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Abstract

We address the problem of incrementally modeling

and forecasting long-term goals of a first-person camera

wearer: what the user will do, where they will go, and

what goal they seek. In contrast to prior work in trajec-

tory forecasting, our algorithm, DARKO, goes further to

reason about semantic states (will I pick up an object?),

and future goal states that are far in terms of both space

and time. DARKO learns and forecasts from first-person vi-

sual observations of the user’s daily behaviors via an On-

line Inverse Reinforcement Learning (IRL) approach. Clas-

sical IRL discovers only the rewards in a batch setting,

whereas DARKO discovers the states, transitions, rewards,

and goals of a user from streaming data. Among other re-

sults, we show DARKO forecasts goals better than compet-

ing methods in both noisy and ideal settings, and our ap-

proach is theoretically and empirically no-regret.

1. Introduction

Our long-term aim is to develop an AI system that can

learn about a person’s intent and goals by continuously

observing their behavior. In this work, we progress to-

wards this aim by proposing an online Inverse Reinforce-

ment Learning (IRL) technique to learn a decision-theoretic

human activity model from video captured by a wearable

camera. The use of a wearable camera is critical to our task,

as human activities must be observed up close and across

large environments. Imagine a person’s daily activities—

perhaps they are at home today, moving about, completing

tasks. Perhaps they are a scientist that conducts a long se-

ries of experiments across various stations in a laboratory, or

they work in an office building where they walk about their

floor, get coffee, etc. As people tend to be very mobile, a

wearable camera is ideal for observing a person’s behavior.

Since our task is to continuously learn human behav-

ior models (i.e., a policy) from observed behavior captured

with a wearable camera, our task is best described as an

online IRL problem. The problem is an inverse Reinforc-

Figure 1: Forecasting future behavior from first-person

video. Overhead map shows likely future goal states. si
is user state at time i. Histogram insets display predictions

of user’s long-term semantic goal (inner right) and acquired

objects (inner left).

ment Learning problem because the underlying reward or

cost function of the person is unknown. We must infer

it along with the policy from the demonstrated behaviors.

Our task is also an online learning problem, because our

algorithm must continuously learn as a part of a life-long

process. From this perspective, we must develop an online

learning approach that learns effectively over time.

3696



Lab bench 1

Lab bench 2

Refrigerator

Cabinet Exit

Gel electrophoresis room

(a) Lab environment (b) Home 1 environment

Figure 2: Sparse SLAM points (2a) and offline dense reconstruction (2b) using [5] for two of our dataset environments.

We present an algorithm that incrementally learns spa-

tial and semantic intentions (where you will go and what

you will do) of a first-person camera wearer. By tracking

the goals a person achieves, the algorithm builds a set of

possible futures. At any time, the user’s future is predicted

among this set of goals. We term our algorithm “Discov-

ering Agent Rewards for K-futures Online” (DARKO), as it

learns to associate rewards with semantic states and actions

from demonstrations to predict among K possible goals.

Contributions: To the best of our knowledge, we present

the first application of ideas from online learning theory and

inverse reinforcement learning to the task of continuously

learning human behavior models with a wearable camera.

Our proposed algorithm is distinct from traditional IRL

problems as we jointly discover states, transitions, goals,

and the reward function of the underlying Markov Decision

Process model. Our proposed human behavior model also

goes beyond first-person trajectory forecasting and allows

for the prediction of future human activities that can happen

outside the immediate field of view and far into the future.

2. Related Work

First-person vision (FPV): Wearable cameras have been

used for various human behavior understanding tasks [4, 10,

12, 16, 22] because they give direct access to detailed visual

information about a person’s actions. Leveraging this fea-

ture of FPV, recent work has shown that it is possible to

predict where people will look during actions [12] and how

people will use the environment [20].

Decision-Theoretic Modeling: Given agent demonstra-

tions, the task of inverse reinforcement learning (IRL) is

to recover a reward function of an underlying Markov De-

cision Process (MDP) [1]. IRL has been used to model

taxi driver behavior [34] and pedestrian behavior [35, 7].

In contrast to previous work, we go beyond physical trajec-

tory forecasting by reasoning over future object interactions

and predicting future goals in terms of scene types.

Online Learning Theory: The theory of learning to mak-

ing optimal predictions from streaming data is well studied

[23] but is rarely used in computer vision, compared to the

more prevalent application of supervised learning theory.

We believe, however, that the utility of online learning the-

ory is likely to increase as the amount of available data for

processing is ever increasing. While the concept of online

learning has been applied to inverse reinforcement learn-

ing [18], the work was primarily theoretic in nature and has

found limited application.

Trajectory forecasting: Physical trajectory forecasting has

received much attention from the vision community. Multi-

ple human trajectory forecasting from a surveillance cam-

era was investigated by [14]. Other trajectory forecast-

ing approaches use demonstrations observed from a bird’s-

eye view; [31] infers latent goal locations and [2] employ

LSTMs to jointly reason about trajectories of multiple hu-

mans. In [25], the model forecasted short-term future tra-

jectories of a first-person camera wearer by retrieving the

nearest neighbors from a dataset of first-person trajectories

under an obstacle-avoidance cost function, with each trajec-

tory representing predictions of where the user will move in

view of the frame; in [26], a similar model with learned cost

function is extended to multiple users.

Predicting Future Behavior: In [6, 21], the tasks are to

recognize an unfinished event or activity. In [6], the model

predicts the onset for a single facial action primitive, e.g. the

completion of a smile, which may take less than a second.

Similarly, [21] predicts the completion of short human to

human interactions. In [9], a hierarchical structured SVM

is employed to forecast actions about a second in the future,

and [28] demonstrates a semi-supervised approach for fore-

casting human actions a second into the future. Other works

predict actions several seconds into the future [3, 8, 11, 29].

In contrast, we focus on high-level transitions over a se-

quence of future actions that may occur outside the frame

of view, and take a longer time to complete (in our dataset,

the mean time to completion is 21.4 seconds).

3. Online IRL with DARKO

Our goal is to forecast the future behaviors of a person

from a continuous stream of video captured by a wearable

camera. Given a continuous stream of FPV video, our ap-
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proach extracts a sequence of state variables {s1, s2, . . . }
using a portfolio of visual sensing algorithms (e.g., SLAM,

stop detection, scene classification, action and object recog-

nition). In an online fashion, we segment this state sequence

into episodes (short trajectories) by discovering terminal

goal states (e.g., when a person stops). Using the most

recent episode, we adaptively solve the inverse reinforce-

ment learning problem using online updates. Solving the

IRL problem in an online fashion means that we incremen-

tally learn the underlying decision process model.

3.1. FirstPerson Behavior Model

A Markov Decision Process (MDP) is commonly used

to model the sequential decision process of a rational agent.

In our case, we use it to describe the activity of a person

with a wearable camera. In a typical reinforcement learning

problem, all elements of the MDP are assumed to be known

and the task is to estimate an optimal policy π(a|s), that

maps a state s to an action a, by observing rewards. In

our novel online inverse formulation, every element of the

MDP, including the policy, is unknown and must be inferred

as new video data arrives. Formally, an MDP is defined as:

M = {S,A, T (·, ·), Rθ(·, ·)}.

States: S is the state space: the set of states an agent can

visit. In our online formulation, S is initially empty, and

must be expanded as new states are discovered. We define

a state s as a vector that includes the location of the person

(3D position), the last place the person stopped (a previous

goal state), and information about any object that the person

might be holding. Formally, a state s ∈ S is denoted as:

s = [x, y, z, o1 . . . , o|O|, h1, . . . h|K|].

The triplet [x, y, z] is a discrete 3D position. To obtain

the position, we use a monocular visual SLAM algorithm

[15] to localize the agent in a continuously built map.

The vector o1 . . . , o|O| encodes any objects that the per-

son is currently holding. We include this information in the

state vector because the objects a user acquires are strongly

correlated to the intended activity [4]. oj = 1 if the user

has object j in their possession and zero otherwise. O is a

set of pre-defined objects available to the user. K is a set

of pre-defined scene types available to the user, which can

be larger than the true number of scene types. The vector

h1, . . . hK encodes the last scene type the person stopped.

Example scene types are kitchen and office. hi = 1 if

the user last arrived at scene type i and is zero otherwise.

Goals: We also define a special type of state called a goal

state s ⊂ Sg , to denote states where the person has achieved

a goal. We assume that when a person stops, their location

in the environment is a goal. We detect goal states by using

a velocity-based stop detector. Whenever a goal state is en-

countered, the sequence of states since the last goal state to

the current goal state is considered a completed episode ξ.

The set of goals states Sg ⊂ S expands with each detection.

We explain later how Sg is used to perform goal forecasting.

Actions: A is the set of actions. A can be decomposed into

two parts: A = Am ∪ Ac. The act of moving from one

location in the environment to another location is denoted

as am ∈ Am. Like S , Am must be built incrementally.

The set Ac is the set of possible acquire and release

actions of each object: Ac = {acquire, release} × O.

The act of releasing or picking up an object is denoted as

ac ∈ Ac. Each action ac must be detected. We do so with

an image-based first-person action classifier. More complex

approaches could improve performance [13].

Transition Function: The transition function T : (s, a) 7→
s′ represents how actions move a person from one state to

the next state. T is constructed incrementally as new states

are observed and new actions are performed. In our work,

T is built by keeping a table of observed (s, a, s′) triplets,

which describes the connectivity graph over the state space.

More advanced methods could also be used to infer more

complex transition dynamics [27, 30].

Reward Function: R(s, a; θ) is an instantaneous reward

function of action a at state s. We model R as the inner

product between a vector of features f(s, a) and a vector

of weights θ. The reward function is essential in value-

based reinforcement learning methods (in contrast to pol-

icy search methods) as it is used to compute the policy

π(a|s). In the maximum entropy setting, the policy is given

by π(a|s) ∝ eQ(s,a)−V (s), where the value functions V (s)
and Q(s, a) are computed from the reward function by solv-

ing the Bellman equations [34]. In our context, we learn the

reward function online.

Intuitively, we would like the features f of the reward

function to incorporate information such as the position in

an environment or objects in possession, since it is reason-

able to believe that the goal of many activities is to reach

a certain room or to retrieve a certain object. To this end,

we define the features of the reward to mirror the informa-

tion already contained in the state st: the position, previous

scene type, and objects held. To be concrete, the feature

vector f(s, a) is the concatenation of the 3-d position coor-

dinates [x, y, z], a K-dimensional indicator vector over pre-

vious goal state type and a |O|-dimensional indicator vector

over held objects. We also concatenate a |Ac|-dimensional

indicator vector over actions ac ∈ Ac.

3.2. The DARKO Algorithm

We now describe our proposed algorithm for incremen-

tally learning all MDP parameters, most importantly the

reward function, given a continuous stream of first-person

video (see DARKO in Algorithm 1). The procedure begins

by initializing s, reward parameters θ, empty state space S ,

goal space Sg , transition function T , and current episode ξ.
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State Space Update: Image frames are obtained from a

first-person camera (the NEWFRAME function), and SLAM

is used to track the user’s location (lines 4 and 5). An

image-based action detection algorithm, ACTDET, detects

hand-object interactions ac and decides movements am as

a function of current and previous position. While we pro-

vide an effective method for ACTDET, our focus is to inte-

grate (rather than optimize) its outputs. Lines 7 and 8 show

how the trajectory is updated and MDP parameters of state

space and transition function are expanded. Line 9 repre-

sents a collection of generalized forecasting tasks (see Sec-

tion 4.4), such as the computation of future goal posterior

and trajectory forecasting.

Goal Detection: In order to discover goals, we use a stop-

detection algorithm GOALDET, by using the camera veloc-

ity computed from SLAM (Line 10). If a goal state has been

detected, that terminal state is added to the set of goal states

Sg . The detection of a terminal state also marks the end of

an episode ξ. The previous goal state type is also updated

for the next episode. Again, while we provide an effective

method for GOALDET, our focus is to integrate (rather than

optimize) its outputs.

Online IRL: With the termination of each episode ξ, the re-

ward function R and corresponding policy π are updated via

the reward parameters θ (Line 13). The parameter update

uses a sequence of demonstrated behavior via the episode

ξ, and the current parameters of the MDP. More specif-

ically, ONLINEIRL (Algorithm 2) performs online gradi-

ent descent on the likelihood under the maximum entropy

distribution by updating current parameters of the reward

function. The gradient of the loss can be shown to be the

difference between expected feature counts f̄ and empirical

feature counts f̂ of the current episode. Computing the gra-

dient requires solving the soft value iteration algorithm of

[33]. We include a projection step to ensure ‖θ‖2 ≤ B.

To the best of our knowledge, this is the first work to

propose an online algorithm for maximum entropy IRL in

the streaming data setting. Following the standard proce-

dure for ensuring good performance of an online algorithm,

we analyze our algorithm in terms of the regret bound. The

regretRt of any online algorithm is defined as:

Rt =

t∑

i=0

lt(ξt; θt)−min
θ∗

t∑

i=0

l(ξt; θ
∗).

The regret is the cumulative difference between the perfor-

mance of the online model using current parameter θ versus

the best hindsight model using the best parameters θ∗. The

loss lt is a function of the t’th demonstrated trajectory, and

measures how well the model explains the trajectory.

In our setup, the loss function is defined as lt(ξt; θ) =

− 1
|ξt|

∑|ξt|
i=0 log πθ(ai|si). It can be shown1 that the regret

1Proof of the regret bound is given in the Appendix

Algorithm 1 DARKO: Discovering Agent Rewards for K-

futures Online

1: procedure DARKO(SLAM, ACTDET, GOALDET)

2: s← 0, θ = 0,S = {} ,Sg = {}, T.INIT(), ξ = []
3: while True do

4: frame← NEWFRAME()

5: [x, y, z]← SLAM.TRACK(frame)

6: a← ACTDET([x, y, z], frame)

7: ξ ← ξ ⊕ (s, a),S ← S ∪ {s}
8: T.EXPAND(s, a), s← T (s, a)
9: ◮ Goal forecasting, trajectory forecasting, . . .

10: is goal← GOALDET(s, frame, Sg)

11: if is goal then

12: Sg ← Sg ∪ {s}
13: π, θ ← ONLINEIRL(θ, S , T , ξ, Sg)

14: s← T (s, a = at goal), ξ = []
15: end if

16: end while

17: end procedure

Algorithm 2 Online Inverse Reinforcement Learning

1: procedure ONLINEIRL(θ, S , T , ξ, Sg; λ, B)

2: f i =
∑

(s,a)∈ξ f(s, a)

3: ◮ Compute R(s, a; θ) ∀s ∈ S, a ∈ A
4: π ← SOFTVALUEITERATION(R, S,Sg, T )

5: f̂i ← Eπ [f(s, a)]

6: θ ← proj‖θ‖2≤B(θ − λ(f i − f̂i))
7: return π, θ
8: end procedure

of our online algorithm is bounded as follows:

Rt ≤ 2B
√
2td, (1)

where B is a norm bound on θ, d is feature dimensionality,

and t is the episode. The average regret Rt

t
approaches zero

as t grows since the bound is sub-linear in t. Verification of

this no-regret property is shown in the experiments.

4. Generalized Activity Forecasting

Without Line 9, Algorithm 1 only describes our online

IRL process to infer the reward function. In order to make

incremental predictions about the person’s future behaviors

online, we can leverage the current MDP and reward func-

tion. An important function which lays the basis for predict-

ing future behaviors is the state visitation function, denoted

D. We now show how D can be modified to perform gen-

eralized queries about future behavior.

4.1. State Visitation Function D

Using the current estimate of the MDP and the reward

function, we can compute the policy of the agent. Using the
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policy, we can forward simulate a distribution of all possible

futures. This distribution is called the state visitation distri-

bution [33]. More formally, the posterior expected count of

future visitation to a state sx can be defined as

Dsx|ξ0→t
, EP (ξt+1→T |ξ0→t)

[
T∑

τ=t+1

I(sτ = sx)

]
. (2)

This quantity represents the agent’s expectation to visit each

state in the future given the partial trajectory. ξ0→t indicates

a partial trajectory starting at time 0 and ending at time t.
The expectation is taken under the maximum causal entropy

distribution, P (ξt+1→T |ξ0→t), which gives the probability

of a future trajectory given the current trajectory. I is the in-

dicator function, which counts agent visits to sx. Equation 2

is estimated by sampling trajectories from πθ(a|s).

4.2. Activity Forecasting with State Subsets

In this work, we extend the idea of state visitations to a

single state sx to a more general subset of states Sp. While a

generalized prediction task was not particularly meaningful

in the context of trajectory prediction [7, 34], predictions

over a subset of states now represents semantically mean-

ingful concepts in our proposed MDP. By using the state

space representation of our first-person behavior model, we

can construct subsets of the state space that have interest-

ing semantic meaning, such as “having an object oi” or “all

states closest to goal k with Oj set of objects.”

Formally, we define the expected count of visitation to a

subset of states Sp satisfying some property p:

DSp|ξ0→t
, EP (ξt+1→T |ξ0→t)

[
T∑

τ=t+1

I(sτ ∈ Sp)
]

(3)

=
∑

sx∈Sp

EP (ξt+1→T |ξ0→t)

[
T∑

τ=t+1

I(sτ = sx)

]

=
∑

sx∈Sp

Dsx|ξ0→t
. (4)

Equation 4 is essentially marginalizing over the state sub-

space of Equation 2. Derivation of two other inference tasks

is given in the Appendix: (1) expected visitation prediction

of performing an action after arriving at a subspace, (2) ex-

pected joint action-state subspace visitation prediction.

4.3. Forecasting Trajectory Length

In the following, we present a method to predict the

length of the future trajectory. Formally, we can denote the

expected trajectory length:

τ̂ξt+1→T |ξ0→t
, EP (ξt+1→T |ξ0→t) |ξt+1→T | (5)

Consider evaluating DSp|ξ0→t
from Equation 4 by setting

Sp = S , that is, by considering the expected future visita-

tion count to the entire state space. Then,

DS|ξ0→t
= EP (ξt+1→T |ξ0→t)

[
T∑

τ=t+1

I(sτ ∈ S)
]

= EP (ξt+1→T |ξ0→t)

[
T∑

τ=t+1

1

]

= E |ξt+1→T | = τ̂ξt+1→T |ξ0→t
(6)

where |ξ| indicates the number of states in trajectory ξ.

4.4. Future Goal Prediction

As previously described, we wish to predict the final goal

of a person’s action sequence. For example, if I went to

the study to pick up a cup, how likely am I to go to the

kitchen versus the living room? This problem can be posed

as solving for the MAP estimate of P (g|ξ)∀g ∈ Sg , the

posterior over goals. It describes what goal the user seeks

given their current trajectory, defined as:

P (g|ξ0→t) ∝ P (g)eVst
(g)−Vs0

(g), (7)

where Vsi(g) is the value of g with respect to a partial tra-

jectory that ends in si. Notice that the likelihood term is

exponentially proportional to the value difference between

the start state s0 and the current state st. In this way, the

likelihood encodes the progress made towards a goal g in

terms of the value function.

5. Experiments

We first present the dataset we collected. Then, we dis-

cuss our methods for goal discovery and action recogni-

tion. To reiterate, our focus is not to engineer these meth-

ods, but instead to make intelligent use of their outputs in

DARKO for the purpose of behavior modeling. We com-

pare DARKO’s performance versus several baselines on the

task of goal forecasting, and show DARKO’s performance

is superior. Then, we analyze DARKO’s performance under

less noisy conditions, to illustrate how it improves when

provided with more robust goal discovery and action de-

tection algorithms. Next, we illustrate DARKO ’s empiri-

cal no-regret performance, which further shows it is an ef-

ficient online learning algorithm. Finally, we present tra-

jectory length forecasting results, and find that our length

forecasts exhibit low median error. Additional analyses in-

cluding feature ablation and incorporating uncertainty from

goal discovery are presented in the Appendix.

5.1. FirstPerson Continuous Activity Dataset

We collected a dataset of sequential goal-seeking behav-

ior in several different environments such as home, office
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and laboratory. The users recorded a series of activities that

naturally occur in each scenario. Each user helped design

the script they followed, which involved their prior assump-

tions about what objects they will use and what goal they

will seek. An example direction from a script is “obtain a

snack and plate in kitchen, eat at dining room table.”

Users wore a hat-mounted Go-Pro Hero camera with 94◦

vertical, 123◦ horizontal FOVs. Our dataset is comprised of

5 user environments, and includes over 250 actions with 19

objects, 17 different scene types, at least 6 activity goals

per environment, and about 200 high-level activities (tra-

jectories). In each environment, the user recorded 3–4 long

sequences of high-level activities, where each sequence rep-

resents a full day of behavior. Our dataset represents over

15 days of recording.

For evaluation, all ground truth labels of objects (e.g.

cup, backpack), actions (i.e. acquire, release) and goals (e.g.

kitchen, bedroom) were first manually annotated. A goal

label correspond to when a high-level direction was com-

pleted, and in which scene it was completed, e.g. (dining

room, time=65s). An action label indicates when an activ-

ity was performed, e.g. (acquire, cup, time=25s). Further

details are presented in the Appendix.

5.2. Goal Discovery and Action Recognition

We describe two goal discovery methods and an action

recognition method that can serve as input to DARKO. With

respect to Algorithm 1, these are GOALDET and ACTDET.

Scene-based Goal Discovery: This model assumes that if

a scene classifier is very confident in the scene type for sev-

eral images frames, the camera wearer must be in a mean-

ingful place in the environment (i.e., kitchen, bedroom, of-

fice). We use the output of a scene classifier from [32]

(GoogLeNet model) on every frame from the wearable cam-

era. If the mean scene classifier probability for a scene type

is above a threshold ρg for 20 consecutive image frames,

then we add the current state st to the set of goals Sg .

Stop-based Goal Discovery: This model assumes that

when a person stops, they are at an important location. Us-

ing SLAM’s 3D camera positions, we apply a threshold on

velocity to detect stops in motion. When a stop is detected,

we add the current state st to the set of goals Sg . In Ta-

ble 1, temporal accuracies are computed by counting de-

tections within 3-second windows of ground truth labels as

true positives; for the scene-based method, a true positive

also requires the scene type to match the ground truth scene

type. Stop-based discovery is reliable across all environ-

ments, thus, we use it as our primary goal discovery method.

Image-based Object Recognition: We designed an object

recognition approach that classifies the object the user in-

teracts with at every temporally-labeled window. It over-

writes the ground-truth object label with its detection. The

approach first detects regions of person in each frame

Figure 3: Goal forecasting examples: A temporal se-

quence of goal forecasting results is shown in each row from

left to right, with the forecasted goal icons and sorted goal

probabilities inset (green: P (g∗|ξ), red: P (gi 6= g∗|ξ)).
Top: the scientist acquires a sample to boil in the gel elec-

trophoresis room. Middle: the user gets a textbook and goes

to the lounge. Bottom: the user leaves their apartment.

Method Home 1 Home 2 Office 1 Office 2 Lab 1

Scene Discovery 0.93 0.24 0.62 0.49 0.32

Stop Discovery 0.62 0.68 0.67 0.69 0.73

Act. Recognition 0.64 0.63 0.66 0.56 0.71

Table 1: Goal Discovery and Action Recognition. The

per-scene goal discovery and action recognition accuracies

are shown for our methods. A 3-second window is used

around every goal discovery to compute accuracy.

with [19] to focus on objects near the visible hands, which

are cropped with context and fed into an image-classifier

trained on ImageNet [24]. The outputs are remapped to our

object set, and a final classification is produced by taking

the maximum across objects. The per-action classification

accuracies in Table 1 demonstrate the method can produce

reasonable action classifications across all scenes. While

imperfect, these detections serve as useful input to DARKO.
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Method Home 1 Home 2 Office 1 Office 2 Lab 1

DARKO 0.524 0.378 0.667 0.392 0.473

MMED [6] 0.403 0.299 0.600 0.382 0.297

RNN 0.291 0.274 0.397 0.313 0.455

Logistic 0.458 0.297 0.569 0.323 0.348

Uniform 0.181 0.098 0.233 0.111 0.113

Table 2: Goal Forecasting Results (Visual Detections):

Proposed goal posterior (Sec.4.4) achieves best P g∗ (mean

probability of true goal).

5.3. Goal Forecasting Performance

At every time step, our method predicts the user’s goal

or final destination (e.g., bedroom, exit) as described in Sec-

tion 4.4 and shown in Figure 3. To understand the goal pre-

diction reliability, we compare our approach to several base-

line methods for estimating the goal posterior P (g|ξ0→t),
where g is a goal and ξ0→t is the observed state sequence

up to the current time step. Each baseline requires the state

tracking and goal discovery components of DARKO.

Uniform Model (Uniform): This model returns a uniform

posterior over possible goals Pn(g) = 1/Kn known at the

current episode n, defining worst case performance.

Logistic Regression Model (Logistic): A logistic regres-

sion model Pn(g|st) is fit to map states st to goals g.

Max-Margin Event Detection (MMED) [6]: A set of

max-margin models Pn(g|φ(st:t−w)) are trained to map

features φ of a w-step history of state vectors st:t−w to a

goal score. We use the best performing sumL1norm fea-

tures provided with the publicly available code.

RNN Classifier (RNN): An RNN is trained to predict

Pn(g|ξ0→t). We experimented with a variety of parameters

(see the Appendix) and report the best results.

Since all methods above are online algorithms, each

of the models Pn is updated after every episode n. In

order quantify performance with a single score, we use

the mean probability assigned to the ground truth goal

type g∗ over all episodes {ξn}Nn=1 as P (g∗|{ξn}Nn=1) =
1
N

∑N

n=1

∑Tn

t=1 Pn(g|ξnt) (also denoted P g∗ ). The goal

forecasting performance results are summarized in Table 2

using the above metric.

5.4. Goal Forecasting with Perfect Visual Detectors

The experimental results up to this point have exclu-

sively used visual detectors as input (e.g., SLAM, scene

classification, object recognition). While we have shown

that our approach learns meaningful human activity models

from real computer vision input, we would also like to un-

derstand how our online IRL method performs when decou-

pled from the noise of the vision-based input. We perform

the same experiments described in Section 5.3 but with ide-

alized (ground truth) inputs for goal discovery and action

Method Home 1 Home 2 Office 1 Office 2 Lab 1

DARKO 0.851 0.683 0.700 0.666 0.880

MMED [6] 0.648 0.563 0.589 0.624 0.683

RNN 0.441 0.322 0.504 0.454 0.651

Logistic 0.517 0.519 0.650 0.657 0.774

Uniform 0.153 0.128 0.154 0.151 0.167

Table 3: Goal Forecasting Results (Labelled Detections):

Proposed goal posterior achieves best P g∗ (mean probabil-

ity of true goal). Methods benefit from better detections.

Method Home 1 Home 2 Office 1 Office 2 Lab 1

Scene-based 0.438 0.346 0.560 0.238 0.426

Stop-based 0.614 0.395 0.644 0.625 0.709

Table 4: Visual goal discovery: Better goal discovery (cf.

Table 1) yields better P g∗ . Here, action detection labels are

used to isolate performance differences.

recognition. We still use SLAM for localization.

Table 3 summarizes the mean true goal probability for

each of the dataset environments. We observe a mean ab-

solute performance improvement of 0.27 by using idealized

inputs. Our proposed model continues to perform the best

against baselines methods. This performance indicates that

as vision-based component technologies improve, we can

expect significant improvements in the ability to predict the

goals of human activities.

We also measure performance when the action detec-

tion is built from ground truth and the goal discovery

is built from our described methods. Our expectation is

that DARKO with stop-based discovery should outperform

DARKO with scene-based based discovery, given the stop-

detector’s more reliable goal detection performance (Ta-

ble 1). The results over the dataset are given in Table 4,

confirming our expectation.

5.5. Goal Forecasting Performance over Time

In additional to understanding the performance of goal

prediction with a single score, we also plot the performance

of goal prediction over time. We evaluate the goal fore-

casting performance as a function of the fraction of time

until reaching the goal. In Figure 4, we plot the mean

probability of the true goal at each fractional time step

P̂ (g∗|ξt) = 1
N

∑N

n=1 Pn(g
∗|ξnt). Using fractional trajec-

tory length allows for a performance comparison across tra-

jectories of different lengths.

As shown in Figure 4, DARKO exhibits the property of

maintaining uncertainty early in the trajectory and converg-

ing to the correct prediction as time elapses in most cases.

In contrast, the logistic regression, RNN, and MMED per-

form worse at most time steps. As it approaches the goal,

our method always produces a higher confidence in the cor-
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Figure 4: Goal posterior forecasting over time: P̂g∗

vs. fraction of trajectory length, across all trajectories.

DARKO outperforms other methods and becomes more con-

fident in the correct goal as the trajectories elapse.

Figure 5: Empirical regret. DARKO exhibits sublinear

convergence in average regret. Initial noise is overcome af-

ter DARKO adjusts to the user’s early behaviors.

rect goal with lower variance. We tried argmax and Platt

scaling [17] to perform multi-class prediction with MMED;

argmax yielded higher P g∗ , in addition to making P̂g∗

noisier. While the RNN sees many states, its trajectory-

centric hidden-state representation may not have enough

data to generalize as well as the state-centric baselines.

5.6. Empirical Regret Analysis

We empirically show that our model has no-regret with

respect to the best model computed in hindsight under the

MaxEntIRL loss function (negative log-loss). In particular,

we compute the regret (cumulative loss difference) between

our online algorithm and the best hindsight model using the

batch MaxEntIOC algorithm [34] at the end of all episodes.

We plot the average regret Rt

t
for each environment in the

dataset in Figure 5. The average regret of our algorithm

approaches zero over time, matching our analysis.

5.7. Evaluation of Trajectory Length Estimates

Our model can also be used to estimate how long it will

take a person to reach a predicted goal state. We predict the

Statistic Home 1 Home 2 Office 1 Office 2 Lab 1

Med. % Err. 30.0 34.8 17.3 18.4 6.3

Med. % Err. NN 29.0 33.5 42.9 36.0 35.4

Mean |ξ| 20.5 31.0 27.1 13.7 23.5

Table 5: Trajectory length forecasting results. Error is

relative to the true length of each trajectory. Most trajectory

forecasts are fairly accurate.

expected trajectory length as derived in Section 4.1. For the

n-th episode, we use the normalized trajectory length pre-

diction error defined as ǫn =
∑Tn

t=1
|τnt−τ̂nt|

τnt
, where τnt is

the true trajectory length and τ̂nt (Eq. 6) is the predicted

trajectory length. Proper evaluation of trajectory length to-

wards a goal is challenging because our approach must learn

valid goals in an online fashion. When a person approaches

a new goal, our approach cannot accurately predict the goal

because it has yet to learn that it is a valid goal state. As

a result, our algorithm makes wrong goal predictions dur-

ing episodes that terminate in new goal states. If we simply

evaluate the mean performance, it will be dominated by the

errors of the first episode terminating in a new goal state.

We evaluate median ǫn over all N episodes. The median

is not dominated by the errors of the first episode toward a

new goal. We find most trajectory length forecasts are ac-

curate, evidenced by the median of the normalized predic-

tion error in Table 5. We include a partial-trajectory nearest

neighbors baseline (NN). In Lab 1, the median trajectory

length estimate is within 6.3% of the true trajectory length.

6. Conclusion

We proposed the first method for continuously modeling

and forecasting a first-person camera wearer’s future

semantic behaviors at far-reaching spatial and temporal

horizons. Our method goes beyond predicting the physical

trajectory of the user to predict their future semantic

goals, and models the user’s relationship to objects and

their environment. We have proposed several efficient

and extensible methods for forecasting other semantic

quantities of interest. Exciting avenues for future work

include building upon the semantic state representation to

model more aspects of the environment (which enables

forecasting of more detailed futures), validation against

human forecasting performance, and further generalizing

the notion of a “goal” and how goals are discovered.
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