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Abstract

Automatic image aesthetics rating has received a grow-

ing interest with the recent breakthrough in deep learning.

Although many studies exist for learning a generic or uni-

versal aesthetics model, investigation of aesthetics models

incorporating individual user’s preference is quite limited.

We address this personalized aesthetics problem by showing

that individual’s aesthetic preferences exhibit strong cor-

relations with content and aesthetic attributes, and hence

the deviation of individual’s perception from generic im-

age aesthetics is predictable. To accommodate our study,

we first collect two distinct datasets, a large image dataset

from Flickr and annotated by Amazon Mechanical Turk,

and a small dataset of real personal albums rated by own-

ers. We then propose a new approach to personalized aes-

thetics learning that can be trained even with a small set of

annotated images from a user. The approach is based on

a residual-based model adaptation scheme which learns an

offset to compensate for the generic aesthetics score. Fi-

nally, we introduce an active learning algorithm to opti-

mize personalized aesthetics prediction for real-world ap-

plication scenarios. Experiments demonstrate that our ap-

proach can effectively learn personalized aesthetics pref-

erences, and outperforms existing methods on quantitative

comparisons.

1. Introduction

Automatic assessment of image aesthetics is an impor-

tant problem that has a variety of applications such as image

search, creative recommendation, photo ranking and per-

sonal album curation, etc. [16, 20]. It is a challenging task

that requires high-level understanding of photographic at-

tributes and semantics in an image. Only recently, there

has been a significant progress due to the advancement in

deep learning that can learn such high-level information ef-

fectively from data [15, 16, 30]. Although many success-

ful deep learning-based approaches have been proposed for

learning generic aesthetics classifiers, efforts on learning

user-specific aesthetic models are quite limited.

Figure 1: Examples illustrating personal aesthetic prefer-

ences. Each image is rated by 5 different users. As can

be seen, on the first example, ratings are consistent among

the users while on the other two, different users manifest

very different visual tastes. Individual users may have their

unique preference with respect to visual attributes or con-

tents of an image when they judge its aesthetic quality.

Image aesthetics rating is well known to be a highly sub-

jective task as individual users have very different visual

preferences. This has been observed in earlier rule-based

photo ranking systems such as [29, 33, 34]. For example,

Figure 1 shows example images and their aesthetic scores

(1 to 5) rated by five different users following careful in-

structions. As can be seen, ratings for each image could

vary significantly among the users. This is expected as dif-

ferent users may have very different opinions with respect

to photographic attributes (composition, lighting, color) or

semantic contents of the image (portrait, landscape, pets).

Therefore, learning individual user’s visual preference is a

crucial next step in image aesthetics research.

We refer to this problem as personalized image aesthet-

ics and aim to address it by adapting a generic aesthetics

model for individual user’s preference. However, this is a

challenging task as we typically need to learn such prefer-

ence from a very limited set of annotated examples from

each user. For example, in photo organization softwares, it

is desired to minimize user’s annotation effort. An effective

strategy in such applications is to leverage active learning

by automatically selecting representative images and sug-

gest them to users for rating.

1638



For investigating this problem with a learning-based ap-

proach, a labeled dataset with rater’s identities are needed

for training and evaluation purposes. Existing aesthetics

datasets are not appropriate as they either do not have rater

identities [22] or are limited in size [9]. Therefore, we

introduce two new datasets specifically tailored for this

task: (1) Flickr Images with Aesthetics Annotation Dataset

(FLICKR-AES) which contains 40,000 Flickr images la-

beled by 210 unique Amazon Mechanical Turk (AMT)1 an-

notators; (2) Real Album Curation Dataset (REAL-CUR)

that contains 14 real user’s photo albums with aesthetic

scores provided by the album owners.

To learn the average aesthetic preference of a typical

user [1, 10], we first use the relatively large FLICKR-AES

dataset to train a powerful, generic aesthetics prediction

model which performs competitively to the state of the art.

Then, we present a novel approach for personalizing image

aesthetics by adapting the generic model to individual users.

To cope with a limited number of annotated examples from

a user, we adopt a residual-based model adaptation scheme

which is designed to learn a scalar offset to the generic aes-

thetic score for each user.

Inspired by the studies [5, 17, 22] which leverage both

aesthetic attributes and content information to improve the

performance of generic aesthetics rating, we study feature

representations effective for personalized aesthetics learn-

ing, and observed that features trained for generic aesthetics

prediction, aesthetics attributes classification, and seman-

tic content classification are all important for learning per-

sonalized image aesthetics models. We further show in ex-

periments that our personalized aesthetics model with this

combined feature representation significantly outperforms

an existing collaborative filtering-based method.

Finally, we introduce an active personalized aesthet-

ics learning algorithm for real-world application scenarios

such as interactive photo album curation. Results demon-

strate that our method compares favorably to typical active

learning-based methods in the previous literature.

Our main contributions are three-fold:

• We address the problem of personalized image aes-

thetics, and introduce two new datasets to facilitate re-

search in this direction.

• We systematically analyze correlation between user

ratings and image contents/attributes, and propose a

novel approach for learning a personalized image aes-

thetics model with a residual-based model adaptation

scheme.

• We propose an active personalized image aesthetics

learning algorithm for real-world image search and cu-

ration applications.

1https://www.mturk.com

2. Related Work

Aesthetic quality estimation Earlier studies on image

aesthetics prediction mainly focus on extracting hand-

crafted visual features from images and mapping the fea-

tures to annotated aesthetics labels by training classifiers or

regressors [5, 11, 17, 21]. With the emergence of large-

scale aesthetics analysis datasets such as AVA [22], a signif-

icant progress has been made on automatic aesthetics anal-

ysis by leveraging deep learning techniques [9, 15, 16, 31].

In [15, 16], the authors show that using the patches from

original images could consistently improve the accuracy for

aesthetics classification. Mai et al. [18] propose an end-to-

end model with adaptive spatial pooling to process original

images directly without any cropping. Kong et al. [12] ex-

plore novel network architectures by incorporating aesthetic

attributes and contents information of the images. However,

all these works focus on learning generic aesthetics models.

Personalized prediction Collaborative filtering has been

a popular algorithm for recommendation and learning per-

sonalized preferences. Matrix factorization is a common

approach that serves as the basis for most collaborate filter-

ing methods [7, 13, 14]. Matrix factorization-based meth-

ods are strictly limited to existing items already rated by

some users and cannot be used to predict/recommend novel

items for users. To overcome the limitations, several im-

provements have been introduced. For example, Rothe et

al. [25] introduce the visual regularization to matrix factor-

ization that regresses a new image query to a latent space,

while Donovanet al. [24] use a novel feature-based collab-

orative filtering that transforms the features of new item to

latent vectors. Nevertheless, those approaches assume there

are considerable overlaps among items rated by different

users. In personalized image aesthetics, the sets of items

rated by individual users may not necessarily be overlap-

ping. For example, for photo curation, each user only rate

their own personal images. Some earlier works on photo

ranking [33, 34] incorporate user feedback in the ranking

algorithms but it is done by adjusting feature weights in an

ad-hoc way instead of learning from data.

Active learning Active learning is an effective method to

boost learning efficiency by selecting the most informative

subset as training data from a pool of unlabeled samples.

Samples with large uncertainties are likely to be chosen,

whose ground-truth values are collected to update the mod-

els. However, most active learning methods deal with clas-

sification problems [26, 27, 28], and in this study, our model

aims to predict a continuous aesthetic score, which is for-

mulated as a regression problem. Existing active classifi-

cation approaches are not directly applicable to our prob-

lem because evaluation of uncertainties for unlabeled sam-
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ples is nontrivial in regression methods such as support vec-

tor regression. Moreover, there is a risk of selecting non-

informative samples which may increase the cost of label-

ing [4, 32]. There have been a few attempts to apply active

learning for regression problems, such as Burbidge et al. [2]

which select unlabeled images with the maximal disagree-

ment between multiple regressors generated from ensemble

learning algorithms. Demir et al. [4] propose a multiple cri-

teria active learning (MCAL) method that uses diversity of

training samples and density of unlabeled samples. The ac-

tive learning method introduced in our work differs from

those works in that we define an objective function to select

unlabeled images by considering the diversity and the infor-

mativeness of the images that are directly related to person-

alized aesthetics.

3. Datasets

FLICKR-AES We download 40,000 photos with a cre-

ative commons license from Flickr2 and collect their aes-

thetic ratings through AMT. The raw aesthetics scores range

from 1 to 5 representing the lowest to the highest aesthetics

level. Each image is rated by five different AMT workers

and its ground truth aesthetics label is approximated to be

the average of the five scores. In total, 210 AMT workers

participated in the annotation of FLICKR-AES.

We split the dataset into training and testing sets. Specif-

ically, we select 4,737 images labeled by 37 AMT workers

to include in the testing set. The number of photos each

testing worker labeled ranges from 105 to 171 (avg. = 137).

All the remaining 35,263 images annotated by the rest 173

workers are included in the training set. We leverage the

latter for training both generic and personalized aesthetics

models. With this split, we verified that the testing set does

not have any images labeled by the workers in the training

set, and vice versa. This allows us to simulate real applica-

tion scenarios where each user only provide ratings on his

or her own photos, and the algorithm cannot access those

photos and ratings beforehand.

Compared to the existing aesthetics dataset with rater

identities [12], FLICKR-AES is a much larger and more

comprehensive dataset which has a more diverse and bal-

anced coverage of contents.

REAL-CUR In FLICKR-AES, aesthetics ratings are pro-

vided by AMT workers instead of actual owners of the pho-

tos in the dataset. For testing in the context of real-world

personal photo ranking and curation applications, we col-

lect another dataset composed of 14 personal albums (all

from different people) and corresponding aesthetic ratings

provided by the owners of the albums. The number of pho-

tos in each album ranges from 197 to 222 while the average

2https://www.flickr.com

is 205. As we only have one user rating for each photo,

we instructed each user to go through their album multi-

ple times to make the ratings consistent. To the best of our

knowledge, this is the first aesthetics analysis dataset with

real users’ ratings on their own photos.

4. Analysis of User Preferences

How significant are individual user’s preferences rela-

tive to generic aesthetic perception? How are those prefer-

ences related to image attributes? In order to answer these

questions, we perform the following correlation analysis be-

tween individual user’s ratings and various image attributes

using FLICKR-AES.

There are numerous image properties or attributes which

could affect a user’s aesthetics rating. Among them, we

choose content attributes (semantic categories) and aesthet-

ics attributes (e.g. rule-of-third, symmetry) as they are the

most representative cues explored for aesthetics analysis

and are proved effective for predicting aesthetic quality of

an image[5, 17]. We show details on how to extract those

attributes in Section 5.1.

We select 111 AMT workers from the training set who

have labeled at least 172 images (avg. = 1,550), and treat

them as individual users. For each user, to measure the

correlation of the preference and the content/aesthetics at-

tributes, we use Spearman’s rank correlation (ρ) [23] which

is calculated as ρ = 1 − 6
∑

N

i=1
(ri−r

′

i
)
2

N3−N
, where ri is the

rank of the i-th item when sorting the scores given by the

first metric in descending order and r
′

i is the rank for the

scores given by the second metric. ρ ranges from -1 to 1

and a higher absolute value indicates stronger correlation

between the first metric and the second metric.

Directly measuring the correlation between user’s abso-

lute aesthetics scores and image attributes cannot properly

reflect user’s preference, as the correlation values in this

case are dominated by the average ratings of each image.

Therefore, we compute the offset (or residual) of a user’s

score to the ground truth (average) score, and measure cor-

relation between offset values and image attributes instead.

We randomly select 8 AMT workers and show the results in

Figure 2a, in which dark red color indicates a user prefers

these attributes, while dark blur color means the user has

relatively lower scores on images with those attributes. It

clearly shows that the deviation of each user’s ratings (w.r.t.

image attributes) are unique. We further visualize example

images rated by Worker1 and Worker4 in Figure 2b. As we

can see, Worker1 prefers landscape images versus images

of crowds while Worker4 prefers images with symmetry at-

tributes over images of people.

To understand the significance of the correlation ver-

sus randomness of users’ labels, we additionally create two

“random ” users as the baseline. The two random users
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(a)

(b)

Figure 2: (a) Ranking correlation between offsets and image attributes for randomly selected 8 AMT workers and 2 random

users. (b) First row: Example images rated by Worker1. The user tends to assign higher scores to landscapes and lower

scores to crowd scenes than the average ratings; Second row: Example images rated by Worker4. The user tends to assign

higher scores to images containing symmetry attributes but lower scores to people scenes than the average ratings.

are generated by randomly sampling 1,000 images from the

training set as their annotated images. The score for each

image is set to the ground-truth score (i.e. the average rating

of five AMT workers) perturbed by a zero-mean Gaussian

random noise with standard deviation of 0.2 and 2, respec-

tively. We choose those standard deviations to simulate two

“average” users with a relatively small and a relatively large

amount of label offsets deviated from the generic scores.

The correlations of their offsets with attributes are also in-

cluded in Figure 2a, which show no statistically meaningful

preference as expected. Compared with “random” users,

the correlations on actual users are much stronger, demon-

strating that their preferences are indeed related to content

and aesthetics attributes instead of random deviations.

For each user, we also compute the sum of the absolute

values of the correlation and compare the value with two

random users. We run the experiments for 50 times and

report the average for the two “random” users. We find all

the 111 actual users have higher average correlation scores

than the “random” users, showing that the correlations are

statistically meaningful.

The analysis demonstrates that score offsets are very ef-

fective cues revealing user preferences regarding aesthet-

ics on content and aesthetics attributes. Motivated by this,

we derive a novel residual (offset)-based model for learning

personalized aesthetics in the next section.

5. Approach

In this section, we first introduce our proposed ap-

proach to learn personalized aesthetics models by adapting
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Figure 3: An overview of the proposed residual-based per-

sonalized aesthetics model.

a generic aesthetics model to individual users and then con-

tinue to derive an active learning algorithm for real-world

photo curation applications.

5.1. Personalized aesthetics model (PAM)

In real-world photo ranking and curation applications,

users often provide a very limited number of aesthetic rat-

ings or feedbacks to their own photos. The lack of la-

beled exampled makes it difficult to train a meaningful

personalized aesthetics model from scratch. Traditional

recommendation-based approaches such as collaborate fil-

tering may not be very effective as they require significant

overlapping of items rated by different users. In photo cura-

tion applications, the user-item matrix could be too sparse

to learn effective latent vectors[24].

In order to learn an effective personalized model with

good generalization, we aim to capture not only the com-

mon aesthetic preference shared across individuals[1] but

also the unique aesthetic preference by each individual

[29, 33]. Following this idea, we propose to leverage

the generic aesthetics model trained to predict the average

user’s ratings, and focus personalized aesthetics learning on

modeling the deviation (residual) of individual aesthetics

scores from the generic aesthetics scores. We first train a

generic aesthetics model using the FLICKR-AES training

set by treating the average rating as the ground truth aes-

thetic score. Then, given an example set rated by each user,

we apply the generic model to each image in the set to com-

pute the residual scores between the user’s ratings and the

generic scores. Finally, we train a regression model[3] to

predict the residual scores. The overview of the approach is

illustrated in Figure 3.

Generic aesthetics prediction Recent studies[12, 15, 16]

have achieved promising results on generic image aesthet-

ics prediction using deep learning. Inspired by these works,

we train a deep neural network to predict genetic aesthetic

scores. It has the same architecture as in [8] except that

we trimmed the number of neurons in the second-to-the-

last layer, which we found makes the training more efficient

and yields better accuracies. We tested different combina-

tions of loss functions as in [12], but experimentally found

that the Euclidean loss function alone works the best on our

dataset. We also verified that our generic model achieves

results comparable to the recent state of the art by Kong et

al. [12] on their AADB dataset [12].

Residual learning for personalized aesthetics With the

generic aesthetic scores, we can compute residual scores

(offsets) for the example images by subtracting them from

ratings by each user. Our goal is then reduced to learn a

regressor to predict the residual score given any new image.

Due to the lack of annotated examples from each user,

training such regressor directly from an image is not prac-

tical. Therefore, we propose to use high-level image at-

tributes related to image aesthetics to form a compact

feature representation for residual learning. We consider

both aesthetic and content attributes inspired by previous

studies[5, 12, 15, 17, 20, 22] for automatic assessment of

generic aesthetics.

Given the features, we simply use the support vector re-

gressor with a radial basis function kernel to predict the

residual score as shown in Equation 1,

min
1

2
wT w + C(νǫ+

1

l

l∑

i=1

(ξi + ξ∗i ))

s.t. (wTφ(xi) + b)− yi ≤ ǫ+ ξi,

yi − (wTφ(xi) + b) ≤ ǫ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, ...l, ǫ ≥ 0.

(1)

where xi is the concatenation of aesthetic attribute fea-

tures and content features, yi is the target offset value, C is

the regularization parameter, and ν (0 < ν ≤ 1) controls the

proportion of the number of support vectors with respect to

the number of total training images. We discuss the details

of the feature vector xi in the following.

Feature representation for personalized aesthetics We

first leverage the existing AADB[12] dataset which contains

around 10,000 images labeled with ten aesthetic attributes3

to train our aesthetic attribute features. Due to the limited

number of training images provided by AADB, we use our

trained generic aesthetics network as a pre-trained model,

and fine-tune it by multi-task training, i.e. attribute pre-

diction using AADB and aesthetics prediction uisng Flickr-

AES. We use the Euclidean loss for both attribute prediction

and aesthetics prediction, and fix all the earlier layers of the

generic model and only fine-tune its last shared inception

3The aesthetics attributes include interesting content (IC), object em-

phasis (OE), good lighting (GL), color harmony (CH), vivid color (VC),

shallow depth of field (DoF), rule of thirds (RoT), balancing element (BE),

repetition (RE) and symmetry (SY)
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layer and the prediction layers. Given the fine-tuned net-

work, we use the 10-dimensional responses as the aesthetic

attributes feature vector fattr. Experiments show that the

attributes prediction performance of our jointly trained net-

work is significantly better than the one from[12], as shown

in Table 1. It demonstrates that features learned from larger-

scale aesthetics dataset could also benefit attributes predic-

tion attribute annotations.

As for the content features, we use the off-the-shelf im-

age classification network[8] to extract semantic features

(avg pool) from each image. In order to generate compact

content attribute features, we first use k-means to cluster

the images from the FLICKR-AES training set into k = 10
semantic categories using the second-to-the-last inception

layer output as the feature. We then add a k-way soft-

max layer on top of the network and fine-tune the layer

with the cross-entropy loss. The 10-dimensional outputs

of the network are defined as the content attributes fea-

ture vector fcont. We concatenate the two feature vectors

x = [fattr, fcont]
T , to form our final feature representation

to personalized aesthetics learning. Experiments show the

concatenation of attributes and content features achieve bet-

ter results than using each of them alone.

Algorithm 1: Active-PAM

Input: Unrated photo set N = {pi}i=1,K , the aesthetic

feature vectors vi, the maximum number of example

ratings m;

1 Initialize the set of rated examples as: R = ∅ ;

2 Randomly select a subset S of ⌊K/10⌋ images from N and

move them to R: N = N \ S, R = R∪ S ;

3 while |R| < m do

4 Train a regressor to predict the residual score {ri};

5 Calculate the weight for each annotated image

wi = (1−
|ri|∑|R|

i=1
(|ri|)

), pi ∈ R (2)

6 Find pq that

max
q

|R|∑

j=1

wjdist(vq, vj), pq ∈ N , pj ∈ R (3)

7 Add the selected image to R and update N :

R = R∪ {pq} and N \ pq ;

5.2. Active personalized image aesthetics learning
(Active­PAM)

In real-world applications such as interactive photo cura-

tion, users can continuously provide ratings regarding their

aesthetics preference during the photo selection and ranking

process[33, 34]. Instead of waiting for users to provide rat-

ings on arbitrary images, we can use active learning to au-

tomatically select the most representative images for users

to rate, and learn from their feedback online. To minimize

VC GL IC SY DoF

Baseline 0.5759 0.3770 0.4854 0.2283 0.5071

Our Results 0.6938 0.4963 0.5641 0.2558 0.5476

OE BE CH RE RoT

Baseline 0.5728 0.2035 0.4808 0.3150 0.2174

Our Results 0.6718 0.3104 0.5176 0.3749 0.2737

Table 1: Attributes comparison of the baseline[12] and our

results. Both calculated by correlation ρ. Jointly training

attributes and aesthetics improves the attributes prediction.

the user effort, we propose a new active learning algorithm

to optimize sequential selection of training images for per-

sonalized aesthetics learning. Specifically, we consider the

following two criteria: 1) the selected images should cover

diverse aesthetic styles as quickly as possible with mini-

mum redundancy; 2) the images with large residual scores

between user’s ratings and the generic aesthetics scores are

more informative.

Based on these criteria, we design our active selection

algorithm as follows. For each image pi in the collection

N , we denote its aesthetics score predicted by the generic

aesthetics network as si, features extracted at the second-to-

the-last layer output as fi. The aesthetic feature capturing

the aesthetic styles of the image can then be represented as

vi = [wafi, si], where wa is a constant balancing the two

terms. We can then measure the distance between any two

images pi and pj using the Euclidean distance dist(vi, vj).
Given a set of images R already annotated by the user,

for each remaining image pi in the album, we can calculate

the sum of distances between pi and any image pj in R,

di =
∑|R|

j=1 dist(vi, vj), pj ∈ R. At each step, we can

choose the image with the largest di according to the first

criterion. In order to incorporate the second criterion at the

same time, we can encourage selecting the image producing

large residuals in R. We denote the residual score as rj and

assign weight wj to each image using Equation 2. We apply

the weights to the overall distance, resulting in Equation 3.

The details of the active learning algorithm are described in

Algorithm 1.

6. Experiments

In this section, we present the experimental evaluation

of our personalized aesthetics model (PAM) and our active

learning approach (Active-PAM) on both the FLICKR-AES

and the REAL-CUR datasets. Figure 4 introduces visual

examples to show how the model works.

6.1. Implementation details

The earlier layers of our generic aesthetics network are

initialized from the Inception-BN network [8], whereas the

last trimmed inception module is randomly initialized using
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(a) One example user from FLICKR-AES

(b) One example user from REAL-CUR

Figure 4: Example results of personalized aesthetics pre-

diction from two users. The examples in (a) comes from

FLICKR-AES and the examples in (b) comes from REAL-

CUR. The blue bar is the user rating, the yellow bar is the

generic aesthetics prediction and the green bar is the person-

alized aesthetics prediction for this user. As can be seen,

our personalized model more accurately predicts user rat-

ings than the generic model.

“Xavier”[6]. The network is then fine-tuned on FLICKR-

AES. During training, images are warped to 256× 256 and

then randomly cropped to 224 × 224 before feeding into

the network. The learning rate is initialized as 0.001 and

periodically annealed by 0.96. The weight decay is 0.0002

and the momentum is 0.9.

6.2. Evaluation on personalized aesthetics models

To evaluate our personalized aesthetics model (PAM),

we compare PAM with a baseline model as well as a com-

monly used collaborate filtering approach and show that

PAM works significantly better than the other two. We fur-

ther analyze the effectiveness of content and aesthetic at-

tribute features used in our model.

Comparison with other methods. We compare PAM

with two other methods: 1) a baseline SVM regres-

sor that directly predicts user-specific aesthetics scores

on test images based on user-provided training images,

and 2) a commonly used collaborate filtering approach,

non-linear Feature-based Matrix Factorization (FPMF),

which achieves better performance than other matrix

factorization approaches on individual color aesthetics

recommendation[24]. In both methods, we use the same

content and aesthetic attribute features as in our method.

We evaluate these three methods on the test workers in

FLICKR-AES. During evaluation, for each test worker, we

randomly sample k images from the ones he or she labeled,

and use them as training images. All the remaining images

are then used for testing. For the non-linear FPMF, all the

other workers in the FLICKR-AES training set are also in-

cluded for training. Due to the randomness of training im-

age selection, we run the experiments 50 times for each test

worker, and report the averaged results as well as the stan-

dard deviation.

Following [12], ranking correlations are used to measure

the consistency between the predictions and the ground-

truth user scores. The mean ranking correlation of the

generic aesthetics model over all the test workers are 0.514.

In Table 2, we show the improvement in terms of corre-

lation for each method compared with the generic model,

with k = 10 and k = 100, respectively. We can see the

SVM model that directly predict scores does not work on

this problem, as its results are even worse than the ones from

the generic model. It tries to directly learn each user’s fla-

vor regarding aesthetics from very limited data without con-

sidering generic aesthetics understanding, which is accord-

ingly very unstable and hardly generalizable. By contrast,

our method (last row in Table 2) works even with 10 train-

ing images, and has much more significant improvement

with more training examples. It validates the design of our

residual-based model, which fully leverages the common

understanding of aesthetics existing in the generic aesthetics

network, and focuses on the score offsets that directly cor-

respond to users’ unique preference compared with generic

aesthetics. Our model also significantly outperforms FPMF,

which only has marginal improvement even when using 100

training images.

Ablation study on features. We also show the results of

PAM when trained only using the content feature or only

using the aesthetics attribute feature, respectively, in the 3rd

and 4th row in Table 2. We can see that both content and

aesthetics attributes can be used to model personalized aes-

thetics, as the correlations with users’ ground truth scores

also increase when using more user provided training im-

ages. Nevertheless, using both features gives the best per-

formance. It further demonstrates that users’ preference on

image aesthetics are related to both image content and aes-

thetic attributes.

6.3. Evaluation on active learning

Comparison with other methods. We compare our

method with three other active learning methods: 1)

Greedy[35], which selects the sample that has the minimum

largest distance to the already selected samples at every it-

eration; 2) MCAL[4], which chooses samples by clustering

the candidate images to be selected and selected images that

are not support vectors; 3) Query by Committee (QBC) [2],
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which generates a committee of models by using ensemble

algorithms. In our experiment, we generate 5 committees

using Bagging for QBC [19]. We choose these three meth-

ods for comparison because they deal with regression prob-

lem, whereas classic active learning approaches[4, 28] for

classification are not applicable here, as their criteria such

as margin-based sampling are not suitable for continuous

aesthetics scores. In addition, we also add another baseline

where all the images are randomly selected.

To evaluate an active learning method, we start with 10

randomly selected images to train the initial PAM. Based

on the initial results, we keep selecting new images from

user’s photo album using the active learning methods and

updating the PAM model, until the number of selected im-

ages reaches 100. Different methods may select different

images for model update. To compare these methods on the

same test images, we chose to use the entire photo album

for evaluation. It is also consistent with the real application

scenario of personalized aesthetics, where the algorithm is

able to access and actively select any image in the photo al-

bum, and the quality of overall ranking on all images in the

album is the most important factor for the user.

Due to the randomness in the initialization of the PAM

model, we repeat the experiments 10 times for each method.

The average performance is shown in Figure 5 and the stan-

dard deviation for all methods is less than 0.001. Our active

selection method outperforms all the other baseline meth-

ods as well as random selection.

To further examine the generalizablility of the PAM

models updated by different active learning approaches, in-

stead of evaluating on the entire photo album, we remove

all the images that have already been selected for model up-

date, and only evaluate on the remaining images the model

has not seen before. We note that it is not a totally fair

comparison, as images used for evaluation may be different

for different active learning approaches, due to the different

images they selected for model update. But it still gives us

a sense how the model works on new images. The results

are reported in Figure 6. When evaluating on those unseen

images, the PAM model updated by our active selection per-

forms significantly better.

7. Conclusion

In this work, we address the problem of personalized im-

age aesthetics, and introduce two new datasets to facilitate

investigatio of this problem. We propose a novel residual-

based personalized aesthetics model for accommodating in-

dividual aesthetics taste with limited annotated examples.

We also find that the attributes and contents are both im-

portant information for studying individual aesthetics pref-

erence. Furthermore, we introduce a new active learning

method to interactively select training images and improve

the training efficiency and performance of the personalized

10 images 100 images

Direct score prediction -0.352 ± 0.050 -0.176 ± 0.064

FPMF (only attribute) -0.003 ± 0.004 0.002 ± 0.003

FPMF (only content) -0.002 ± 0.002 0.002 ± 0.010

FPMF (content and attribute) -0.001 ± 0.003 0.010 ± 0.007

PAM (only attribute) 0.004 ± 0.003 0.025 ± 0.013

PAM (only content) 0.001 ± 0.004 0.021 ± 0.017

PAM (content and attribute) 0.006 ± 0.003 0.039 ± 0.012

Table 2: Comparison with direct score prediction (using

SVM), non-linear FPMF[24], PAM with only content fea-

ture, PAM with only attribute feature and PAM with both

features using different number of training images from

each worker. The results are average correlation improve-

ment.
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(b) Results on REAL-CUR.

Figure 5: Evaluation of active learning approaches on (a)

FLICKR-AES and (b) REAL-CUR on all the images in the

photo album.
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Figure 6: Evaluation of active learning approaches on (a)

FLICKR-AES and (b) REAL-CUR on unseen images in the

photo album.

aesthetics model. One interesting future research direction

is to investigate additional cues such as content redundancy,

image quality or face recognition for improving user expe-

rience in real-world applications.
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