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Abstract

The majority of existing solutions to the Multi-Target

Tracking (MTT) problem do not combine cues over a long

period of time in a coherent fashion. In this paper, we

present an online method that encodes long-term temporal

dependencies across multiple cues. One key challenge of

tracking methods is to accurately track occluded targets or

those which share similar appearance properties with sur-

rounding objects. To address this challenge, we present a

structure of Recurrent Neural Networks (RNN) that jointly

reasons on multiple cues over a temporal window. Our

method allows to correct data association errors and re-

cover observations from occluded states. We demonstrate

the robustness of our data-driven approach by tracking mul-

tiple targets using their appearance, motion, and even inter-

actions. Our method outperforms previous works on mul-

tiple publicly available datasets including the challenging

MOT benchmark.

1. Introduction

Architectures based on neural networks have become an

essential instrument in solving perception tasks and have

shown to approach human-level accuracy in classifying im-

ages [20, 21]. However, the status quo of the Multi-Target

Tracking (MTT) problem is still far from matching human

performance [64, 78]. This is mainly because it is diffi-

cult for neural networks to capture the inter-relation of tar-

gets in time and space using multi-modal cues (e.g., appear-

ance, motion, and interactions). In this work, we tackle the

MTT problem by jointly learning a representation that takes

into account Appearance, Motion, and Interaction cues us-

ing RNNs (AMIR) (see Figure 1).

The objective of MTT is to infer trajectories of targets

as they move around. It covers a wide range of applica-

tions such as sports analysis [45, 53, 79], biology (e.g., birds

[46], ants [30], fish [69, 70, 16], cells [47, 41]), robot nav-
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Figure 1. We present a method based on a structure of RNNs (each

RNN is depicted by a trapezoid) that learns to encode long-term

temporal dependencies across multiple cues (appearance, motion,

and interaction). Our learned representation is used to compute

the similarity scores of a “tracking-by-detection” algorithm. [17]

igation [12, 13], and autonomous driving vehicles [14, 59].

We follow the “tracking-by-detection” paradigm whereby

detection outputs are to be connected across video frames.

This is often formulated as an optimization problem with re-

spect to a graph [57, 58]. Each detection is represented by a

node, and edges encode the similarity scores [18, 4]. Over

the past decades, researchers have made significant progress

in proposing techniques to solve the optimal assignments

of graph-based formulations [89, 1, 36, 67]. However,

their MTT performances are limited by the specific design

choices of their representation and the corresponding simi-

larity function.

In crowded environments, occlusions, noisy detections

(e.g., false alarms, missing detections, non-accurate bound-

ing), and appearance variability are very common. In

traditional MTT approaches, representations and similarity

functions are hand-crafted in an attempt to capture similar

appearance and motion across adjacent temporal frames

[36, 67, 78, 80]. In contrast, we propose a method to en-
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code long-term temporal dependencies across multiple cues

without the need to hand specify parameters or weights.

Our framework is based on a structure of Recurrent Neural

Networks (RNN), which has also shown benefits in other

applications [28]. The rest of the paper is as follows. In

Section 3, we present details on the inputs of each RNN

and learning a representation that can be used to compute

a similarity score. Our appearance model is an RNN

constructed on a Convolutional Neural Network (CNN)

whose purpose is to classify if a detection is similar to a

target instance at different time frames. Our motion and

interaction models leverage two separate Long Short-Term

Memory (LSTM) networks that track the motion and

interactions of targets for longer periods – suitable for

presence of long-term occlusions. We then combine these

networks into a structure of RNNs to learn to reason

jointly on different cues across time. Our method runs

online without the need to see future frames. In Section 4,

we present a detailed evaluation of our framework using

multiple benchmarks such as the MOT challenge [39, 48]

and the Stanford drone dataset [62].

2. Related Work

In recent years, tracking has been successfully extended

to scenarios with multiple targets [54, 40, 26, 78]. As op-

posed to single target tracking approaches which construct

a sophisticated appearance model to track a single target in

different frames, multiple target tracking does not mainly

focus on an appearance model. Although appearance is an

important cue, relying only on appearance can be problem-

atic in MTT scenarios where the scene is highly crowded or

when targets may share the same appearance. To this end,

some work has been focused on improving the appearance

model [19, 8], while other work has combined the dynamics

and interaction between targets with the target appearance

[62, 3, 57, 80, 10, 65, 58].

2.1. Appearance Model

Simple appearance models are widely used in MTT.

Many models are based on raw pixel template representa-

tion for simplicity [80, 5, 77, 57, 56], while a color his-

togram is the most popular representation for appearance

modeling in MTT approaches [10, 40, 71, 37]. Other ap-

proaches use covariance matrix representation, pixel com-

parison representation, SIFT-like features, or pose features

[27, 86, 31, 24, 52]. Recently, deep neural network architec-

tures have been used for modeling appearance [23, 38, 87].

In these architectures, high-level features are extracted by

convolutional neural networks trained for a specific task.

The appearance module of our model shares some char-

acteristics with [23], but differs in two crucial ways: first,

we handle occlusions and solve the re-identification task by

learning a similarity metric between two targets. Second,

the network architecture is different and we use a different

loss function which we will describe in Section 3.2.

2.2. Motion Model

The target motion model describes how a target moves.

The motion cue is a crucial cue for MTT, since knowing

the likely position of targets in future frames will reduce

the search space and hence increases the appearance model

accuracy. Popular motion models used in MTT are divided

into linear and non-linear motion models. Linear motion

models follow a linear movement with constant velocity

across frames. This simple motion model is one of the most

popular models in MTT [8, 49, 66, 85, 55]. However, there

are many cases where linear motion models can not deal

with long-term occlusions; to remedy this, non-linear mo-

tion models are proposed to produce a more accurate pre-

diction [81, 82, 11]. We present a Long Short-Term Mem-

ory (LSTM) model which learns to predict similar motion

patterns. It is a fully data-driven approach that can handle

noisy detections.

2.3. Interaction Model

Most tracking techniques assume that each target has

an independent motion model. This simplification can be

problematic in crowded scenes. Interaction models cap-

ture interactions and forces between different targets in a

scene [22, 25, 76]. Two of the most popular interaction

models are the social force models introduced by [22] and

the crowd motion pattern model [25]. Social force mod-

els are also known as group models. In these models,

each target reacts to energy potentials caused by interactions

with other objects through forces (repulsion or attraction),

while trying to keep a desired speed and motion direction

[62, 3, 57, 80, 10, 65, 58]. Crowd motion pattern models are

another type of interaction model used in MTT, inspired by

the crowd simulation literature [88, 68]. In general, these

kind of models are usually used for over-crowded scenes

[93, 50, 34, 35, 63, 61]. The main drawback of most of these

methods is that they are limited to a few hand-designed

force terms, such as collision avoidance or group attraction.

Recently, Alahi et al. [3] proposed to use Long Short-Term

Memory networks to jointly reason across multiple individ-

uals (referred to as social LSTM). They presented an ar-

chitecture to forecast the long-term trajectories of all tar-

gets. We use a similar LSTM based architecture. However,

our data-driven interaction model is trained to solve the re-

identification task as opposed to long-term prediction.

Finally, when reasoning with multiple cues, previous

works combine them in a hand-crafted fashion without ade-

quately modeling long-term dependencies. None of the pre-

vious method discussed in sections 2.1, 2.2, and 2.3 com-

bine Appearance, Motion, and Interaction cues in a Re-
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Figure 2. We use a structure of RNNs (the dashed rectangle) to

compute the similarity scores between targets ti and detections

dj . The scores are used to construct a bipartite graph between

the targets and detections. The structure of RNNs is comprised of

three RNNs – Appearance (A), Motion (M), and Interaction (I) –

that are combined through another RNN (referred to as the target

RNN (O)).

current architecture (AMIR). In this work, we propose a

structure of RNNs to cope with such limitations of previous

works. We learn a representation that encodes long-term

temporal dependencies across multiple cues, i.e., appear-

ance, motion, and interaction automatically in a data-driven

fashion.

3. Multi-Target Tracking Framework

The task of Multi-Target Tracking (MTT) consists of de-

tecting multiple targets at each time frame and matching

their identities in different frames, yielding a set of target

trajectories over time. We address this problem by using a

“tracking-by-detection” paradigm. As the input, the detec-

tion results are produced by an object detector. Given a new

frame, the tracker computes the similarity scores between

the already tracked targets and the newly detected objects

(more details in section 3.1). These similarity scores are

calculated using our framework (as described in Figure 2).

They are used to connect the detections dj and targets ti in a

bipartite graph, as shown in right-side of Figure 2. Then, the

Hungarian algorithm [51] is used to find the optimal assign-

ments. In this work, we propose a new method to compute

these similarity scores.

3.1. Overall Architecture

We have identified appearance cues, motion priors, and

interactive forces as critical cues of the MTT problem. As

discussed in the introduction, combining these cues linearly

is not necessarily the best way to compute the similarity

score. We instead propose to use a structure of RNNs to

combine these cues in a principled way.

In our framework, we represent each cue with an RNN.

We refer to the RNNs obtained from these cues as appear-

ance (A), motion (M), and interaction (I) RNNs. The fea-

tures represented by these RNNs (φA,φM ,φI ) are combined

…
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Figure 3. Our appearance model. The inputs are the bounding

boxes of target i from time 1 to t, and detection j at time t+1 we

wish to compare. The output is a feature vector φA that encodes

if the bounding box at time t + 1 corresponds to a specific target

i at time 1, 2, . . . , t. We use a CNN for our appearance feature

extractor.

through another RNN which is referred to as the target (O)

RNN. More details on the architecture and training process

of these RNNs can be found in sections 3.2, 3.3, 3.4, and

3.5 respectively. The target RNN outputs a feature vector,

φ(t, d), which is used to output the similarity between a tar-

get t and a detection d.

By using RNNs, more precisely LSTM networks, we

have the capacity to encode long-term dependencies in the

sequence of observations. Traditionally, similarity scores

in a graph-based tracking framework were computed given

only the observation from the previous frame, i.e., a pair-

wise similarity score [89, 1, 36, 67]. Our proposed simi-

larity score is computed by reasoning on the sequence of

observations. In Section 4.2, we demonstrate the power of

our representation by reasoning on a sequence of variable

length as opposed to a pairwise similarity score. In the rest

of this section, we describe each component of our method.

3.2. Appearance

The underlying idea of our appearance model is that we

can compute the similarity score between a target and can-

didate detection based on purely visual cues. More specif-

ically, we can treat this problem as a specific instance of

re-identification, where the goal is to take pairs of bound-

ing boxes and determine if their content corresponds to the

same target. Therefore, our appearance model should be

able to describe the similarities between input pairs, as well

as be robust to occlusions and other visual disturbances.

The appearance model’s output feature vector is produced

by an RNN (A), which in turn receives its input from the

appearance feature extractor (see Figure 3).

Architecture: Our appearance RNN (A) is an LSTM

that accepts as inputs the appearance features from the ap-

pearance feature extractor (φA
1 , . . . , φA

t ) and produces H-

dimensional output φi for each timestep. The appearance

features are the last hidden layer features of a Convolutional
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Neural Network (CNN).

Let BB1
i , . . . , BBt

i be the bounding boxes of target i at

timesteps 1, . . . , t and BBt+1

j be the detection j we wish

to compare with target i. The CNN accepts the raw content

within each bounding box and passes it through its layers

until it finally produces a 500-dimensional feature vector

(φA
t ). We also pass BBt+1

j (which we wish to determine

whether it corresponds to the true appearance trajectory of

target i or not) through the same CNN that maps it to an

H-dimensional vector φj . The LSTM’s output φi is then

concatenated with this vector, and the resulting φ is passed

to another FC layer which brings the 2H dimensional vector

to a k dimensional feature vector φA (as illustrated in Fig-

ure 3). We pre-train our appearance model using a Softmax

classifier for 0/1 classification problem, whether BBt+1

j

corresponds to a true appearance trajectory BB1
i , . . . , BBt

i .

When combining with other cues, we use φA of size 500 as

part of the input to our target RNN (O).

Note that we use a 16-layer VGGNet as our CNN in Fig-

ure 3. We begin with the pre-trained weights of this net-

work, remove the last FC layer and add an FC layer of size

500 so that the network now outputs a 500-dimensional vec-

tor. We then train this CNN for the re-identification task for

which the details can be found in Section 4.3.

3.3. Motion

The second cue of our overall framework is the indepen-

dent motion property of each target. It can help tracking tar-

gets that are occluded or lost. One key challenge is to handle

the noisy detections. Even when the real motion of a target

is linear, since detections can be noisy, the sequence of coor-

dinates and hence velocities can be non-linear – especially

if we reason on the image plane. We train a Long Short-

Term Memory (LSTM) network on trajectories of noisy 2D

velocities (extracted by our motion feature extractor) to be

able to learn these non-linearities from data (see figure 4).

Architecture: Let the velocity of target i at the t-th
timestep be defined as:

vti = (vxt
i, vy

t
i) = (xt

i − xt−1

i , yti − yt−1

i ),
where (xt

i, y
t
i) are the 2D coordinates of each target on the

image plane (center of the bounding boxes).

Our motion RNN (M) is an LSTM that accepts as in-

puts the velocities of a specific target at timesteps 1, . . . , t
as motion features, and produces an H-dimensional output

φi. We also pass the velocity vector of the detection j at

timestep t+ 1 (which we wish to determine whether it cor-

responds to the true trajectory of target i or not) through

a fully-connected layer that maps it to an H-dimensional

vector φj (this makes φj the same size as φi). The LSTM

output is then concatenated with this vector, and the result

is passed to another fully connected layer which brings the

2H dimensional vector to a k dimensional feature vector

φM (as illustrated in Figure 4). We pre-train our motion

…
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M M M M FC-layer
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Figure 4. Our motion model. The inputs are the 2D velocities of

the target (on the image plane). The output is a feature vector

φM that encodes if velocity vt+1

j corresponds to a true trajectory

v1i , v
2
i , . . . , v

t
i .

model using a Softmax classifier for 0/1 classification prob-

lem, whether velocity vt+1

j corresponds to a true trajectory

v1i , . . . , v
t
i . When combining with other cues, we use φM of

size 500 as part of the input to our target RNN (O).

3.4. Interaction Model

The motion of a particular target is governed not only by

its own previous motion, but also by the behavior of nearby

targets. We incorporate this cue into our overall framework

by formulating an interaction model. Since the number of

nearby targets can vary, in order to use the same size input,

we model the neighborhood of each target as a fixed size

occupancy grid. The occupancy grids are extracted from

our interaction feature extractor. For each target, we use an

LSTM network to model the sequence of occupancy grids

(see Figure 6).

Architecture: Let O1
i , O

2
i , . . . , O

t
i represent the 2D oc-

cupancy grid for target i at timesteps 1, . . . , t. The positions

of all the neighbors are pooled in this map. The m, n ele-

ment of the map is simply given by:

Ot
i(m,n) = ∨j∈Ni

1mn[x
t
j − xt

i, y
t
j − yti ]

Where ∨ is logical disjunction, 1mn[x, y] is an indicator

function to check if the person located at (x, y) is in the (m,

n) cell of the grid, and Ni is the set of neighbors correspond-

ing to person i. The map is further represented as a vector

(see Figure 6). Note that all the 2D locations of targets are

their equivalent bounding box centers on the image plane.

Our interaction RNN (I) is an LSTM that accepts as in-

put the occupancy grids centered on a specific target for

timesteps 1, . . . , t (extracted by the interaction feature ex-

tractor) and produces H-dimensional output φi for each

timestep. We also pass the occupancy grid of detection j
at timestep t + 1 (which we wish to determine whether it

corresponds to the true trajectory of target i or not) through

a fully-connected layer that maps it to an H-dimensional

vector space φj (this makes φj the same size as φi). The

LSTM output is then concatenated with this vector result-

ing in vector φ, which is passed to another fully connected

layer that brings the 2H dimensional vector φ to the space
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Figure 6. Illustration of the steps involved in computing the occu-

pancy map. The location of the bounding box centers of nearby

targets are encoded in a grid –occupancy map– centered around

the target. For implementation purposes, the map is represented as

a vector.

of k dimensional feature vector φI (as illustrated in Figure

5). We pre-train our interaction model using a Softmax clas-

sifier for 0/1 classification problem. Similar to the motion

model, when combining with other cues, we use φI of size

500 as part of the input to our target RNN (O).

3.5. Target

Our overarching model shown in figure 2 is constructed

by combining the appearance, motion, and interaction

RNNs through another RNN which is referred to as the tar-

get RNN (O).

The training proceeds in two stages:

(i) First, networks A, M and I (corresponding to appear-

ance, motion, and interaction RNNs) as well as the

CNN (appearance feature extractor) are pre-trained

separately. We use a standard Softmax classifier and

cross-entropy loss. Each RNN outputs the probabili-

ties for the positive and negative classes, where posi-

tive indicates that the new detected object matches the

previous trajectory of the target (in either case of ap-

pearance, motion, or interaction properties, depending

on the RNN in charge), and negative indicates other-

wise.

(ii) Second, the target RNN is jointly trained end-to-end

with the component RNNs A, M, and I. The output

vectors of the A, M, and I networks are concatenated

into a single feature vector and serve as input to the

target RNN. Our target RNN has the capacity to learn

long term dependencies of all cues across time. The

last hidden state of the target RNN (H dimensional)

goes through a fully-connected layer resulting in a fea-

ture vector φ(t, d) that encodes all these long term de-

pendencies of all cues across time. Our target RNN

is also trained to perform the task of data association

– outputs the score of whether a detection (d) corre-

sponds to a target (t) from φ(t, d) using a Softmax clas-

sifier and cross-entropy loss.

In both above training stages, the networks are trained

using MOT15 and MOT16 training data, in which positive

examples are true pedestrian trajectories (consisting of ap-

pearances, velocities, and occupancy maps depending of the

RNN), and negative examples are constructed by altering

the pedestrian’s appearance or location in the final frame of

the trajectory simply by choosing another target’s proper-

ties for the final frame. We use the ground-truth boxes and

add noise by modifying the center of box, width and height.

We also create fake occlusions by dropping GT boxes from

some frames.

4. Experimental Results

We have presented our multi-cue representation learning

framework to compute the similarity score between a se-

quence of observations and a new detection. We use our

learned representation to tackle the Multi-target Tracking

problem. We first present the overall performance of our

framework on the MOT challenge [39] and then present

more insights and analysis on our representation.

4.1. Multi­Target Tracking

To recall, we use our learned representation in the MDP

framework [78]. We simply replaced their features with the

features extracted by our model without changing the rest

of the framework. We have one target LSTM for each tar-

get, and the MDP framework tracks the targets using the

similarity computed with our learned representation.

Metrics. We report the same metric as the suggested

ones in the MOT2D Benchmark challenge [39]: Track-

ing Accuracy (MOTA), Multiple Object Tracking Preci-

sion (MOTP), Mostly Track targets (MT), Mostly Lost tar-

gets (ML), False Positives (FP), False Negatives (FN), ID

Switches (IDS), and finally the number of frames processed

in one second (Hz) which indicates the speed of a tracking

method.

Implementation Details. In all experiments the values

of parameters H, k, and sequence lengths are 128, 100, and

6 respectively for all RNNs. Moreover, in section 3.4 the

image is sampled uniformly with a 15*15 grid where a 7*7

sub-grid centered around a specific person is used as its oc-
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Method MOTA MOTP Rcll Prcn MT ML

MDP [78] + Lin 51.5 74.2 74.1 80.1 44.2% 20.9%

MDP + SF [80] 73.5 77.1 84.4 91.5 58.1% 25.5%

MDP + SF-mc [62] 75.6 78.2 86.1 92.6 60% 23.2%

AMIR-ours (MOT) 78.6 79.4 88.2 93.9 69.7% 19.5%

AMIR-ours (MOT+Drone) 82.9 80.3 92.3 95.3 85% 15.2%

Table 1. MOT tracking results on Stanford Drone Dataset. AMIR

(MOT) version has been only trained on the MOT challenge train-

ing data and has not been fine-tuned on the Stanford drone dataset.

Whereas, AMIR (MOT+Drone) version has been also fine-tuned

on the drone dataset.

cupancy grid. The network hyper-parameters are chosen

by cross validation and our framework was trained with

Adam update. Training the RNN’s occurs from scratch,

with mini-batch size of 64, and learning rate of 0.002, se-

quentially decreased every 10 epochs by a factor of 10 (for

50 epochs). Note that this is same for training all RNNs.

Moreover, we use our method in the MDP framework [78].

For each target, MDP has two processes. First, it indepen-

dently tracks the target with a single object tracker based

on optical flow. Then, when the target gets occluded, the

single object tracker stops tracking and a bi-partite graph is

constructed similar to Figure 2. The Hungarian algorithm is

used to recover occluded targets. Note that MDP also pro-

poses to learn a similarity score given a hand-crafted rep-

resentation. We replace their representation with the output

of our target RNN (φ(t, d)) to demonstrate the strength of

our learning method.

MOT Challenge Benchmark. We report the quantita-

tive results of our method on the 2DMOT 2015 Benchmark

[39], and MOT16 [48] in Table 5 and 6. This challenges

share the training and testing set for 11 and 14 sequences

respectively. We used their publicly shared noisy detec-

tions. Our method outperforms previous methods on mul-

tiple metrics such as the MOTA, MT, and ML. Our MOTA

even outperforms offline methods (in the 2015 challenge)

that have access to the whole set of future detections to rea-

son on the data association step. Using long term depen-

dencies of multiple cues makes our method to recover back

to the right target after an occlusion or drift; hence we have

higher MT and lower ML but our IDS is higher. Indeed,

when targets are occluded, our method can wrongly assign

them to other detections. But when the targets re-appear,

our method re-matches them with the correct detections.

Such process leads to a high number of switches. Never-

theless, the MT metric remains high.

The impact of our learned representation becomes evi-

dent compared with the previously published MDP method.

By only switching the representation and keeping the same

data association method proposed in [78], we obtain a 20%

relative boost in MOTA. The benefits of our representation

are further emphasized with the Stanford dataset [62].

Stanford Drone Dataset. As we have mentioned be-

fore, one of the main advantages of our model compared to

other multi-target tracking methods is the similarity score

which is a function of multiple cues across time and seeks

to use the right cues at each time. Often, some cues should

vote for the similarity score since the others are not dis-

criminant enough or very noisy. To test the power of our

method, we also conduct experiments by testing our multi-

target tracking experiments on videos that are very differ-

ent from the MOT challenge [39], i.e., the Stanford Drone

Dataset [62]. All targets are small and hence appearance

models might be faulty (as illustrated in Figure 9). In table

1, we compare our method with previously reported MDP-

based methods. Our method outperforms all the MDP-

based methods on all metrics. Even without fine-tuning

our representation on the drone dataset, our method out-

performs previous works. After fine-tuning, we obtain the

best performance as expected. It shows the power of a data-

driven method to learn a representation over any input sig-

nal.

In the reminder of this section, we analyze the perfor-

mance of our representation with an ablation study as well

as more insights on our appearance on more specific tasks.

4.2. Ablation Study

The underlying motivation of our proposed framework

is to address the following two challenges (as listed in the

introduction): effectively modeling the history of each cue,

and effectively combining multiple cues. We now present

experiments towards these two goals on the validation set

of the 2DMOT2015 challenge [39]. We use the same eval-

uation protocol (training and test splits) as in [78] for our

validation set.

Impact of the History. One of the advantages of our

representation compared to the previous ones is the capacity

to learn long term dependencies of cues across time, i.e., re-

taining information from the past. We investigate the impact

of changing the sequence length of the LSTMs on tracking

accuracy, where sequence length of an LSTM is the number

of unrolled time steps used while training the LSTM. Figure

7 (b) shows the MOTA score of different components for

the validation set, under different LSTM sequence lengths

for our target LSTM. We can see that increasing the LSTM

sequence length positively impacts the MOTA. The perfor-

mance saturates after 3 frames on the Stanford drone dataset

and after 6 frames on the MOTChallenge dataset. These

results confirm our claim that RNN can effectively model

the history of a cue. Moreover, the difference between the

MOT and Stanford dataset can be explained by the differ-

ence in the datasets. The drone dataset does not have any

long term occlusion whereas the MOT has full long-term

occlusions. Our framework learns to encode long-term tem-

poral dependencies across multiple cues that helps recover-

ing from long-term occlusions. We claim if most occlusions

305



4 6 8 10 12 14 16 18

Occlusion length (frame)

0

50

100

150

C
o
u
n
t

Stanford Drone Validation Set

MOT Validation Set

(a)

1 2 3 4 5 6 7 8 9 10

20

30

M
O

T
A

MOT Validation Set

1 2 3 4 5 6 7 8 9 10

Sequence Length (frame)

70

75

80

M
O

T
A

Stanford Drone Dataset

(b)

Figure 7. (a) Occlusion length distribution in MOT and Stanford

Drone dataset validation set. (b) Analysis of the used sequence

length (memory) for our model on the MOT validation set for both

datasets. We report the MOTA scores.

Tracker MOTA MOTP MT ML FP FN IDS

AMIR 30.8 73.8 14 51.7 2,563 13,127 98

Exp 1 18.2 71.2 7.1 72.1 3,851 15,893 350

Exp 2 12.9 71.0 4.3 75.9 4,259 16,751 396

Table 2. Analysis of our model on the MOT validation set com-

pared to FC baselines. First, using FC only instead of the target

RNN (O) or top RNN (Exp 1) and second, FC layer for all RNNs

(Exp 2).

are less than n frame long we at least need to keep depen-

dencies over past n frames to be able to recover the object

from an occlusion. Figure 7 (a) depicts that most occlusions

(more than 80 percent) happen for less than 6 frames in the

MOT dataset which supports why the MOTA saturates after

sequence length of 6, see figure 7 (b). Whereas since the

Drone dataset does not have any long term occlusions our

model does not need long term dependencies. Nevertheless,

we can see that modeling the sequence of observations on

both datasets positively impacts the similarity score hence

tracking performance.

In order to further support our use of RNNs for mod-

eling the temporal dependencies in the MTT framework we

conduct experiments using fully-connected layers instead of

RNNs. We provide results of two experiments, one replac-

ing only the target LSTM with an FC, and a second exper-

iment in which we replaced all LSTM networks with FCs.

Table 2 shows the results of this experiment.

Impact of Multiple Cues. We investigate the contri-

bution of different cues in our framework by measuring the

performance in terms of MOTA on the validation set. Figure

8 presents the results of our ablation study. The appearance

cue is the most important one. Each cues helps to increase

Tracker MOTA MOTP MT ML FP FN IDS

A+M+I 30.8 73.8 14 51.7 2,563 13,127 98

A+M 28.8 73.9 13.5 52.1 2,776 13,361 134

A+I 27.4 73.9 12 53.4 2,679 13,991 136

M+I 22 73.8 9.8 52.1 2,714 14,954 298

A 23.7 73.7 11.5 55.6 3,359 14,001 138

M 19.2 73.7 8.5 68.4 3,312 15,023 313

I 15.4 73.5 5.6 69.9 3,061 16,250 354

Table 3. Analysis of our model on the MOT validation set using

different set of components (A) Appearance, (M) Motion, and (I)

Interaction. We report the standard MOT metrics.
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Figure 8. Analysis of our model on the MOT validation set using

different set of components (A) Appearance, (M) Motion, and (I)

Interaction. We report the MOTA scores.

Method Rank 1 Rank 5 Rank 10

FPNN [42] 19.9 49.3 64.7

BoW [94] 23 45 55.7

ConvNet [2] 45 75.3 95

LX [43] 46.3 78.9 88.6

MLAPG [44] 51.2 83.6 92.1

SS-SVM [91] 51.2 80.8 89.6

SI-CI [75] 52.2 84.3 92.3

DNS [90] 54.7 84.8 94.8

SLSTM [72] 57.3 80.1 88.3

Ours 55.9 81.7 95.1

Table 4. Performance comparison our appearance feature extractor

with state-of-the-art algorithms for the CUHK03 dataset.

the performance. It is worth to point out our proposed inter-

action cue positively impacts the overall performance. Our

proposed target LSTM (in charge of combining all the other

RNNs) effectively reason on all the cues to increase the per-

formance. Table 3 reports more details on the impact of

each cue on the various tracking metrics.

4.3. Re­identification Task

For completeness, we report the performance of our ap-

pearance cue on a re-identification task. We construct a

Siamese CNN using the same pre-trained CNN used as our

appearance feature extractor in Section 3.2. We train our

Siamese CNN on positive and negative samples extracted

from two MOT2D and CUHK03 datasets [39, 42]. We

extracted more than 500k of positive and negative sam-

ples from 2DMOT2015 and CUHK03. In case of MOT2D,
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Figure 9. Qualitative results on the Stanford Drone dataset [62]. The first row presents the tracking results of our method whereas the

second row presents the results of MDP+SF-mc [62]. The dashed circles illustrate ID switches in the previous method.

Tracker Tracking Mode MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag ↓ Hz ↑

SiameseCNN [38] Offline 29.0 71.2 8.5% 48.4% 5,160 37,798 639 1,316 52.8

CNNTCM [74] Offline 29.6 71.8 11.2% 44.0% 7,786 34,733 712 943 1.7

TSMLCDEnew [73] Offline 34.3 71.7 14.0% 39.4% 7,869 31,908 618 959 6.5

JointMC [29] Offline 35.6 71.9 23.2% 39.3% 10,580 28,508 457 969 0.6

TC ODAL [6] Online 15.1 70.5 3.20% 55.80% 12,970 38,538 637 1,716 1.7

RMOT [84] Online 18.6 69.6 5.30% 53.30% 12,473 36,835 684 1,282 7.9

SCEA [82] Online 29.1 71.1 8.9% 47.3% 6,060 36,912 604 1,182 6.8

MDP [78] Online 30.3 71.3 13.00% 38.40% 9,717 32,422 680 1,500 1.1

TDAM [83] Online 33.0 72.8 13.3% 39.1% 10,064 30,617 464 1,506 5.9

AMIR (ours) Online 37.6 71.7 15.8% 26.8% 7,933 29,397 1,026 2,024 1.0

Table 5. Tracking performance on the test set of the 2D MOT 2015 Benchmark with public detections.

Tracker Tracking Mode MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag ↓ Hz ↑

LINF1 [15] Offline 41 74.8 11.60% 51.30% 7,896 99,224 430 963 1.1

MHT DAM [33] Offline 42.9 76.6 13.60% 46.90% 5,668 97,919 499 659 0.8

JMC [81] Offline 46.3 75.7 15.50% 39.70% 6,373 90,914 657 1,114 0.8

NOMT [9] Offline 46.4 76.6 18.30% 41.40% 9,753 87,565 359 504 2.6

OVBT [7] Online 38.4 75.4 7.50% 47.30% 11,517 99,463 1,321 2,140 0.3

EAMTT pub [64] Online 38.8 75.1 7.90% 49.10% 8,114 102,452 965 1,657 11.8

oICF [32] Online 43.2 74.3 11.30% 48.50% 6,651 96,515 381 1,404 0.4

AMIR (ours) Online 47.2 75.8 14.0% 41.6% 2,681 92,856 774 1,675 1

Table 6. Tracking performance on the test set of the MOT16 Benchmark with public detections.

we use instances of the same target that occur in different

frames for positive pairs, and we use instances of different

targets across all frames for negative pairs. Network hyper-

parameters are chosen by cross validation. The mini-batch

size of 64, learning rate of 0.001, sequentially decreased

every 2 epochs by a factor 10 (for 20 epochs). We evaluate

our appearance model on CUHK03 re-identification bench-

mark [92]. Table 4 presents our results for Rank 1, Rank

5, and Rank 10 accuracies. Our method achieves 55.9 per-

cent of accuracy for Rank 1 which is competitive against

the state-of-the-art method (57.3%). When measuring the

re-identification rate for Rank 10, our appearance model

outperforms previous methods. This is a crucial indicator

for showing that our model can extract meaningful feature

representations for re-identification task.

5. Conclusions

We have presented a method that encodes dependencies

across multiple cues over a temporal window. Our learned

multi-cue representation is used to compute the similarity

scores in a tracking framework. We showed that by switch-

ing the existing state-of-the-art representation with our pro-

posed one, the tracking performance (measured as MOTA)

increases by 20 %. Consequently, our method ranks first

in existing benchmarks. In future work, we plan to run

our experiments on different tracking challenges such as

DukeMTMC [60] to empirically demonstrate performance

on longer occlusions. Moreover, we plan to use our data-

driven method to track any social animal such as ants, in

which their appearance and dynamics are quite different

from humans. It will be exciting to learn a representation

for such collective behavior and help researchers in biology

to get more insights in their field.
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