as the one of personalizing the sphere-mesh

tracking template introduced by Tkach et al. [28] to a given

user; see Figure 2. While data-driven shape-spaces will

still be helpful for calibrating high-frequency details [3], we

show how a geometric shape-space is sufficient in calibrat-

ing sphere-mesh models to an accuracy that is appropriate

to the signal-to-noise ratio of current generation depth sen-

sors.

Contributions. We improve upon the calibration optimiza-

tion proposed in [28] by addressing its robustness shortcom-

ings, thanks to a novel parameterization for sphere-mesh

calibration optimization. In contrast to [28], our parameter-

ization decouples pose and shape parameters, resulting in

faster convergence and increased robustness; see Section 4.

For the calibration algorithm to be sufficiently robust to be

effectively embedded in a consumer-level tracking system,

inspired by Tan et al. [24], we propose to calibrate in a low

dimensional shape-space. However, we do not derive this

shape-space from a dataset, which can be cumbersome to

acquire, process, and interpret. Rather, we leverage simple

geometric observations, and construct a local anisotropic

scaling shape-space; see Section 3. As opposed to the opti-

mization scheme of Tan et al. [24] relying on numerical dif-

ferentiation, our calibration algorithm is analytically differ-

entiable. We also demonstrate how our shape-space can be

easily integrated in the calibration framework of [28], and

Figure 3: In initialization our calibration algorithm receives

the default template tracked by [28] that provides an initial-

ization of pose and shape. We then optimize for a coarse

shape in a low-dimensional shape-space, and finally per-

form a local refinement in the full-dimensional domain.

discuss how it could also easily be integrated in other cali-

bration algorithms based on Levenberg optimization. This

is in clear contrast to Tan et al. [24], as the shape-space in-

troduced by Khamis et al. [7] is specific to the chosen track-

ing model, thus requiring re-parameterization prior to adop-

tion in other systems. We integrate all our contributions in

a multi-stage calibration algorithm; see Figure 3.

2. Related Work

A large body of work exists for human hand and body

tracking. We focus on the former, and refer to the recent

work of Bogo et al. [3] for a more complete overview on

full-body tracking. As model personalization is a core in-

gredient in generative motion tracking [14], we cover this

topic with more attention. Several approaches for hand

tracking have been proposed, and the type of input data

has evolved alongside sensing technology. Classical ex-

amples of instrumented acquisition include sensored [5] or

colored [32] gloves, accelerometers [34, 31], marker-based

capture [33, 36] and wearable cameras [8]. While effective,

active instrumentation is encumbering and requires com-

plex and time-consuming calibration, a requirement mak-

ing this approach impractical for consumer-level applica-

tions. Similarly, requiring the user to wear a camera, a

glove or placing markers disrupts the potential for seam-

less human-machine interaction. Un-instrumented multi-

camera systems such as [2, 19] can lead to excellent track-

ing quality, but multi-sensor setup and calibration is im-

practical; further, due to the large amount of data to be

processed, real-time performance is difficult to achieve.

The use of a single sensor, providing either color or depth

streams, represents the most logical choice for consumer-

level applications. Hence, in our approach we focus on

single depth camera input. Modern hand tracking tech-

niques from depth data employ algorithms that are gener-
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ative [16, 13, 10, 20, 23, 28], discriminative [30, 11, 12] or

a combination of the two [15, 18, 21, 27]. Due to the large

body of recent works in this area, we refer the reader to the

survey by [22] and recent works [27, 35] for more details.

Calibration and shape-spaces. Albrecht et al. [1] pio-

neered the construction of realistic (skin, bone and mus-

cles) personalized models through registration of 3D mesh

scanned from a plaster. Skin creases and silhouette images

can also be used to guide the registration of a model to

color imagery [17]. More closely related to ours is the work

by de La Gorce et al. [4], where a triangular-mesh template

is calibrated to a rest pose hand image. This is achieved

by augmenting the nodes of the kinematic tree with (rela-

tive) scaling transformations, resulting in a 53 DOF opti-

mization problem. Such a scheme is only capable to ad-

just finger lengths/girths, while palm geometry cannot be

adapted to the user beyond simple scaling. Further, linear

constraints bounding (relative) scale magnitudes are nec-

essary to avoid the solution from drifting; these hard con-

straints limit the expressivity of the model. While few de-

tails are available for this algorithm, we speculate such a

scheme suffers convergence shortcomings analogous to the

full-DOF optimization of Section 3. A different approach

was taken by Makris and Argyros [9], who solve for the

cylindrical geometry of a hand through render-and-compare

evaluations optimized by particle swarm optimization. In

contrast to [4, 9, 24], our method relies on analytical dif-

ferentiation, leading the way to the implementation of high-

performance calibration routines. Our sphere-mesh model

is more expressive than the cylinders in [9] or the scaled

model in [4], while being well suited to the signal-to-noise

ratio of currently available real-time depth cameras.

3. Robust model calibration

Similarly to recently proposed calibration optimization of

[28, 24], we design a routine fitting our sphere-mesh tem-

plate model S̄ to a collection of N single-view depth mea-

surements {D1, ...,DN} of a specific user’s hand in differ-

ent poses. Redundancy in the measurement is necessary due

to the incompleteness of single-view measurements (i.e. at

most 50% of the model is visible in any frame), and to the

inability to determine certain degrees of freedom in specific

configurations (e.g. the length of a phalanx can only be

measured when a finger is bent).

Full-DOF optimization. We cast the calibration problem

into an optimization over pose and shape by defining the

following multi-objective energy function:

argmin
{Ψn}

N∑

n=1

∑

τ∈τcalib

ωτEτ (Ψn;Dn) (1)
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Figure 4: The decoupled parameterization allows to damp

updates in pose and shape with different weights, leading to

faster and more robust convergence. (left) In the plot above

we analyze the convergence for ωpose = {0, 500, 4000}.

(right) We illustrate the calibrated model at iteration 3.

where Ψn = {θn,β} encodes the parameters defining the

shape β (shared by all N frames) and pose θn (specific

to the n-th frame), resulting in a 26N + 112 dimensional

optimization. This non-linear and non-convex problem is

solved in a Levenberg fashion though iterative linearization

from a given initialization {Ψt=0
n }:

argmin
{∆Ψn}

N∑

n=1

∑

τ∈τcalib

ωτEτ (∆Ψn;Dn) (2)

Ψ
t+1
n = Ψ

t
n +∆Ψn (3)

We use the following four calibration energy terms τcalib:

d2m each data point is explained by the model

m2d the model lies in the sensor visual-hull

valid prevent invalid/degenerate sphere-meshes

reg prioritize regularization of shape vs. pose

This formulation extends the framework in Tkach et al. [28],

and could be rewritten as MAP optimization with Lapla-

cian distributions for the fitting terms, and Gaussian distri-

butions for regularization priors. We refer the reader to [28]

for a detailed description of {d2m,m2d,valid}. Notably, our

optimization differs in two ways from the one proposed in

[28]: (1) we introduce an update-regularization, (2) we can

omit the rigidity prior. These changes profoundly impact

the robustness of calibration optimization, but require the

re-parameterization of our calibration DOFs. In contrast

to [28], our re-parameterization decouples pose parameters

θ (e.g. finger bend angle) from shape parameters β (e.g.

phalanx length); see Section 3.1.

Initialization and update-regularization. We employ the

default template and track in real-time the movements of the

user, thus generating our initialization {Ψt=0
n }. Then, we

penalize large updates to prevent large linearization errors
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Figure 5: In this test, we calibrate a single finger and show

how the convergence properties improve switching from

a position-based [28] to our decoupled [θn,β] formula-

tion. The shading denotes one standard deviation σ of un-

certainty; note that although variance is always plotted, at

times it is not visible (i.e. σ ≈ 0). Eβ and Ed2m are respec-

tively defined in Eq. 13 and [28].

by employing a Tikhonov regularizer:

Ereg(∆Ψn;Dn) = ‖∆Ψn‖
2
H

= ∆Ψ
T
n H∆Ψn (4)

However, as our initialization consists of posed models,

we legitimately assume that pose parameters are relatively

close to desired ones; that is, {θt=0
n } ≈ {θ∗

n}. The di-

agonal matrix H allows us to encode such requirement,

where Hkk = ωpose if the k-th entry is a pose-DOF and

Hkk = ωshape if the k-th entry is a shape-DOF, and we se-

lect ωpose ≫ ωshape. We evaluate the impact of such differ-

ential treatment in Figure 4. When calibration is executed

on sensor data, where self-occlusions and structured outliers

result in incomplete depth maps, we noted damping pose

updates further stabilized our optimization avoiding the al-

gorithm from falling into local minima.

Reduced-DOF optimization (shape-space). Recent re-

sults by Tan et al. [24] indicate that solving for calibration

in a low-dimensional shape-space tends to widen the basin

of convergence of the optimization. A simple shape-space

controlled by a single degree of freedom can also be con-

structed by considering a calibration that uniformly rescales

the default template; this simple adjustment has been shown

to have a considerable impact on tracking accuracy [28]. We

now generalize this concept, and introduce a shape-space

that represents locally-anisotropic scaled versions of the de-

fault template model. The definition of such a subspace, dif-

ferently from [24], does not require the collection and pro-

cessing of large amounts of manually annotated data, and

its DOFs are easy to interpret (e.g. finger lengths and girth,

palm width and height, ...). Given the default shape pa-

rameters β̄ and a perturbation vector β̃, any (anisotropic)

deformation of the template with default shape parameters

β̄ can be obtained through the transformation:

β = β̄ ◦ [1+ β̃] (5)

where ◦ represents the element-wise product. We can now

obtain a low-dimensional shape-space by the simple pro-

cess of clustering degrees of freedom into groups; for exam-

ple, if all finger lengths belong to the same group they will

all be scaled by the same β̃finger length. As we detail in Sec-

tion 3.2, we propose a 5 dimensional shape-space manifold

whose DOFs represent {palm aspect-ratios, sphere radii and

finger lengths}, and demonstrate how anisotropic deforma-

tions such as those described in Eq. 5 can be easily embed-

ded in Levenberg calibration frameworks. The shape-space

reduces the number of local minima, widens the basin of

convergence, and makes the calibration algorithm more ro-

bust: having it converge to the correct solution even when

starting far away from the global minimum; see Figure 8.

Multi-stage optimization. However, reducing the num-

ber of degrees of freedom with a shape-space overly con-

straints the template; see Figure 3b. To resolve this issue,

we propose a two-stages optimization; see Figure 3c. First,

a coarse-scale robust optimization is executed in a reduced

5 DOF space (stage 1), followed by a calibration in the full

112 DOF space to refine the model (stage 2). The multi-

stage calibration performance is reported in Figure 9.

3.1. Parameterizing the calibration energy

The adoption of the effective shape-space in Equation 5 re-

quires a re-parameterization of the degrees of freedom con-

trolling the shape of our tracking template. In this section,

we first describe the parameterization from Tkach et al.

[28] and highlight its shortcomings. Then we introduce

our novel parameterization, whose improved performance

is evaluated in Section 4 and illustrated in Figure 5.

Position-based parameterization. The sphere-mesh

model of Tkach et al. [28] employs two matrices with

sphere positions and corresponding radii (C̄, r̄) to describe

rest-pose geometry of the hand model. A kinematic chain

with rest-transformations {T̄ k} deforms the sphere-mesh

through pose parameters θ, producing a posed model Cn

to fit the data in frame Dn. Therefore, the shape degrees of

freedom of such a model are C̄, r̄, {T̄ k} calibrated by [28]

through a two-step optimization with terms τ̃calib 6= τcalib:

argmin
{Cn},(C̄,r̄)

N∑

n=1

∑

T ∈τ̃calib

wT ET (Dn,Cn, C̄, r̄)

argmin
{θn},{T̄ k}

N∑

n=1

∑

T ∈τ̃calib

wT ET (Cn,Ψn)

(6)
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Figure 6: Our parameterization allows the construction

of a 1 DOF (uniform scaling) and a 5 DOF shape-space

(anisotropic palm plus finger length/thickness). The full-

DOF shape-space (last row) can recover a fully calibrated

model but only when a sufficiently good initialization, such

as the one visualized here, is provided.

In [28], a two-step process is necessary as the posed sphere-

meshes {Cn} entangle pose and shape parameters; that is,

θn = f1(Cn) and {T̄ k} = f2({Cn}) are represented by

{Cn} through non-linear mappings f1, f2. In particular,

note how the optimization in Eq. 6 addressed this issue by

de-coupling these degrees of freedom through an alternating

optimization: first by optimizing over posed-shapes, then

optimizing over shape parameters and deducing appropriate

joint angles. Our experiments show how this entanglement

can be detrimental, resulting in poor convergence properties

for the algorithm in Eq. 6; see Section 4.

Decoupled shape-pose parameterization. Our work

stems from a fundamental assumption: the rotational part

of kinematic frames in the rest pose {T̄ k} is shared by all

users. This is a justified choice in our context by two obser-

vations: (1) orthopaedic research by Hollister et al. [6] has

revealed this assumption is valid for typical human hands,

and (2) our default template, inherited from [28], contains

optimized kinematic frames {T̄ k}; see Equation 6. Fur-

ther, rather than representing each finger’s geometry as tu-

ples of centers/radii {(ci, ri)} (16 DOF) as in [28], we en-

code finger-palm attachment ci and the length δi and girth

ri of each phalanx. The pose of each finger is then ex-

pressed by a 4-tuple of angles {θa1 , θ
f
1 , θ

f
2 , θ

f
3} (14 DOF),

(c1, r1)

(c2, r2) (c3, r3)

(c4, r4)

(c1, r1)

θa
1

θ
f
1

δ1

θ
f
2

δ2

θ
f
3

δ3

r2 r3

r4

Tkach et al. [28] [Proposed Method]

Figure 7: Sphere-mesh vs. our [θ,β] parameterization.

where a stands for abduction and f represents flexion. The

parameterization of centers coordinates for palm, wrist and

flexible sphere-mesh elements are unchanged, leading to a

112 DOF model. To reflect the decoupling of pose and

shape, we denote our parameter vector as Ψn = [θn, β̄],
where β̄ = [δ̄, r̄, {c̄}palm].

3.2. Shapespace optimization

Considering the anisotropic perturbation model of Eq. 5 and

recalling the parametrization described in Section 3.1, our

shape-manifold is obtained by coalescing the following de-

grees of freedom:

δ = δ̄(1 + δ̃),

r = r̄(1 + r̃)

c = c̄ ◦ ([1, 1, 1]⊺ + c̃)

That is, inspired by Khamis et al. [7], we employ a 5 dimen-

sional shape-space, whose degrees of freedom are selected

by inspection of its main modes of variation [7, Fig.1]. The

shape-space, parameterized by β̃ = [δ̃, r̃, c̃], encodes:

δ̃ : uniform finger-length scaling

r̃ : uniform sphere-scaling

c̃ : anisotropic 3D palm stretching

One could re-differentiate the calibration energies in Eq. 2

with respect to these new degrees of freedom – a tedious

and laborious task. However, recall how the energy terms

in Eq. 1 can be written in squared-residual form. Without

loss of generality, let us narrow our consideration to δ, that

is, the DOF representing finger lengths:

argmin
δt+1

‖ǫ(δt+1)‖2 (7)

To derive the Levenberg update, we perform the first order

Taylor expansion of Eq. 7 with respect to δ:

argmin
∆δt+1

‖ǫ(δt) + Jδ∆δt+1‖2 (8)
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Figure 8: A comparison of the convergence properties of the

re-parameterized full-DOF (112 parameters) vs. reduced-

DOF (5 parameters) calibration. As we increase the pertur-

bation, the full-DOF optimization loses robustness as illus-

trated by the variance plots. Conversely, the reduced-DOF

optimization is highly robust, although it only provides a

rough approximation of the parameters.

where Jδ = ∂ǫ/∂δ is the Jacobian matrix. Leveraging our

shape-space, we rewrite the differential update as:

δt+1 = δt +∆δt+1 = δt(1 + δ̃t+1) ⇒ ∆δt+1 = δtδ̃t+1

effectively re-parameterizing our optimization:

argmin
δ̃t+1

‖ǫ(δt) + (Jβδ
t)δ̃t+1‖2 (9)

Differentiating the energy above with respect to the un-

known δ̃t+1 leads to the least-squares solution:

δ̃t+1 = (Jδδ
t)†ǫ(δt) ⇒ Jδ̃ = Jδδ

t (10)

In summary, the Jacobians computed for an existing full-

DOF optimization can be recycled to optimize in a desired

low-dimensional shape-space. This allows the proposed

anisotropic scaling shape-space to be embedded in any Lev-

enberg calibration algorithm with minimal changes to the

source code.

4. Evaluation

We evaluate our algorithm on synthetic data as well as

datasets acquired from a commodity RGBD sensor. Our

calibration algorithm is developed in MATLAB and exe-

cuted single-threaded on a 3GHz laptop. The average exe-

cution time for N = 8 is 200s, and its complexity grows lin-

early in N as well as in the depth image resolution. As the

optimization problem is analogous in nature to [23], a GPU

2 4 6 8 10 12 14

0

0.05

0.1

0.15

2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

iterations iterations

σβ = .1, σθ = .2 σβ = .2, σθ = .2

σβ = .3, σθ = .2 σβ = .4, σθ = .2

E
β

E
β

E
β

E
β

Figure 9: The 2-stage algorithm outlined in Figure 3 com-

bines the robustness of the reduced-DOF to the accuracy of

the full-DOF calibration. For visualization purposes only,

we execute five iterations of reduced-DOF optimization;

note in all our experiments, five iterations are sufficient to

achieve convergence of the low-dimensional solve. Note

how variance ≈ 0, revealing enhanced convexity.

or C++ implementation can be expected to achieve real-

time performance (respectively for dense or sub-sampled

data; see [27] and [29]). In the evaluation that follows, we

study the robustness of our algorithm by analyzing its con-

vergence properties on synthetic data. We also evaluate our

calibration on raw sensor data, confirming that calibrated

sphere-meshes [28] can achieve competitive tracking preci-

sion compared to triangular meshes [27].

Evaluation on synthetic data. We quantitatively evalu-

ate the proposed system by randomly perturbing a ground

truth model and studying the convergence properties of the

algorithm (convergence speed and robustness). Ground-

truth parameters [β∗, {θ∗
i }], where i indexes a given

pose, are perturbed to generate M = 100 initializations

{[βt=0, {θt=0
i }]m=1...M} with uniform distribution:

βt=0 = β∗ ◦ [1+ U(0, σβ)] (11)

θt=0
i = θ∗

i + U(0, σθ) (12)

We evaluate robustness by measuring the ability of the algo-

rithm to return to the optimal configuration [θ∗,β∗] over a

randomly sampled set of perturbations as we vary the mag-

nitudes of σθ and σβ as measured by the error metric:

Eβ = ‖β − β∗‖ (13)

In Figure 5, we investigate the effect of re-parameterization.

Here, we simplify the problem by considering a single fin-

ger in isolation. Note how decoupling pose and shape re-

sults in substantially improved convergence properties. In
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Figure 10: Model personalization evaluation of captured depth data for different users. We evaluate tracking performance as

the percentage of frames where the E3D metric [28] is lower than the value in the abscissa for the template, reduced-DOF

(i.e. shape-space), and our multi-stage calibrated model. We do not report the curve for neither the calibration of [28], nor

for our full-DOF, as they could not converge to a consistent solution, revealing their reliance on a good initialization. We

also evaluate against the state-of-the-art tracking algorithm by Taylor et al. [27], whose calibration was performed via Tan

et al. [24]; the rendered depth-maps to evaluate the metrics are courtesy of the authors. These results are better appreciated

in the videos available on the project page.

Figure 8, we consider full hand calibration and we gradu-

ally increase the initialization perturbation and thus the dif-

ficulty of the problem. The full-DOF optimization has diffi-

culties in recovering the ground-truth parameters when the

perturbation is too large; conversely, the shape-space cali-

bration optimization is robust, but fails at estimating precise

parameter values. A qualitative example of this shortcom-

ing is presented in Figure 6, where we illustrate how only

the full-DOF parameterization can produce a sufficiently

accurate model. As illustrated in Figure 9, our multi-stage

calibration combines the strengths of the two approaches by

first robustly optimizing the rough template shape in a low-

dimensional subspace, and then refining the model in the

high-dimensional space.
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Evaluation on acquired data. We acquired track-

ing/calibration sequences for different users using an In-

tel RealSense SR300 depth sensor. Tracking is performed

with the real-time algorithm by Tkach et al. [28]. Note that

while tracking the shape parameters β are kept fixed. Track-

ing quality is quantitatively evaluated with the algorithmic

agnostic metric E3D described in [28]. A few calibra-

tion frames and an illustration of the model alignment be-

fore/after calibration optimization is executed are reported

in Figure 10. In this figure we also report the E3D tracking

metric for the template vs. the personalized model. We do

not report the curve for [28], as the algorithm fails to con-

verge with poor initializations such as the ones we use. In

Figure 11, we compare a number of state-of-the-art tech-

niques on the complex HANDY/TEASER dataset from [28].

Note how our calibration leads to a slight loss in tracking

performance when compared to [28], but is still competitive

to the tracking performance of Taylor et al. [27], that em-

ploys a model calibrated by the algorithms proposed by Tan

et al. [24]. The tracking performance of [28] is still slightly

superior to the one of our method. This is expected, as

Tkach et al. [28] calibrates on curated panoptic input data

(a dense point cloud computed via multi-view stereo (MVS)

on hundreds of RGB images, generating multiple poses and

≈4k points/pose), and manual annotation was used to guide

the algorithm. Instead, our solution leverages a small set

of low-resolution depth maps (typically 8), and requires no

manual intervention.

5. Conclusions and future work

In this paper, we presented a novel sphere-mesh calibra-

tion algorithm leveraging a low dimensional shape-space to

robustly personalize a default tracking template to a given

user. We qualitatively and quantitatively evaluated the algo-

rithm on several users against the state-of-the-art calibra-

tion techniques of Tkach et al. [28] and Tan et al. [24],

revealing how our calibrated models achieve competitive

tracking performance. In comparison to [28], we demon-

strated our algorithm possesses a much wider basin of con-

vergence, simplifying the calibration task by removing the

need for initialization fine-tuning. Conversely from Tan

et al. [24], which relies on differentiation of an expensive

render-and-compare energy, our calibration framework is

analytically differentiable with respect to pose/shape pa-

rameters. Given the signal-to-noise ratio of current gen-

eration real-time depth sensors, our investigation also re-

veals how simple geometric observations can be used to

build a shape-space that is effective in regularizing cali-

bration optimization. These characteristic allowed us to

extend the approach we presented in this paper into [29],

hence introduce the first online/streaming calibration tech-

nique for hand tracking. Further, the technique of Tan et al.
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Figure 11: The tracking performance of the model cali-

brated by the [Proposed Method] is quantitatively evalu-

ated against the ones of Tkach et al. [28], Tagliasacchi

et al. [23], Sharp et al. [18] and Taylor et al. [27] on the

HANDY/TEASER sequence. A minor loss in performance

is expected, as [28] calibrated this dataset on high-quality

MVS data, while we employ consumer-level depth imagery.

[24] is model-specific, and requires some form of ad-hoc

retargeting in order to be adopted in other tracking sys-

tems; conversely, our shape-space does not require to re-

peat the acquisition, calibration and analysis of a large set

of users, but can be easily deployed with minimal interven-

tion in existing tracking codebases. In the future, we in-

tend to investigate whether a data-driven shape-space can

be used to represent fine-scale geometry differences, and

potentially account for pose-space deformations [3]. We

leave to future work to determine whether a multi-stage

algorithm that increases the DOFs more gradually would

be advantageous; such coarse-to-fine schemes are already

known to be beneficial for hand tracking [25]. Through

our shape-space, we can deal with deformation in a ±40%
range, thus covering a large portion of the human popula-

tion. The range could be further extended by requesting

user to sign-in into the calibration session with a default

rest-pose from which a uniform scale can roughly be esti-

mated. In a similar direction, a set of standard calibration

poses could be used, and pose latent spaces [23] that are

pose-specific could be used as regularizers in place of our

pose-update damping strategy. To ensure reproducibility of

results, as well as to foster further research in this area, we

release the sources of our algorithm as well as all our eval-

uation datasets. These resources are available at the page:

http://github.com/edoRemelli/hadjust.
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