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Abstract

Video deblurring is a challenging problem as the blur

is complex and usually caused by the combination of cam-

era shakes, object motions, and depth variations. Optical

flow can be used for kernel estimation since it predicts mo-

tion trajectories. However, the estimates are often inaccu-

rate in complex scenes at object boundaries, which are cru-

cial in kernel estimation. In this paper, we exploit semantic

segmentation in each blurry frame to understand the scene

contents and use different motion models for image regions

to guide optical flow estimation. While existing pixel-wise

blur models assume that the blur kernel is the same as opti-

cal flow during the exposure time, this assumption does not

hold when the motion blur trajectory at a pixel is different

from the estimated linear optical flow. We analyze the re-

lationship between motion blur trajectory and optical flow,

and present a novel pixel-wise non-linear kernel model to

account for motion blur. The proposed blur model is based

on the non-linear optical flow, which describes complex mo-

tion blur more effectively. Extensive experiments on chal-

lenging blurry videos demonstrate the proposed algorithm

performs favorably against the state-of-the-art methods.

1. Introduction

The recent years have witnessed significant advances

in image deblurring with numerous applications [26, 43].

However, most deblurring methods are developed for sin-

gle images [3, 23, 41] and considerably less attention has

been paid to videos [13, 33, 39], where the blur is caused

by camera shakes, object motions, and depth variations, as

illustrated by an example in Figure 1. Due to interacting

and complex motions, video deblurring cannot be modeled

well by conventional uniform [8] or non-uniform blur [38]

models. On the other hand, as most existing methods for
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(a) Frame t (b) Frame t+ 1

(c) Initial segmentation [9] (d) Our segmentation

(e) Optical flow [13] (f) Our optical flow

(g) Deblurred result [13] (h) Our deblurred result

Figure 1. (a)-(b) Consecutive frames. (c) Semantic segmentation

by [9]. (d) Segmentation of by the proposed algorithm, which is

more accurate at the object boundary. (e) Optical flow by [13] from

frame t to t+1. (f) Optical flow by the proposed algorithm, which

is more accurate around the object and background. (g) Deblurred

result by [13]. (h) Deblurred image by the proposed algorithm.
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video deblurring assume that the captured scenes are static

[16, 24], these approaches do not handle blurs caused by

abrupt motions and usually generate deblurred results with

significant artifacts.

To address these issues, deblurring algorithms based

on segmentation [1, 5] and motion transformation [22, 6]

have been proposed. However, segmentation based algo-

rithms [1, 5] require accurate object segments for kernel es-

timation. In addition, transformation based methods [22, 6]

depend heavily on whether sharp image patches can be ex-

tracted across frames for restoration. Recently, Kim and

Lee [13] use the bidirectional optical flow to estimate pixel-

wise blur kernels, which is able to handle generic blur in

videos. However, the deblurred results still contain some

artifacts which can be attributed to two reasons. First, the

estimated optical flow may contain significant errors, partic-

ularly due to large displacements or blurred edges [25, 36].

Second, the pixel-wise linear blur kernel is assumed to be

the same as the bidirectional optical flow. This assumption

does not usually hold for real images as illustrated in Fig-

ure 2.

In this work, we propose an efficient algorithm to es-

timate optical flow and semantic segmentation for video

deblurring. If the semantic segmentation of the scene

is known, optical flow within the same object should be

smooth but flow across the boundary needs not be smooth,

and such constraints facilitate accurate blur kernel estima-

tion. On the other hand, accurate optical flow and segmenta-

tions are crucial to restore sharp frames. Hence, accurate se-

mantic segmentations and optical flow facilitate to recover

accurate sharp frames and vice versa. In addition, as blur

kernel is caused by a complicated combination of camera

shakes and objects motions, it is different from the esti-

mated linear optical flow as shown in Figure 2. Although

some non-linear optical flow methods [42] have been de-

veloped, these approaches focus on restoring complex flow

structure, e.g., vortex and vanishing divergence, and the es-

timated optical flow is still a straight line for each pixel. To

deal with various blurs in real scenes, we propose a motion

blur model using a quadratic function to model optical flow

and approximate the pixel-wise blur kernel based on the

non-linearity assumption. Extensive experiments on chal-

lenging blurry videos demonstrate the proposed algorithm

performs favorably against the state-of-the-art methods.

The contributions of this work are summarized as fol-

lows. First, we propose a novel algorithm to solve semantic

segmentation, optical flow estimation, and video deblurring

simultaneously in a unified framework. Second, we exploit

semantic segmentation to account for occlusions and blurry

edges for accurate optical flow estimation. Third, we pro-

pose a pixel-wise non-linear kernel (PWNLK) model to ap-

proximate motion trajectories in videos, where the blur ker-

nel is estimated from optical flow under the non-linearity

Figure 2. Video motion blur. The green line represents the true

motion blur trajectory of the highlighted pixel. The blue line de-

notes the estimated optical flow. The ground truth motion blur

trajectory is smooth and different from optical flow. Based on this

observation, we approximate the true motion blur trajectory using

the PWNLK model (red line) obtained from a quadratic function

of optical flow.

assumption. We show that motion blur cannot be simply

modeled by optical flow, and the non-linearity assumption

of optical flow is important for video deblurring.

2. Related Work

Deblurring based on motion transformation. Video de-

blurring based on motion transformation detects sharp im-

ages or patches by computing the absolute displacements

of pixels between adjacent frames, from which the clear

contents are restored [15]. Matsushita et al. [22] transfer

and interpolate sharper image pixels of neighboring frames

for deblurring. Clear regions in a blurry video are de-

tected to restore blurry regions of the same content in nearby

frames [6]. A multi-image enhancement method based on a

unified Bayesian framework is proposed by Sunkavalli et

al. [32] to establish correspondence among neighboring

frames. However, these transformation based methods do

not involve deconvolution and rely on sharp patches from

nearby frames which may not exist.

Deblurring based on deconvolution. Deconvolution based

methods [7] can be categorized into three approaches based

on uniform kernel, layered blur model, and pixel-wise ker-

nel. Uniform kernel based methods [2, 29] assume that

the blur in each frame is spatial invariant. These methods

are less effective for complex scenes with spatially variant

blurs.

To deal with complex motion blurs, layered blur model

is developed in the deblurring problem to handle locally

varying blurs [5, 39]. Cho et al. [5] simultaneously esti-

mate multiple object motions, blur kernels, and the associ-

ated image segmentations to solve video deblurring prob-

lem. Kim et al. [11] adopt a nonlocal regularization on the

estimated residual and blurred image to handle object seg-

mentation for dynamic scene deblurring. A layered motion
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model is proposed by Bar et al. [1] to segment images into

foreground as well as background layers, and estimate a lin-

ear blur kernel for the foreground layer. Wulff and Black

[39] extend this layered model to segment images into

foreground and background regions from where the global

motion blur kernels are estimated based on affine motion.

However, these methods depend heavily on whether accu-

rate segments can be obtained or not since each region is

deblurred based on the segmentation.

To address this issue, Li et al. [17] parameterize the ob-

served frames in a blurry video by homography and re-

cover sharp contents by jointly estimating blur kernels,

camera duty cycles, and latent images. In [44], a projec-

tive motion path model [34] is used to estimate blur kernels

by exploiting inter-frame misalignments between frames.

However, blur models based on homography and projec-

tion are designed to account for global camera motions,

which cannot model complex object motion and depth vari-

ations. To solve this problem, Kim and Lee [12] propose a

segmentation-free algorithm by using bidirectional optical

flow to model motion blurs for dynamic scene deblurring.

This method is extended to generalized video deblurring

in [13] by alternatively estimating optical flow and latent

frames. Although promising results have been obtained, the

assumption that motion blur is same as optical flow does not

hold in complex scenes as illustrated in Figure 2 especially

when the camera duty cycle is large.

Different from these methods, we take scene semantics

and objects into account and use the segmentation to im-

prove optical flow estimation rather than direct deblurring.

We then use the estimated optical flow to compute pixel-

wise kernel based on non-linear assumption.

Deblurring based on deep learning. Recently, image or

video restoration algorithms that aim to recover the underly-

ing sharp contents based on convolutional neural networks,

have emerged. In [27], deep neural networks are used for

single image deblurring using synthetic training data. Su et

al. [30] propose a deep encoder-decoder network to address

real world video deblurring problems. Nevertheless, when

images are heavily blurred, this method may introduce tem-

poral artifacts that become more visible after stabilization.

Semantic segmentation. Semantic segmentation [18, 19,

20] aims to cluster image pixels of the same object class

with assigned labels. Numerous recent methods use seman-

tic segmentation to resolve ambiguities in road signs de-

tection [21], 3D reconstruction [10], and optical flow esti-

mation by using different motion models at different object

regions [28].

3. Proposed Algorithm

The use of semantic information facilitates modeling op-

tical flow for each region and results in better estimates of

pixel movements, especially at motion boundaries. In addi-

tion, the proposed PWNLK model is designed to estimate

blur kernels more accurately. In this section, we analyze

the relationship between optical flow and motion blur tra-

jectory, and present a video deblurring algorithm based on

semantic segmentation and non-linear kernels.

3.1. Motion Blur Model from Optical Flow

The main challenge of video deblurring is how to es-

timate pixel-wise blur kernels from images. As shown in

Figure 2, optical flow (green line) reflects the moving linear

direction of a pixel between adjacent frames which may be

different from the motion trajectory (blue line). Thus, it is

less accurate to model motion blur using optical flow based

on linear assumption. A motion blur trajectory is usually

smooth and its shape can be approximated by a quadratic

function. To model motion blur trajectories t, we use the

following parametric PWNLK model:

t(f) = af2 + bf + c, (1)

where f = (u, v) is the estimated optical flow of adjacent

frames, and a, b, as well as c are parameters to be deter-

mined. We find that the motion blur trajectory can be ap-

proximated well with this model as shown in Figure 2. We

parameterize each kernel ki(x) at pixel x of frame i as a

quadratic function of bidirectional optical flow [12, 13],

ki(x) =


























δ(uvi,i+1−vui,i+1)

2τi(ai,i+1‖fi,i+1‖2+bi,i+1‖fi,i+1‖+ci,i+1)
if f∈[0, τifi,i+1],

δ(uvi,i−1−vui,i−1)

2τi(ai,i−1‖fi,i−1‖2+bi,i−1‖fi,i−1‖+ci,i−1)
if f∈(0, τifi,i−1],

0, otherwise.

(2)

With the blur kernel ki, the blurry frame yi can be formu-

lated as

yi = kili + ε, (3)

where li denotes the i-th latent frame, and ε denotes noise.

Based on the blur model (3), we present an effective video

deblurring method and present detailed analysis of the algo-

rithm in the following sections.

3.2. Proposed Video Deblurring Model

Based on the PWNLK model (1), blur formulation (3)

and the standard maximum a posterior framework [14], our

video deblurring model is defined as

E(l, k, f, s) =
∑

i

{Ed(li, ki, yi) + Em(fik, sik)

+ Et(li, fi, si) + Es(li, fi, si)},

(4)

where fik = (uik, vik) and sik denote optical flow and seg-

mentation in the k-th layer of i-th frame, respectively. The
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first term Ed in (4) is the data fidelity term, i.e., the de-

blurred frame li should be consistent with the observation

yi. The second term Em denotes a motion term which en-

codes two assumptions. First, neighboring pixels should

have similar motion if they belong to the same semantic seg-

mentation layer. Second, pixels from each layer k should

share a global motion model f(θik), where θik is parame-

ter that changes over time and depends on the object class k.

The third term Et is the temporal regularization term, which

is used to ensure the brightness constancy between adjacent

frames. The last term Es denotes the spatial regularization

term of latent images and optical flow. The details of each

term in (4) are described below.

Data term based on the PWNLK model. It has been

shown that using gradients of latent and blurry images in

the data term can reduce ringing artifacts [12, 13]. Thus,

our data fidelity term is defined as

Ed(li, ki, yi) =
∑

i

λ‖∇(kili)−∇yi‖
2
2, (5)

As blur kernel ki is computed according to the motion blur

trajectory in (1), the data fidelity term (5) involves param-

eters a, b, and c. To obtain a stable solution, we need to

regularize these motion blur parameters [35]. The Tikhonov

regularization has been extensively used in the literature of

image deblurring. However, we note that motion blur has

similar properties to the optical flow in most examples. For

example, the estimated motion blur would have the same

property if the estimated optical flow has piece-wise prop-

erty. That is, if ∇fi = 0 at some regions, we would have

∇(aif
2
i +bifi+ci) = 0. Based on this assumption, we have

bi = −2aifi. As ∇fi = 0, fi should be a constant C. This

property motivates us to use the following regularization on

parameters a and b,

∑

i

{β||ai||
2
2 + γ||bi − C||22}, (6)

where β and γ denote the weights of each term in the regu-

larization terms.

Motion term. The motion term should satisfy: 1) pixels in

the same segmentation layer sik should share a global mo-

tion model f(θik), 2) neighboring pixels in the same seg-

mentation layer sik should have similar optical flow. Thus,

our motion term is defined as

Em(fik, sik) =
∑

i

{
∑

x

ρaff(fik(x)− f(θik))

+
∑

x

∑

r∈Nx

||fi(x)− fi(r)||
2
2δ(sik(x) = sik(r))},

(7)

where Nx denotes the four nearest neighbors of the pixel x,

and ρaff is a robust penalty function which enforces that the

pixels in the same segmentation have the same affine motion

model [31]. In addition, δ(·) denotes the indicator function

that is equal to 1 if its expression is true, and 0 otherwise.

Spatial term. The spatial regularization term aims to allevi-

ate the ill-posed inverse problem. We assume that the spaial

term should 1) constrain the pixels with similar colors to lie

within the same segmentation layer sik, and 2) enforce spa-

tial coherence in both latent frames and optical flow. With

these assumptions, the spatial term is defined by

Es(li, fi, si) =
∑

i

{|∇li|+

N
∑

n=−N

gi(x)|∇fi,i+n|

+
∑

x

∑

r 6=x

ωx,rδ(sik(x) 6= sik(r))},

(8)

where the weight gi(x) denotes edge-map [13] to preserve

discontinuities in the optical flow at edges. In addition, ωx,r

is a weight which measures the similarity between x and

r. Similar to the optical flow estimation method [31], we

define it as

ωx,r = exp{−
||x− r||2 + ||li(x)− li(r)||

2

σ2
}, (9)

where σ is a constant. For a given pixel x, if we know other

neighboring pixels r have similar color as x, we set them

with the same segment. The effectiveness of the regulariza-

tion term is demonstrated in Section 4.1.

Temporal term. Human vision system is sensitive to tem-

poral inconsistencies presented in videos. To improve tem-

poral coherence, we first utilize the optical flow to find the

corresponding pixels between neighboring frames in a local

temporal window [i −N, i +N ] and ensure that the corre-

sponding pixels vary smoothly. We then enforce that corre-

sponding pixels between neighboring frames should belong

to the same segment. Thus, the temporal coherence is de-

fined by

Et(li, fi, si) =
∑

i

{

N
∑

n=−N

µn|li(x)− li+n(x
′)|

+

N
∑

n=−N

µn|si(x)− si+n(x
′)|},

(10)

where n denotes the index of neighboring images at frame i

and µn is a weight for the regularization term. In addition,

x′ = x + fi,i+n is the corresponding pixel at the next n-

th frame for x according to the motion fi,i+n. We use the

L1-norm regularization in (10) for robust estimates against

outliers and occlusions [13].

3.3. Inference

Based on the above analysis, we obtain the proposed

video deblurring model. Although the objective function
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is non-convex with multiple variables, we can use an alter-

nating minimization method [13] to solve it.

Latent frames estimation. With the optical flow f , seg-

mentation s, and the parameters a, b and c, the optimization

problem with respect to li is

min
li

λ
∑

i

{‖∇(kili)−∇yi‖
2
2 + |∇li|

+
N
∑

n=−N

µn|li(x)− li+n(x
′)|}.

(11)

Similar to [13], we optimize the latent frames subprob-

lem (11) using the primal-dual update method [4].

Semantic segmentation. The semantic segmentation esti-

mation can be achieved by solving

min
si

∑

i

{
∑

x

∑

r 6=x

ωx,rδ(sik(x) 6= sik(r))

+
∑

x

∑

r∈Nx

||fi(x)− fi(r)||
2
2δ(sik(x) = sik(r))

+

N
∑

n=−N

µn|si(x)− si+n(x
′)|}.

(12)

We optimize this subproblem (12) using the method in [28].

The semantically segmented regions provide information on

a potential optical flow for the motion blurred object, which

is used to guide optical flow estimation instead of directly

deblurring on each segment [1, 39].

Note that we only refine the segmentation results sik ac-

cording to possible moving objects including person, rider,

car, etc, as like in Figure 1(d). For other background objects

(e.g., road, sky, wall), we do not refine their segmentation

since these objects are always smooth and their segmenta-

tion results cannot affect our deblurring results.

Optical flow estimation. After obtaining l and s, the opti-

mization problem with respect to f becomes

min
fi

λ
∑

i

{‖∇(kili)−∇yi‖
2
2 +

N
∑

n=−N

gi(x)|∇fi,i+n|

+
∑

x

∑

r∈Nx

||fi(x)− fi(r)||
2
2δ(sik(x) = sik(r))

+
∑

x

ρaff(fik(x)− f(θik)) +

N
∑

n=−N

µn|li(x)− li+n(x
′)|}.

(13)

We solve (13) using the method in [13] and [31]. After

obtaining fi, we utilize it to estimate the blur kernel based

on the non-linearity assumption, instead of directly using

the bidirectional optical flow as blur kernel.

Algorithm 1 Proposed video deblurring algorithm

Input: Blurry frames y, duty cycle τ , initialized optical

flow f by [37] and semantic segmentation s by [9].

Repeat the following steps from coarse to fine image

pyramid level:

1. Solve for parameters a, b and c by minimizing (14).

2. Solve for optical flow f by minimizing (13).

3. Estimate blur kernel based on PWNLK model (2).

4. Solve for latent image l by minimizing (11).

5. Solve for segmentation s by minimizing (12).

Output: latent frames l, blur kernels k, optical flow f

and segmentation s.

(a) Input (b) Flow (c) 16.05dB (d) 17.98dB (e) 18.13dB (f) Truth

Figure 3. The limitation of linear assumption in [13]. (a) Blurred

input. (b) Ground truth optical flow. (c) Deblurred result by seg-

mentation based method [39]. (d) and (e) are the deblurred results

using flow in (b) based on linear assumption [15] and our non-

linear model, respectively. (d) Ground truth image.

Motion blur trajectory parameters estimation. For each

blurry frame yi, we obtain its corresponding sharp reference

li and its bidirectional optical flow fi. With each image pair

and the corresponding optical flow, the parameters of the

motion blur kernel ai, bi and ci are solved by

min
a,b

λ
∑

i

{‖∇(kili)−∇yi‖
2
2+β||ai||

2
2+γ‖bi−C‖22}. (14)

This is a least squares minimization problem and we have

the closed-form solutions for the parameters a, b and c, re-

spectively.

Similar to the existing methods, we use the coarse-to-

fine method with an image pyramid [13] to achieve better

performance. Algorithm 1 summarizes the main steps of

the proposed video deblurring on one image pyramid level.

4. Experimental Results

In this section, we first analyze and show the effects of

the semantic segmentation and PWNLK model. We then

evaluate the proposed method on both synthetic and real-

world blurry videos. We compare the proposed algorithm

with the state-of-the-art methods, based on motion transfor-

mation [6], uniform kernel [29], piece-wise kernel [39], and

pixel-wise linear kernel by Kim and Lee [13].

Parameter settings. In all experiments, we set the parame-

ters λ = µn = 250, β = γ = 0.5λ, σ = 7, and N = 2. We

initialize the parameters of the quadratic bidirectional opti-

cal flow as a = c = 0 and b = 1. For fair comparisons, we
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(a) Deblurred result by the linear approximation method [13]

(b) Deblurred result by our non-linear approximation method.

Figure 4. Effects of PWNLK. (a) Deblurred results and estimated

kernel by linear approximation method [13]. (b) Deblurred re-

sults and estimated kernel by the proposed non-linear approxima-

tion approach (2). The highlighted area in the red rectangle is

the corresponding blurry input. The recovered kernel in (a) is al-

most straight, which results in the deblurred result has some dis-

tortion artifacts. In contrast, the estimated kernel by the proposed

PWNLK model is more close to real situation, and results in the

recovered image is visually more pleasing.

(a) Blurry frame (b) Optical flow by [13] (c) Without segmentation

(d) Our segmentation (e) Our optical flow (f) With segmentation

Figure 5. Effects of semantic segmentation on deblurring. (a)

Blurry input. (b) and (c) are estimated optical flow and deblurred

result by [13]. (d) Our segmentation results (semantic color coded

using [28]). (e) and (f) are estimated optical flow and deblurred

result with the proposed semantic segmentation. The background

and road regions in (c) are over-smoothed due to the inaccurate

estimated optical flow in (b).

use the TV-ℓ1 based method [37] to initialize optical flow

as like in [13]. We also use the state-of-the-art semantic

segmentation method [9] to segment images first, and refine

the results based on the proposed algorithm. In addition, we

use the method in [13] to estimate the camera duty cycle τ .

4.1. Analysis of Proposed Method

Effects of PWNLK model. We note that [13] directly uses

the linear bidirectional optical flow to restore the clear im-

ages. As mentioned in Figure 2, this method is less effective

since motion trajectories in videos are different from opti-

cal flow. Figure 3(a) shows an example where the blurred

(a) (b) (c) (d)

Figure 6. Qualitative analysis of semantic segmentation. (a) Blurry

input and initialized segmentation results [9]. (b) Our refined seg-

mentation. (c) Optical flow by [13]. (d) Our optical flow.

image is generated by affine transformation [39]. We first

show the deblurred result by the layer based method [39] in

Figure 3(c). Note that there are significant artifacts around

the elephant boundary since the inaccurate segmentation.

As shown in Figure 3(d), the restored image generated by

the ground truth optical flow (Figure 3(b)) using the pixel-

wise linear kernel method [13] contains significant ring ar-

tifacts, which demonstrates that the linear bidirectional op-

tical flow cannot model motion blur well.

Figure 4 shows an example which is able to demonstrate

the effectiveness of the PWNLK model. We use the same

optical flow to estimate the pixel-wise linear and non-linear

kernel. We note that the linear assumption of motion blur

for each pixel does not hold in real images as shown in Fig-

ure 4(a). The estimated motion blur kernel using linear ap-

proximation for the zoomed-in region is almost straight and

the corresponding deblurred results contain distortion arti-

facts on the line of letter D. The trajectories of the estimated

motion kernel by the proposed non-linear approximation

method coincide well with the real motion blur trajectories

and the corresponding deblurred image is much clearer and

contains fewer artifacts as shown in Figure 4(b), which indi-

cate that the proposed blur model (1) can better approximate

motion trajectories in real scenes.

Effects of semantic segmentation. Semantic segmentation

improves video deblurring in multiple ways as it is used

to help estimate optical flow from which the blur kernel is

estimated. First, it provides region information about ob-

ject boundaries. Second, as different objects (layers) move

differently, semantic segments are used to constrain optical

flow estimation of each region. As shown in Figure 5(b), the

estimated optical flow is over-smoothed around the bicycle

when semantic segmentation is not used. Consequently, the

deblurred results for the background and road regions are

over-smoothed. In contrast, the semantic segmentation re-

sults by the proposed algorithm describe boundaries well

and help generate accurate optical flow. As shown in Fig-
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(a) Blurry frame (b) Cho et al. [6] (c) Our results

Figure 7. Comparisons with transformation based method [6].

(a) Blurry frames (b) Šroubek and Milanfar [29] (c) Our results

Figure 8. Comparisons with uniform kernel based method [29].

ure 5(f), the deblurred images by the proposed algorithm

are clear with fine details.

In addition, we carry out more experiments to examine

the effects of semantic segmentation for optical flow estima-

tion. Although the initialized segmentations are inaccurate

as shown in Figure 6(a), the proposed algorithm can pre-

cisely segment the moving objects (Figure 6(b)) and pro-

vide more accurate motion boundaries information for opti-

cal flow estimation, and thereby facilitates video deblurring.

4.2. Real Datasets

We evaluate the proposed algorithm against the state-

of-the-art video deblurring methods [6, 29, 39, 13] on real

sequences from [6, 39]. We first compare our algorithm

with the transformation based method by Cho et al. [6]. As

shown in the first row of Figure 7(b), the method [6] does

not recover the moving bicycle because the object motion is

large and there are no sharp images in the nearby frames. In

contrast, the proposed algorithm is able to deal with the blur

caused by the moving objects and generates a clear image

as shown in the first row of Figure 7(c). The transforma-

tion based approach [6] does not handle large camera mo-

tion blur as shown in the second row of Figure 7(b). The

recovered texts for the Books sequence contain significant

distortion artifacts since this transformation based method

[6] introduces incorrect patch matches if the clear images

or sharp patches are not available. In contrast, the proposed

method based on the estimated optical flow does not require

clear images or patches. The deblurred result is visually

more pleasing especially for the texts.

(a) Blurry frames (b) Wulff and Black [39] (c) Our results

Figure 9. Comparisons with piece-wise kernel (segmentation)

based video deblurring method [39].

(a) Blurry frames (b) Kim and Lee [13] (c) Our results

Figure 10. Comparisons with pixel-wise linear kernel based video

deblurring method [13].

We compare the proposed algorithm with the uniform

kernel based multi-image deblurring method [29]. On the

Street sequence, the sign PAY HERE and the structure of the

windows can be clearly recognized from the deblurred im-

age by the proposed algorithm, while the one by the multi-

image based method does not recover such details. Fur-

thermore, our method recovers clear edges and details in

the Kid sequence. However, the multi-image based deblur-

ring method does not generate clear images. The main rea-

son is that the uniform kernels estimated by the multi-image

based method do not account for complex scenes with non-

uniform blur. In addition, the deblurred results of this multi-

image deblurring method depend on whether the alignments

of adjacent frames are accurate or not.

We show the deblurred results by the proposed method

and segmentation based video deblurring approach [39] in

Figure 9. Although the deblurred image by [39] is sharp, it

contains some distortion artifacts around the image bound-

aries due to the inaccurate segmentations (e.g., the boundary

of the Magazine on the right-bottom corner in Figure 9(b)).

In contrast, the deblurred image in Figure 9(c) shows that

proposed method is able to recover the clear edge of the

Magazine. In addition, the recovered text NEW in the fore-

ground layer by Wulff and Black [39] is blurry compared to

the result generated by the proposed algorithm.

We compare the proposed algorithm with the state-of-

the-art video deblurring method based on pixel-wise linear

kernel by Kim and Lee [13]. The deblurred results by [13]

contain blurry edges and distortion artifacts as shown in

Figure 10(b). For example, due to the inaccurate kernel es-

timation, the deblurred result by [13] has distortion artifacts

around the left-bottom corner of the Sign in the second row
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(a) Input / Our result (b) Input (c) Cho et al. [6] (d) Kim and Lee [13] (e) Su et al. [30] (f) Without PWNLK (g) Without segment (h) Our results

Figure 11. Deblurred results with and without the PWNLK model and semantic segmentation.

of Figure 10(b). In contrast, as the proposed motion blur

model is able to approximate the true motion blur trajec-

tories, the recovered images contain fine details. Note that

in Figure 10(c), the deblurred texts in both first and second

rows by the proposed algorithm are clearer and sharper.

Finally, we show the deblurred results with and without

the PWNLK model and semantic segmentation, and com-

pare with the state-of-the-art transformation based [6], de-

convolution based [13] and deep learning based [30] video

deblurring methods in Figure 11. The state-of-the-art video

deblurring methods [6, 30] do not generate clear images

as shown in Figure 11(c) and (e). Pixel-wise linear kernel

based method [13] can generate sharp image, but the road

region is over-smoothed as show in the bottom line in Fig-

ure 11(d). In Figure 11(f), the road region is successfully

recovered, but there are some visual artifacts around the tire

due to imperfect kernel estimation. Figure 11(g) shows the

deblurred result without performing semantic segmentation.

Although the tire is deblurred well, the road region is over-

smoothed. Compared to the image shown in (h), the visual

quality of (f) and (g) is lower, which indicates the impor-

tance of the proposed PWNLK model (1) and semantic seg-

mentation regularization.

4.3. Limitations

Our algorithm does not performs well when the input

video contains significant blur along with bad initial seg-

mentations. Figure 12(c) and (d) are the initial segmenta-

tion results for the consecutive blurry frame Figure 12(a)

and (b), respectively. Since the assumed spatial and tempo-

ral constraints in (8) and (10) do not hold in the segmented

image, the final segmentation result in Figure 12(e) does

not have any semantic information. Thus, our method de-

generates to traditional optical flow estimation in [13] and

generate similar deblurred results as shown in Figure 12(g)

and (h).

5. Conclusions

In this paper, we propose an effective video deblur-

ring algorithm by exploiting semantic segmentation and

PWNLK model. The proposed segmentation applies differ-

(a) Frame li−1 (b) Frame li (c) Segment li−1 (d) Segment li

(e) Our segment (f) Xu [40] (g) Kim [13] (h) Our result

Figure 12. Failure cases. (a) and (b) are blurred inputs li−1 and li.

(c) and (d) are initialized segmentation results on frames li−1 and

li. (e) Our final segmentation on frame li. (e)-(g) are deblurred

results by [40], [13] and our method on frame li.

ent motion model to different object layers, which can sig-

nificantly improve the optical flow estimation, especially at

object boundaries. The PWNLK model is based on the non-

linear assumption and is able to model the relationship be-

tween motion blur and optical flow. In addition, we analyze

that conventional uniform, homography, piece-wise, pixel-

wise linear based blur kernels cannot model the complex

spatially variant blur caused by the combination of camera

shakes, objects motions and depth variations. Extensive ex-

perimental results on synthetic and real videos show that the

proposed algorithm performs favorably in video deblurring

against the state-of-the-art methods.
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