
Submodular Trajectory Optimization for Aerial 3D Scanning

Mike Roberts1,2 Debadeepta Dey2 Anh Truong3 Sudipta Sinha2

Shital Shah2 Ashish Kapoor2 Pat Hanrahan1 Neel Joshi2

1Stanford University 2Microsoft Research 3Adobe Research

Abstract

Drones equipped with cameras are emerging as a pow-

erful tool for large-scale aerial 3D scanning, but existing

automatic flight planners do not exploit all available in-

formation about the scene, and can therefore produce in-

accurate and incomplete 3D models. We present an auto-

matic method to generate drone trajectories, such that the

imagery acquired during the flight will later produce a high-

fidelity 3D model. Our method uses a coarse estimate of the

scene geometry to plan camera trajectories that: (1) cover

the scene as thoroughly as possible; (2) encourage obser-

vations of scene geometry from a diverse set of viewing an-

gles; (3) avoid obstacles; and (4) respect a user-specified

flight time budget. Our method relies on a mathematical

model of scene coverage that exhibits an intuitive diminish-

ing returns property known as submodularity. We leverage

this property extensively to design a trajectory planning al-

gorithm that reasons globally about the non-additive cov-

erage reward obtained across a trajectory, jointly with the

cost of traveling between views. We evaluate our method by

using it to scan three large outdoor scenes, and we perform

a quantitative evaluation using a photorealistic video game

simulator.

1. Introduction

Small consumer drones equipped with high-resolution

cameras are emerging as a powerful tool for large-scale

aerial 3D scanning. In order to obtain high-quality 3D re-

constructions, a drone must capture images that densely

cover the scene. Additionally, 3D reconstruction methods

typically require surfaces to be viewed from multiple view-

points, at an appropriate distance, and with sufficient an-

gular separation (i.e., baseline) between views. Existing

autonomous flight planners do not always satisfy these re-

quirements, which can be difficult to reason about, even for

a skilled human pilot manually controlling a drone. Further-

more, the limited battery life of consumer drones provides

only 10–15 minutes of flight time, making it even more

challenging to obtain high-quality 3D reconstructions.

Figure 1. 3D reconstruction results obtained using our algorithm

for generating aerial 3D scanning trajectories, as compared to an

overhead trajectory. Top row: Google Earth visualizations of the

trajectories. Middle and bottom rows: results obtained by flying

a drone along each trajectory, capturing images, and feeding the

images to multi-view stereo software. Our trajectories lead to no-

ticeably more detailed 3D reconstructions than overhead trajecto-

ries. In all our experiments, we control for the flight time, battery

consumption, number of images, and quality settings used in the

3D reconstruction.

In lieu of manual piloting, commercial flight planning

tools generate conservative trajectories (e.g., a lawnmower

or orbit pattern at a safe height above the scene) that at-

tempt to cover the scene while respecting flight time bud-

15324

gets [1, 46]. However, because these trajectories are gen-

erated with no awareness of the scene geometry, they tend

to over-sample some regions (e.g., rooftops), while under-

sampling others (e.g., facades, overhangs, and fine details),

and therefore sacrifice reconstruction quality.

We propose a method to automate aerial 3D scanning, by

planning good camera trajectories for reconstructing large

3D scenes (see Figure 1). Our method relies on a math-

ematical model that evaluates the usefulness of a camera

trajectory for the purpose of 3D scanning. Given a coarse

estimate of the scene geometry as input, our model quanti-

fies how well a trajectory covers the scene, and also quan-

tifies the diversity and appropriateness of views along the

trajectory. Using this model for scene coverage, our method

generates trajectories that maximize coverage, subject to a

travel budget. We bootstrap our method using coarse scene

geometry, which we obtain using the imagery acquired from

a short initial flight over the scene.

We formulate our trajectory planning task as a reward-

collecting graph optimization problem known as orienteer-

ing, that combines aspects of the traveling salesman and

knapsack problems, and is known to be NP-hard [24, 57].

However, unlike the additive rewards in the standard orien-

teering problem, our rewards are non-additive, and globally

coupled through our coverage model. We make the obser-

vation that our coverage model exhibits an intuitive dimin-

ishing returns property known as submodularity [37], and

therefore we must solve a submodular orienteering prob-

lem. Although submodular orienteering is strictly harder

than additive orienteering, it exhibits useful structure that

can be exploited. We propose a novel transformation of our

submodular orienteering problem into an additive orienteer-

ing problem, and we solve the additive problem as an inte-

ger linear program. We leverage submodularity extensively

throughout the derivation of our method, to obtain approx-

imate solutions with strong theoretical guarantees, and dra-

matically reduce computation times.

We demonstrate the utility of our method by using it to

scan three large outdoor scenes: a barn, an office building,

and an industrial site. We also quantitatively evaluate our al-

gorithm in a photorealistic video game simulator. In all our

experiments, we obtain noticeably higher-quality 3D recon-

structions than strong baseline methods.

2. Related Work

Aerial 3D Scanning and Mapping High-quality 3D re-

constructions of very large scenes can be obtained using of-

fline multi-view stereo algorithms [21] to process images

acquired by drones [45]. Real-time mapping algorithms for

drones have also been proposed, that take as input either

RGBD [28, 39, 43, 54] or RGB [62] images, and produce as

output a 3D reconstruction of the scene. These methods are

solving a reconstruction problem, and do not, themselves,

generate drone trajectories. Several commercially available

flight planning tools have been developed to assist with 3D

scanning [1, 46]. However, these tools only generate con-

servative lawnmower and orbit trajectories above the scene.

In contrast, our algorithm generates trajectories that cover

the scene as thoroughly as possible, ultimately leading to

higher-quality 3D reconstructions.

Generating trajectories that explore an unknown environ-

ment, while building a map of it, is a classical problem

in robotics [56]. Exploration algorithms have been pro-

posed for drones based on local search heuristics [58], iden-

tifying the frontiers between known and unknown parts of

the scene [27, 51], maximizing newly visible parts of the

scene [5], maximizing information gain [6, 7], and imita-

tion learning [11]. A closely related problem in robotics

is generating trajectories that cover a known environment

[22]. Several coverage path planning algorithms have been

proposed for drones [3, 4, 26, 29]. In an especially simi-

lar spirit to our work, Heng et al. propose to reconstruct an

unknown environment by executing alternating exploration

and coverage trajectories [26]. However, existing strategies

for exploration and coverage do not explicitly account for

the domain-specific requirements of multi-view stereo al-

gorithms (e.g., observing the scene geometry from a diverse

set of viewing angles). Moreover, existing exploration and

coverage strategies have not been shown to produce visually

pleasing multi-view stereo reconstructions, and are gener-

ally not evaluated on multi-view stereo reconstruction tasks.

In contrast, our trajectories cover the scene in a way that ex-

plicitly accounts for the requirements of multi-view stereo

algorithms, and we evaluate the multi-view stereo recon-

struction performance of our algorithm directly.

Several path planning algorithms have been proposed

for drones, that explicitly attempt to maximize multi-view

stereo reconstruction performance [16, 30, 44, 49]. These

algorithms are similar in spirit to ours, but adopt a two phase

strategy for generating trajectories. In the first phase, these

algorithms select a sequence of next-best-views to visit, ig-

noring travel costs. In the second phase, they find an effi-

cient path that connects the previously selected views. In

contrast, our algorithm reasons about these two problems –

selecting good views and routing between them – jointly

in a unified global optimization problem, enabling us to

generate more rewarding trajectories, and ultimately higher-

quality 3D reconstructions.

View Selection and Path Planning The problem of op-

timizing the placement (and motion) of sensors to improve

performance on a perception task is a classical problem in

computer vision and robotics, where it generally goes by the

name of active vision, e.g., see the comprehensive surveys

[10, 50, 55]. We discuss directly related work not included

in these surveys here. A variety of active algorithms for 3D

scanning with ground-based range scanners have been pro-

5325

posed, that select a sequence of next-best-views [36], and

then find an efficient path to connect the views [19, 68]. In

a similar spirit to our work, Wang et al. propose a unified

optimization problem that selects rewarding views, while

softly penalizing travel costs [61]. We adapt these ideas

to account for the domain-specific requirements of multi-

view stereo algorithms, and we impose a hard travel budget

constraint, which is an important safety requirement when

designing drone trajectories.

Several algorithms have been proposed to select an ap-

propriate subset of views for multi-view stereo reconstruc-

tion [15, 31, 40, 41], and to optimize coverage of a scene

[23, 42]. However, these methods do not model travel costs

between views. In contrast, we impose a hard constraint on

the travel cost of the path formed by the views we select.

Submodular Path Planning Submodularity [37] has

been considered in path planning scenarios before, first in

the theory community [8, 9], and more recently in the ar-

tificial intelligence [52, 53, 69] and robotics [26, 29] com-

munities. The coverage path planning formulation of Heng

et al. [26] is similar to ours, in the sense that both for-

mulations use the same technique for approximating cov-

erage [32, 33]. We extend this formulation to account for

the domain-specific requirements of multi-view stereo al-

gorithms, and we evaluate the multi-view stereo reconstruc-

tion performance of our algorithm directly.

3. Technical Overview

In order to generate scanning trajectories, our algorithm

leverages a coarse estimate of the scene geometry. Initially,

we do not have any estimate of the scene geometry, so we

adopt an explore-then-exploit approach.

In the explore phase, we fly our drone (i.e., we command

our drone to fly autonomously) along a default trajectory

at a safe distance above the scene, acquiring a sequence of

images as we are flying. We land our drone, and subse-

quently feed the acquired images to an open-source multi-

view stereo pipeline, thereby obtaining a coarse estimate of

the scene geometry, and a strictly conservative estimate of

the scene’s free space. We include a more detailed discus-

sion of our explore phase in the supplementary material.

In the exploit phase, we use this additional information

about the scene to plan a scanning trajectory that attempts

to maximize the fidelity of the resulting 3D reconstruc-

tion. At the core of our planning algorithm, is a coverage

model that accounts for the domain-specific requirements

of multi-view stereo reconstruction (Section 4). Using this

model, we generate a scanning trajectory that maximizes

scene coverage, while respecting the drone’s limited flight

time (Section 5). We fly the drone along our scanning tra-

jectory, acquiring another sequence of images. Finally, we

land our drone again, and we feed all the images we have

(a) Evaluating coverage for three

cameras and a single surface point

c1

c2

c3

s

(b) Evaluating coverage for a camera

trajectory and multiple surface points

Figure 2. Our coverage model for quantifying the usefulness of

camera trajectories for multi-view stereo reconstruction. More

useful trajectories cover more of the hemisphere of viewing an-

gles around surface points. (a) An illustrative example showing

coverage of a single surface point with three cameras. Each cam-

era covers a circular disk on a hemisphere around the surface point

s, and the total solid angle covered by all the disks determines the

total usefulness of the cameras. Note that the angular separation

(i.e., baseline) between cameras c2 and c3 is small and leads to

diminishing returns in their combined usefulness. (b) The useful-

ness of a camera trajectory, integrated over multiple surface points,

is determined by summing the total covered solid angle for each

of the individual surface points. Our model naturally encourages

diverse observations of the scene geometry, and encodes the even-

tual diminishing returns of additional observations.

acquired to our multi-view stereo pipeline to obtain a de-

tailed 3D reconstruction of the scene.

4. Coverage Model for Camera Trajectories

In this section, we model the usefulness of a camera

trajectory for multi-view stereo reconstruction, in terms of

how well it covers the scene geometry. We provide an

overview of our coverage model in Figure 2.

In reality, the most useful camera trajectory is the one

that yields the highest-quality 3D reconstruction of the

scene. However, it is not clear how we would search for

such a camera trajectory directly, without resorting to flying

candidate trajectories and performing expensive 3D recon-

structions for each of them. In contrast, our coverage model

only roughly approximates the true usefulness of a camera

trajectory. However, as we will see in the following sec-

tion, our coverage model: (1) is motivated by established

best practices for multi-view stereo image acquisition; (2)

is easy to evaluate; (3) only requires a coarse estimate of

the scene geometry as input; and (4) exhibits submodular

structure, which will enable us to efficiently maximize it.

Best Practices for Multi-View Stereo Image Acquisition

As a rule of thumb, it is recommended to capture an im-

age every 5–15 degrees around an object, and it is generally

accepted that capturing images more densely will eventu-

ally lead to diminishing returns in the fidelity of the 3D re-

construction [21]. Similarly, close-up and fronto-parallel

views can help to resolve fine geometric details, because

these views increase the effective resolution of estimated

5326

(a) Original problem: find the

closed path of camera poses

that maximizes coverage

(b) Solve for the optimal set of

camera orientations, ignoring

path constraints

(d) Additive approximation to

the coarsened problem

(e) Solve for the optimal

closed path on the additive

approximation

(c) Coarsened problem

Figure 3. Overview of our algorithm for generating camera trajectories that maximize coverage. (a) Our goal is to find the optimal closed

path of camera poses through a discrete graph. (b) We begin by solving for the optimal camera orientation at every node in our graph,

ignoring path constraints. (c) In doing so, we remove the choice of camera orientation from our problem, coarsening our problem into a

more standard form. (d) The solution to the problem in (b) defines an approximation to our coarsened problem, where there is an additive

reward for visiting each node. (e) Finally, we solve for the optimal closed path on the additive approximation defined in (d).

depth images, and contribute more reliable texture informa-

tion to the reconstruction [60]. We explicitly encode these

best practices for multi-view stereo image acquisition into

our coverage model.

Formal Definition Given a candidate camera trajectory

and approximate scene geometry as a triangle mesh, our

goal is to quantify how well the trajectory covers the scene

geometry. We first uniformly sample the camera trajectory

to generate a discrete set C, consisting of individual camera

poses c0:I . Similarly, we uniformly sample oriented surface

points s0:J from the scene geometry. For each oriented sur-

face point sj , we define an oriented hemisphere Hj around

it. For each surface point sj and camera ci, we define a

circular disk D
j
i that covers an angular region of the hemi-

sphere Hj , centered at the location where ci projects onto

Hj (see Figure 2). When the surface point sj is not visi-

ble from the camera ci, we define the disk D
j
i to have zero

radius, and we truncate the extent of each disk so that it

does not extend past the equator of Hj . We define the to-

tal covered region of the hemisphere Hj as the union of all

the disks that partially cover Hj (see Figure 2), referring to

this total covered region as Vj =
⋃I

i=0
D

j
i . We define our

coverage model as follows,

f(C) =

J∑
j=0

∫
Vj

wj(h)dh (1)

where the outer summation is over all hemispheres;
∫
Vj

dh

refers to the surface integral over the covered region Vj ;

and wj(h) is a non-negative weight function that assigns

different reward values for covering different parts of Hj .

Our model can be interpreted as quantifying how well a set

of cameras covers the scene’s surface light field [13, 63].

We include a method for efficiently evaluating our coverage

model in the supplementary material.

To encourage close-up views, we set the radius of D
j
i

to decay exponentially as the camera ci moves away from

the surface point sj . To encourage fronto-parallel views, we

design each function wj(h) to decay in a cosine-weighted

fashion, as the hemisphere location h moves away from the

hemisphere pole. We include our exact formulation for D
j
i

and wj(h) in the supplementary material.

Submodularity Roughly speaking, a set function is sub-

modular if the marginal reward for adding an element to

the input set always decreases, as more elements are added

to the input set [37]. Our coverage model is submodular,

because all coverage functions with non-negative weights

are submodular [37]. Submodularity is a useful property

to identify when attempting to optimize a set function, and

is often referred to as the discrete analogue of convexity.

We will leverage submodularity extensively in the follow-

ing section, as we derive our algorithm for generating cam-

era trajectories that maximizing coverage.

5. Generating Optimal Camera Trajectories

We provide an overview of our algorithm in Figure 3.

Our approach is to formulate a reward-collecting optimiza-

tion problem on a graph. The nodes in the graph represent

camera positions, the edges represent Euclidean distances

between camera positions, and the rewards are collected by

visiting new nodes. The goal is to find a path that collects

as much reward as possible, subject to a budget constraint

on the total path length. This general problem is known as

the orienteering problem [24, 57].

A variety of approaches have been proposed to approx-

imately solve the orienteering problem, which is NP-hard.

However, these methods are not directly applicable to our

problem, because they assume that the rewards on nodes are

additive. But the total reward we collect in our problem is

determined by our coverage model, which does not exhibit

additive structure. Indeed, the marginal reward we collect

at a node might be very large, or very small, depending on

the entire set of other nodes we visit.

The marginal reward we collect at each node also de-

pends strongly on the orientation of our camera. In other

words, our orienteering problem involves extra choices –

5327

how to orient the camera at each visited node – and these

choices are globally coupled through our submodular cov-

erage function. Therefore, even existing algorithms for sub-

modular orienteering [8, 9, 26, 52, 53, 69] are not directly

applicable to our problem, because these algorithms assume

there are no extra choices to make at each visited node.

Our strategy will be to apply two successive problem

transformations. First, we leverage submodularity to solve

for the approximately optimal camera orientation at every

node in our graph, ignoring path constraints (Fig. 3b, Sec-

tion 5.1). In doing so, we remove the choice of camera

orientation from our orienteering problem, thereby coars-

ening it into a more standard form (Fig. 3c). Second, we

leverage submodularity to construct a tight additive approx-

imation of our coverage function (Fig. 3d, Section 5.2). In

doing so, we relax our coarsened submodular orienteering

problem into a standard additive orienteering problem. We

formulate this additive orienteering problem as a compact

integer linear program, and solve it approximately using a

commercially available solver (Fig. 3e, Section 5.3).

Preprocessing We begin by constructing a discrete set of

all the possible camera poses we might include in our path.

We refer to this set as our ground set of camera poses, C.

We construct this set by uniformly sampling a user-defined

bounding box that spans the scene, then uniformly sam-

pling a downward-facing unit hemisphere to produce a set

of look-at vectors that our drone camera can actuate. We

define our ground set as the Cartesian product of these posi-

tions and look-at vectors. We construct the graph for our

orienteering problem as the grid graph of all the unique

camera positions in C, pruned so that it is entirely restricted

to the known free space in the scene (see Section 3).

Our Submodular Orienteering Problem Let P =
(p0,v0), (p1,v1), . . . , (pq,vq) be a camera path through

our graph, represented as a sequence of camera poses taken

from our ground set. We represent each camera pose as a

position pi and a look-at vector vi. We would like to find

the optimal path P⋆ as follows,

P⋆ = argmax
P

f(CP)

subject to l(P) ≤ B p0 = pq = proot

(2)

where CP ⊆ C is the set of all the unique camera poses

along the path; l(P) is the length of the path; B is a user-

defined travel budget; and proot is the position where our

path must start and end. For safety reasons, we would also

like to design trajectories that consume close to, but no more

than, some fixed fraction of our drone’s battery (e.g., 80%

or so). However, constraining battery consumption directly

is difficult to express in our orienteering formulation, so we

model this constraint indirectly by imposing a budget con-

straint on path length. We make the observation that our

problem is intractable in its current form, because it requires

searching over an exponential number of paths through our

graph. This observation motivates the following two prob-

lem transformations.

5.1. Solving for Optimal Camera Orientations

Our goal in this subsection is to solve for the optimal

camera orientation at every node in our graph, ignoring path

constraints. We achieve this goal with the following relax-

ation of the problem in equation (2). Let CS ⊆ C be a

subset of camera poses from our ground set. We would like

to find the optimal subset of camera poses C⋆
S as follows,

C⋆
S = argmax

CS

f(CS)

subject to |CS | = N CS ∈ M
(3)

where |CS | is the cardinality of CS ; N is the total number of

unique positions in our graph; and the constraint CS ∈ M
enforces mutual exclusion, where we are allowed to select

at most one camera orientation at each node in our graph. In

this relaxed problem, we are attempting to maximize cover-

age by selecting exactly one camera orientation at each node

in our graph. We can interpret such a solution as a coarsened

ground set for the problem in equation (2), thereby trans-

forming it into a standard submodular orienteering problem.

Because our coverage function is submodular, the prob-

lem in equation (3) can be solved very efficiently, and to

within 50% of global optimality, with a very simple greedy

algorithm [37]. Roughly speaking, the greedy algorithm se-

lects camera poses from our ground set in order of marginal

reward, taking care to respect the mutual exclusion con-

straint, until no more elements can be selected. Submodu-

larity can also be exploited to significantly reduce the com-

putation time required by the greedy algorithm (e.g., from

multiple hours to a couple of minutes, for the problems we

consider in this paper) [37]. The approximation guarantee

in this subsection relies on the fact that selecting more cam-

era poses never reduces coverage, i.e., our coverage func-

tion exhibits a property known as monotonicity [37]. We

include a more detailed discussion of the greedy algorithm,

and provide pseudocode, in the supplementary material.

5.2. Additive Approximation of Coverage

Our goal in this subsection is to construct an additive ap-

proximation of coverage. In other words, we would like to

define an additive reward at each node in our graph, that

closely approximates our coverage function for arbitrary

subsets of visited nodes.

To construct our additive approximation, we draw inspi-

ration from the approach of Iyer et al. [32, 33]. We be-

gin by choosing a permutation of elements in our coarsened

ground set. Let C = c0, c1, . . . , cN be our permutation,

where ci is the ith element of our coarsened ground set in

5328

permuted order. Let Ci = {c0, c1, . . . , ci−1} be the subset

containing the first i elements of our permutation. We de-

fine the additive reward for each element in our permutation

as f̃i = f(Ci ∪ ci) − f(Ci). For an arbitrary subset CS ,

our additive approximation is simply the sum of additive re-

wards for each element in CS . Due to submodularity, this

additive approximation is guaranteed to be exact for all sub-

sets Ci, and to underestimate our true coverage function for

all other subsets. This guarantee is useful for our purposes,

because any solution we get from optimizing our additive

approximation will yield an equal or greater reward on our

true coverage function.

When choosing a permutation, it is generally advanta-

geous to place camera poses with the greatest marginal re-

ward at the front of our permutation. With this intuition in

mind, we form our permutation by sorting the camera poses

in our coarsened ground set according to their marginal re-

ward. Fortunately, we have already computed this ordering

in Section 5.1 using the greedy algorithm. So, we simply

reuse this ordering to construct our additive approximation.

5.3. Orienteering as an Integer Linear Program

After constructing our additive approximation of cover-

age, we obtain the following additive orienteering problem,

P⋆ = argmax
P

∑
CP

f̃i

subject to l(P) ≤ B p0 = pq = proot

(4)

where f̃i is the additive reward for each unique node along

the path P. In its current form, it is still not clear how to

solve this problem efficiently, because we must still search

over an exponential number of paths through our graph.

Fortunately, we can express this problem as a compact inte-

ger linear program, using a formulation suggested by Letch-

ford et al. [38]. We transform our undirected graph into a

directed graph, and we define integer variables to represent

if nodes are visited and directed edges are traversed. Re-

markably, we can constrain the configuration of these inte-

ger variables to form only valid paths through our graph,

with a compact set of linear constraints. We include a more

detailed derivation of this formulation in the supplementary

material.

Leveraging the formulation suggested by Letchford et

al., we convert the problem in equation (4) into a standard

form that can be given directly to an off-the-shelf solver.

We use the modeling language CVXPY [14] to specify our

problem, and we use the commercially available Gurobi

Optimizer [25] as the back-end solver. Solving integer pro-

gramming problems to global optimality is NP-hard, and

can take a very long time, so we specify a solver time limit

of 5 minutes. Gurobi returns the best feasible solution it

finds within the time limit, along with a worst-case optimal-

ity gap. In our experience, Gurobi consistently converges

to a close-to-optimal solution in the allotted time (i.e., typ-

ically with an optimality gap of less than 10%). At this

point, the resulting orienteering trajectory can be safely and

autonomously executed on our drone.

6. Evaluation

In all the experiments described in this section, we ex-

ecute all drone flights at 2 meters per second, with a total

travel budget of 960 meters (i.e., an 8 minute flight) un-

less otherwise noted. All flights generate 1 image every 3.5

meters. Each method has the same travel budget, and gen-

erates roughly 275 images. Small variations in the number

of generated images are possible, due to differences in how

close each method gets to the travel budget. We describe our

drone hardware, data acquisition pipeline, and experimental

methodology in more detail in the supplementary material.

Real-World Reconstruction Performance We evalu-

ated the real-world reconstruction performance of our al-

gorithm by using it to scan three large outdoor scenes: a

barn, an office building, and an industrial site.1 We show

results from these experiments in Figures 1 and 4, as well

as in the supplementary material. We compared our recon-

struction results to two baseline methods: OVERHEAD and

RANDOM.

OVERHEAD. We designed OVERHEAD to generate tra-

jectories that are representative of those produced by exist-

ing commercial flight planning software [1, 46]. OVER-

HEAD generates a single flight at at a safe height above

the scene; consisting of an orbit path that always points the

camera at the center of the scene; followed by a lawnmower

path that always points the camera straight down.

RANDOM. We designed RANDOM to have roughly the

same level of scene understanding as our algorithm, except

that RANDOM does not optimize our coverage function. We

gave RANDOM access to the graph of camera positions gen-

erated by our algorithm, which had been pruned according

to the free space in the scene. RANDOM generates trajecto-

ries by randomly selecting graph nodes to visit and traveling

to them via shortest paths, until no more nodes can be vis-

ited due to the travel budget. RANDOM always points the

camera towards the center of the scene, which is a reason-

able strategy for the scenes we consider in this paper.

During our explore phase, we generate an orbit trajectory

exactly as we do for OVERHEAD. For the scenes we con-

sider in this paper, this initial orbit trajectory is always less

than 250 meters.

When generating 3D reconstructions, our algorithm and

RANDOM have access to the images from our explore phase,

1We conducted this experiment with an early implementation of our

method that differs slightly from the implementation used in our other ex-

periments. In particular, the graph of camera positions used in this experi-

ment included diagonal edges. We subsequently excluded diagonal edges

to enable our integer programming formulation to scale to larger problem

instances.

5329

Figure 4. Qualitative comparison of the 3D reconstructions obtained from an overhead trajectory, a random trajectory, and our trajectory

for two real-world scenes. Our reconstructions contain noticeably fewer visual artifacts than the baseline reconstructions. In all our

experiments, we control for the flight time, battery consumption, number of images, and quality settings used in the 3D reconstruction.

Figure 5. Quantitative comparison of the 3D reconstructions obtained from an overhead trajectory, a random trajectory, a next-best-view

trajectory, and our trajectory for our synthetic scene. We show close-up renderings of each reconstruction, as well as per-pixel visual error,

relative to a ground truth rendering of the scene. Our method leads to quantitatively lower visual error than baseline methods.

but OVERHEAD does not. The images in our explore phase

are nearly identical to the orbit images from OVERHEAD,

and would therefore provide OVERHEAD with negligible

additional information, so all three methods are directly

comparable. We generated 3D reconstructions using the

commercially available Pix4Dmapper Pro software [47],

configured with maximum quality settings.

Reconstruction Performance on a Synthetic Scene We

evaluated our algorithm using a photorealistic video game

simulator, which enabled us to measure reconstruction per-

formance relative to known ground truth geometry and ap-

pearance. We show results from this experiment in Figure 5

and Table 1.

Our experimental design here is exactly as described pre-

viously, except we acquired images by programmatically

maneuvering a virtual camera in the Unreal Engine [18], us-

ing the UnrealCV Python library [48]. We also included an

additional baseline method, NEXT-BEST-VIEW, that greed-

ily selects nodes according to their marginal submodular

reward, and finds an efficient path to connect them using

the Approx-TSP algorithm [12] until no more nodes can be

added due to the travel budget. This method is intended to

be representative of the next-best-view planning strategies

that occur frequently in the literature [19, 29, 36, 68], in-

cluding those that have been applied to aerial 3D scanning

[16, 30, 44, 49].

5330

Method Accuracy Completeness Visual

Error (mm) Error (mm) Error (%)

Overhead 170.2 583.8 7.1

Random 126.5 557.2 4.4

Next-Best-View 122.8 330.7 3.6

Ours 115.2 323.3 3.3

Table 1. Quantitative comparison of the 3D reconstructions ob-

tained from an overhead trajectory, a random trajectory, a next-

best-view trajectory, and our trajectory for our synthetic scene. For

all the columns in this table, lower is better. We report the mean

per-pixel visual error across all of our test views, where 100% per-

pixel error corresponds to the l2 norm of the difference between

black and white in RGB space. Our method quantitatively out-

performs baseline methods, both geometrically (i.e., in terms of

accuracy and completeness) and visually.

We chose the GRASS LANDS environment [17] as our

synthetic test scene because it is freely available, has photo-

realistic lighting and very detailed geometry, and depicts a

large outdoor scene that would be well-suited for 3D scan-

ning with a drone.

We evaluated geometric reconstruction quality by mea-

suring accuracy and completeness relative to a ground truth

point cloud [2, 35]. We obtained our ground truth point

cloud by rendering reference depth images arranged on

an inward-looking sphere around the scene, taking care to

manually remove any depth images that were inside objects.

We also evaluated visual reconstruction quality by measur-

ing per-pixel visual error, relative to ground truth RGB im-

ages rendered from the same inward-looking sphere around

the scene [59]. When evaluating per-pixel visual error, we

took care to only compare pixels that contain geometry from

inside the scanning region-of-interest for our scene.

When evaluating geometric quality, we obtained point

clouds for each method by running VisualSFM [64, 65, 66,

67], followed by the Multi-View Environment [20], fol-

lowed by Screened Poisson Surface Reconstruction [34],

and finally by uniformly sampling points on the recon-

structed triangle mesh surface. When evaluating visual

quality, we obtained textured 3D models for each method

using the surface texturing algorithm of Waechter et al. [60].

Submodular Orienteering Performance We evaluated

the submodular orienteering performance of our algorithm

on our synthetic scene. We performed this experiment after

we have solved for the optimal camera orientation at every

node in our graph, to facilitate the comparison of our algo-

rithm to other submodular orienteering algorithms [53, 69].

We show results from this experiment in Figure 6.

In this experiment, we included a baseline method that

behaves identically to NEXT-BEST-VIEW, except it greed-

ily selects nodes according to the ratio of marginal re-

ward to marginal cost [69]. We implemented all algorithms

in Python, except for the p-SPIEL Orienteering algorithm

[53], where we used the MATLAB implementation pro-

400 600 800 1000 1200 1400 1600
Travel Budget (meters)

(a)

10000

20000

30000

40000

50000

60000

70000

80000

R
e
w

a
rd

 (
u
n
it

le
ss

)

Submodular Orienteering Reward
as a Function of Travel Budget

Ours

Next-Best-View

Next-Best-View (reward vs cost)

p-SPIEL Orienteering

400 600 800 1000 1200 1400 1600
Travel Budget (meters)

(b)

0

5

10

15

20

25

30

35

40

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
in

u
te

s)

Submodular Orienteering Computation Time
as a Function of Travel Budget

Ours

Next-Best-View

Next-Best-View (reward vs cost)

Figure 6. Quantitative comparison of submodular orienteering

algorithms on our synthetic scene. (a) Submodular reward as a

function of travel budget. Our algorithm consistently obtains more

reward than other algorithms. All reconstruction results in this pa-

per were produced with a budget of 960 meters (i.e., 8 minutes at 2

meters per second), shown with a grey dotted line. For this budget,

we obtain 20% more reward than next-best-view planning. The

p-SPIEL Orienteering algorithm [53] failed to consistently find a

solution. (b) Computation time as a function of travel budget. On

this plot, lower is better. In terms of computation time, our algo-

rithm is competitive with, but more expensive than, next-best-view

planning. We do not show computation times for the p-SPIEL Ori-

enteering algorithm, because it took over 4 hours in all cases where

it found a solution.

vided by the authors. We performed this experiment on a

Mid 2015 Macbook Pro with a 2.8 GHz Intel Core i7 pro-

cessor and 16GB of RAM.

7. Conclusions

We proposed an intuitive coverage model for aerial 3D

scanning, and we made the observation that our model is

submodular. We leveraged submodularity to develop a com-

putationally efficient method for generating scanning tra-

jectories, that reasons jointly about coverage rewards and

travel costs. We evaluated our method by using it to scan

three large real-world scenes, and a scene in a photorealistic

video game simulator. We found that our method results in

quantitatively higher-quality 3D reconstructions than base-

line methods, both geometrically and visually.

In the future, we believe trajectory optimization and geo-

metric reasoning will enable drones to capture the physical

world with unprecedented coverage and scale. Individual

drones may soon be able to execute very efficient scanning

trajectories at the limits of their dynamics, and teams of

drones may soon be able to execute scanning trajectories

collectively and iteratively over very large scenes.

Acknowledgements

We thank Jim Piavis and Ross Robinson for their exper-

tise as our safety pilots; Don Gillett for granting us permis-

sion to scan the barn scene; 3D Robotics for granting us

permission to scan the industrial scene; Weichao Qiu for

his assistance with UnrealCV; Jane E and Abe Davis for

proofreading the paper; and Okke Schrijvers for the helpful

discussions. This work began when Mike Roberts was a re-

search intern at Microsoft Research, and was subsequently

supported by a generous grant from Google.

5331

References

[1] 3D Robotics. Site Scan. http://3dr.com, 2017.

[2] H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B.

Dahl. Large-scale data for multiple-view stereopsis. IJCV,

120(2), 2016.

[3] K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes. Uni-

form coverage structural inspection path-planning for micro

aerial vehicles. In IEEE International Symposium on Intelli-

gent Control 2015.

[4] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari,

T. Mantel, and R. Siegwart. Structural inspection path plan-

ning via iterative viewpoint resampling with application to

aerial robotics. In International Conference on Robotics and

Automation (ICRA) 2015.

[5] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and

R. Siegwart. Receding horizon “next-best-view” planner for

3D exploration. In International Conference on Robotics and

Automation (ICRA) 2016.

[6] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg,

P. Abbeel, N. Michael, and V. Kumar. Information-theoretic

planning with trajectory optimization for dense 3D mapping.

In Robotics: Science and Systems (RSS) 2015.

[7] B. Charrow, S. Liu, V. Kumar, and N. Michael. Information-

theoretic mapping using Cauchy-Schwarz quadratic mutual

information. In International Conference on Robotics and

Automation (ICRA) 2015.

[8] C. Chekuri, N. Korula, and M. Pal. Improved algorithms

for orienteering and related problems. Transactions on Algo-

rithms, 8(3), 2012.

[9] C. Chekuri and M. Pal. A recursive greedy algorithm for

walks in directed graphs. In Foundations of Computer Sci-

ence (FOCS) 2005.

[10] S. Chen, Y. Li, and N. M. Kwok. Active vision in robotic

systems: A survey of recent developments. International

Journal of Robotics Research, 30(11), 2011.

[11] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey. Learning

to gather information via imitation. International Conference

on Robotics and Automation (ICRA) 2017.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Third Edition. MIT Press, 2009.

[13] A. Davis, M. Levoy, and F. Durand. Unstructured light fields.

Computer Graphics Forum (Proc. Eurographics 2012), 31(2,

Part 1), 2012.

[14] S. Diamond and S. Boyd. CVXPY: A Python-embedded

modeling language for convex optimization. Journal of Ma-

chine Learning Research, 17(83), 2016.

[15] E. Dunn and J.-M. Frahm. Next best view planning for ac-

tive model improvement. In Intelligent Robots and Systems

(IROS) 2009.

[16] E. Dunn, J. van den Berg, and J.-M. Frahm. Developing

visual sensing strategies through next best view planning. In

Intelligent Robots and Systems (IROS) 2009.

[17] Epic Games. Infinity Blade: Grass Lands. http:

//www.unrealengine.com/marketplace/

infinity-blade-plain-lands, 2017.

[18] Epic Games. Unreal Engine. http://www.

unrealengine.com, 2017.

[19] X. Fan, L. Zhang, B. Brown, and S. Rusinkiewicz. Auto-

mated view and path planning for scalable multi-object 3D

scanning. Transactions on Graphics (Proc. SIGGRAPH Asia

2016), 35(6), 2016.

[20] S. Fuhrmann, F. Langguth, N. Moehrle, M. Waechter, and

M. Goesele. MVE-An image-based reconstruction environ-

ment. Computer Graphics Forum, 53(Part A), 2015.

[21] Y. Furukawa and C. Hernandez. Multi-View Stereo: A Tuto-

rial. Now Publishers, 2015.

[22] E. Galceran and M. Carreras. A survey of coverage path

planning for robotics. Robotics and Autonomous Systems,

61(12), 2013.

[23] B. Ghanem, Y. Cao, and P. Wonka. Designing camera net-

works by convex quadratic programming. Computer Graph-

ics Forum (Proc. Eurographics 2015), 34(2), 2015.

[24] A. Gunawan, H. C. Laua, and P. Vansteenwegenb. Orien-

teering problem: A survey of recent variants, solution ap-

proaches and applications. European Journal of Operational

Research, 255(2), 2016.

[25] Gurobi. Gurobi Optimizer. http://www.gurobi.com,

2017.

[26] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys. Efficient

visual exploration and coverage with a micro aerial vehicle

in unknown environments. In International Conference on

Robotics and Automation (ICRA) 2015.

[27] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,

F. Fraundorfer, and M. Pollefeys. Autonomous visual map-

ping and exploration with a micro aerial vehicle. Journal of

Field Robotics, 31(4), 2014.

[28] L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys. Real-

time photo-realistic 3D mapping for micro aerial vehicles. In

Intelligent Robots and Systems (IROS) 2011.

[29] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S.

Sukhatme. Active planning for underwater inspection and

the benefit of adaptivity. International Journal of Robotics

Research, 32(1), 2013.

[30] C. Hoppe, A. Wendel, S. Zollmann, K. Pirker, A. Irschara,

H. Bischof, and S. Kluckner. Photogrammetric camera net-

work design for micro aerial vehicles. In Computer Vision

Winter Workshop 2012.

[31] A. Hornung, B. Zeng, and L. Kobbelt. Image selection for

improved multi-view stereo. In CVPR 2008.

[32] R. Iyer and J. Bilmes. Submodular optimization with sub-

modular cover and submodular knapsack constraints. In

NIPS 2013.

[33] R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential-based

submodular function optimization. In ICML 2013.

[34] M. Kazhdan and H. Hoppe. Screened Poisson surface recon-

struction. Transactions on Graphics, 32(3), 2013.

[35] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks

and temples: Benchmarking large-scale scene reconstruc-

tion. Transactions on Graphics (Proc. SIGGRAPH 2017),

36(4), 2017.

[36] M. Krainin, B. Curless, and D. Fox. Autonomous generation

of complete 3D object models using next best view manip-

ulation planning. In International Conference on Robotics

and Automation (ICRA) 2011.

5332

http://3dr.com
http://www.unrealengine.com/marketplace/infinity-blade-plain-lands
http://www.unrealengine.com/marketplace/infinity-blade-plain-lands
http://www.unrealengine.com/marketplace/infinity-blade-plain-lands
http://www.unrealengine.com
http://www.unrealengine.com
http://www.gurobi.com

[37] A. Krause and D. Golovin. Submodular function maximiza-

tion. In Tractability: Practical Approaches to Hard Prob-

lems. Cambridge University Press, 2014.

[38] A. N. Letchford, S. D. Nasirib, and D. O. Theis. Com-

pact formulations of the Steiner traveling salesman problem

and related problems. European Journal of Operational Re-

search, 228(1), 2013.

[39] G. Loianno, J. Thomas, and V. Kumar. Cooperative local-

ization and mapping of MAVs using RGB-D sensors. In In-

ternational Conference on Robotics and Automation (ICRA)

2015.

[40] M. Mauro, H. Riemenschneider, L. V. Gool, A. Signoroni,

and R. Leonardi. A unified framework for content-aware

view selection and planning through view importance. In

BMVC 2014.

[41] M. Mauro, H. Riemenschneider, A. Signoroni, R. Leonardi,

and L. V. Gool. An integer linear programming model for

view selection on overlapping camera clusters. In 3DV 2014.

[42] A. Mavrinac and X. Chen. Modeling coverage in camera

networks: A survey. IJCV, 101(1), 2013.

[43] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar,

K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida,

K. Ohno, E. Takeuchi, and S. Tadokoro. Collaborative map-

ping of an earthquake-damaged building via ground and

aerial robots. Journal of Field Robotics, 29(5), 2012.

[44] C. Mostegel, M. Rumpler, F. Fraundorfer, and H. Bischof.

UAV-based autonomous image acquisition with multi-view

stereo quality assurance by confidence prediction. In CVPR

Workshop on Computer Vision in Vehicle Technology 2016.

[45] Pix4D. Projeto redentor white paper, 2015.

[46] Pix4D. Pix4Dcapture. http://pix4d.com/product/

pix4dcapture, 2017.

[47] Pix4D. Pix4Dmapper Pro. http://pix4d.com/

product/pix4dmapper-pro, 2017.

[48] W. Qiu and A. Yuille. UnrealCV: Connecting computer vi-

sion to Unreal Engine. arXiv, 2016.

[49] K. Schmid, H. Hirschmuller, A. Domel, I. Grixa, M. Suppa,

and G. Hirzinger. View planning for multi-view stereo 3D

reconstruction using an autonomous multicopter. Journal of

Intelligent & Robotic Systems, 65(1), 2012.

[50] W. R. Scott, G. Roth, and J.-F. Rivest. View planning for au-

tomated three-dimensional object reconstruction and inspec-

tion. Computing Surveys, 35(1), 2003.

[51] S. Shen, N. Michael, and V. Kumar. Autonomous indoor

3D exploration with a micro-aerial vehicle. In International

Conference on Robotics and Automation (ICRA) 2012.

[52] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser. Effi-

cient informative sensing using multiple robots. Journal of

Artificial Intelligence Research, 34(1), 2009.

[53] A. Singh, A. Krause, and W. J. Kaiser. Nonmyopic adap-

tive informative path planning for multiple robots. In Inter-

national Joint Conference on Artifical Intelligence (IJCAI)

2009.

[54] J. Sturm, E. Bylow, F. Kahl, and D. Cremers. Dense track-

ing and mapping with a quadrocopter. In Unmanned Aeriel

Vehicles in Geomatics 2013.

[55] K. A. Tarabanis, P. K. Allen, and R. Y. Tsai. A survey of sen-

sor planning in computer vision. Transactions on Robotics

and Automation, 11(1), 1995.

[56] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.

MIT Press, 2005.

[57] P. Vansteenwegena, W. Souffriaua, and D. V. Oudheusden.

The orienteering problem: A survey. European Journal of

Operational Research, 209(1), 2011.

[58] L. von Stumberg, V. Usenko, J. Engel, J. Stuckler, and

D. Cremers. Autonomous exploration with a low-cost

quadrocopter using semi-dense monocular SLAM. arXiv,

2016.

[59] M. Waechter, M. Beljan, S. Fuhrmann, N. Moehrle, J. Kopf,

and M. Goesele. Virtual rephotography: Novel view predic-

tion error for 3D reconstruction. Transactions on Graphics,

36(1), 2017.

[60] M. Waechter, N. Moehrle, and M. Goesele. Let there be

color! Large-scale texturing of 3D reconstructions. In ECCV

2014.

[61] P. Wang, R. Krishnamurti, and K. Gupta. View planning

problem with combined view and traveling cost. In Interna-

tional Conference on Robotics and Automation (ICRA) 2007.

[62] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof.

Dense reconstruction on-the-fly. In CVPR 2012.

[63] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless,

T. Duchamp, D. H. Salesin, and W. Stuetzle. Surface light

fields for 3D photography. Transactions on Graphics (Proc.

SIGGRAPH 2000), 35(1), 2000.

[64] C. Wu. Towards linear-time incremental structure from mo-

tion. In 3DV 2013.

[65] C. Wu. SiftGPU: A GPU implementation of scale in-

varaint feature transform (SIFT). http://cs.unc.edu/

˜ccwu/siftgpu, 2007.

[66] C. Wu. VisualSFM: A visual structure from motion system.

http://ccwu.me/vsfm, 2011.

[67] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In CVPR 2011.

[68] S. Wu, W. Sun, P. Long, H. Huang, D. Cohen-Or, M. Gong,

O. Deussen, and B. Chen. Quality-driven Poisson-guided

autoscanning. Transactions on Graphics (Proc. SIGGRAPH

Asia 2014), 33(6), 2014.

[69] H. Zhang and Y. Vorobeychik. Submodular optimization

with routing constraints. In Conference on Artificial Intel-

ligence (AAAI) 2016.

5333

http://pix4d.com/product/pix4dcapture
http://pix4d.com/product/pix4dcapture
http://pix4d.com/product/pix4dmapper-pro
http://pix4d.com/product/pix4dmapper-pro
http://cs.unc.edu/~ccwu/siftgpu
http://cs.unc.edu/~ccwu/siftgpu
http://ccwu.me/vsfm

