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Abstract

Pixel-level annotations are expensive and time-

consuming to obtain. Hence, weak supervision using only

image tags could have a significant impact in semantic

segmentation. Recent years have seen great progress in

weakly-supervised semantic segmentation, whether from

a single image or from videos. However, most existing

methods are designed to handle a single background class.

In practical applications, such as autonomous navigation,

it is often crucial to reason about multiple background

classes. In this paper, we introduce an approach to doing

so by making use of classifier heatmaps. We then develop

a two-stream deep architecture that jointly leverages

appearance and motion, and design a loss based on our

heatmaps to train it. Our experiments demonstrate the

benefits of our classifier heatmaps and of our two-stream

architecture on challenging urban scene datasets and

on the YouTube-Objects benchmark, where we obtain

state-of-the-art results.

1. Introduction

Video semantic segmentation, i.e., the task of assigning

a semantic label to every pixel in video frames, is crucial

for the success of many computer vision applications, such

as video summarization and autonomous navigation. In

this context, fully-supervised methods [25, 52, 47, 53, 22]

have made great progress, particularly with the advent of

deep learning. These methods, however, inherently rely

on having access to large amounts of training videos with

pixel-level ground-truth annotations in every frame. Unfor-

tunately, such annotations are highly time-consuming and

expensive to obtain, and generating realistic synthetic data

to obtain annotations [43, 42] is a challenging task in it-

self. While semi-supervised techniques [19, 54, 46] miti-

gate this issue by leveraging partial annotations, they still

require some pixel-level ground-truth.

Figure 1. Overview of our framework. Given only video-level

tags, our weakly-supervised video semantic segmentation net-

work jointly leverages classifier heatmaps and motion informa-

tion to model both multiple foreground classes and multiple back-

ground classes. This is in contrast with most methods that focus

on foreground classes only, thus being inapplicable to scenarios

where differentiating background classes is crucial, such as in au-

tonomous driving.

By contrast, weakly-supervised semantic segmentation

methods [16, 27, 63, 50, 58, 13, 15, 35, 45, 23, 36, 60,

2, 34] rely only on tags. When working with still im-

ages [45, 23, 36, 60, 2, 34], tags are typically assumed to be

available in each image, whereas for video-based segmenta-

tion [16, 27, 63, 50, 58, 13, 15, 35], tags correspond to entire

videos or video snippets. While recent years have seen great

progress in weakly-supervised semantic segmentation, most

existing methods, whether image- or video-based, have a

major drawback: They focus on foreground object classes

and treat the background as one single entity. However,

having detailed information about the different background

classes is crucial in many practical scenarios, such as au-

tonomous driving, where one needs to differentiate the road

from a grass field.

In this paper, we introduce an approach to weakly-

supervised video semantic segmentation that treats all

classes, foreground and background ones, equally (see

Fig 1). To this end, we propose to rely on class-dependent

heatmaps obtained from classifiers trained for image-level
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recognition, i.e., requiring no pixel-level annotations. These

classifier heatmaps provide us with valuable information

about the location of instances/regions of each class. We

therefore introduce a weakly-supervised loss function that

let us exploit them in a deep architecture.

In particular, we develop a two-stream deep network that

jointly leverages appearance and motion. Our network fuses

these two complementary sources of information in two dif-

ferent ways: A trainable early fusion, which puts in corre-

spondence the spatial and temporal information and learns

to combine it into a spatio-temporal stream, and a late fu-

sion further leveraging the valuable semantic information

of the spatial stream to merge it with the spatio-temporal

one for final prediction. Altogether, our approach consti-

tutes the first end-to-end framework for weakly-supervised

semantic segmentation to handle both multiple foreground

and background classes.

To the best of our knowledge, only two weakly-

supervised video semantic segmentation approaches [27,

64] can potentially handle multiple background classes.

However, [27] relies on a simple similarity measure be-

tween handcrafted features, and thus does not translate well

to complex scenes where multiple instances of the same

class have significantly different appearances. While [64]

relies on more robust, pre-trained deep learning features, it

exploits additional, pixel-wise annotations to train a fully-

convolutional network for scene/object classification. Fur-

thermore, none of these two methods offer an end-to-end

learning approach, which has proven key to the success of

many other computer vision tasks.

Our experiments demonstrate the benefits of our ap-

proach in several scenarios. First, it yields accurate seg-

mentations on challenging outdoor scenes, such as those de-

picted by the CamVid [4] and CityScapes [10] datasets, for

which methods modeling foreground classes only do not ap-

ply. Furthermore, it outperforms the state-of-the-art meth-

ods that, as us, rely only on video-level tags on the standard

YouTube Object [40] dataset.

2. Related Work

Over the years, many approaches have tackled the

problem of video semantic segmentation. In particu-

lar, much research has been done in the context of

fully-supervised semantic segmentation, including meth-

ods based on CNNs [47, 52, 22] and on graphical mod-

els [25, 26, 53]. Here, however, we focus the discussion

on the methods that do not require fully-annotated training

data, which is typically expensive to obtain.

In this context, semi-supervised approaches have been

investigated. In particular, [54, 19] proposed to propagate

pixel-level annotations provided in the first frame of the

sequence throughout the entire video. While this still re-

quires complete annotations in one frame per video, [46] re-
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Figure 2. Classifier heatmaps for some of the foreground and back-

ground classes of the CityScapes dataset. Note that these heatmaps

give a good indication of the location of foreground instances and

background regions.

lied on user scribbles to define foreground and background

regions. None of these methods, however, consider back-

ground classes. Furthermore, they still all make use of some

pixel-level annotations.

By contrast, weakly-supervised semantic segmentation

methods tackle the challenging scenario where only weak

annotations, e.g., tags, are given as labels. Much research

in this context has been done for still images [62, 61, 39,

56, 37, 57, 34, 45, 36, 23, 60, 59, 48, 38, 31]. In particu-

lar, most recent methods build on deep networks by making

use of objectness criteria [2], object proposals [38, 59, 41],

saliency maps [48, 60, 18, 31], localization cues [29, 23],

convolutional activations [45], motion cues [51] and con-

straints related to the objects [36, 34]. Since the basic net-

works have been pre-trained for object recognition, and thus

focus on foreground classes, these methods are inherently

unable to differentiate multiple background classes.

Similarly, most weakly-supervised video semantic seg-

mentation techniques also focus on modeling a single back-

ground class. In this context [16, 50] work in the even more

constrained scenario, where only two classes are consid-

ered: foreground vs. background. By contrast, to differen-

tiate multiple foreground classes, but still assuming a single

background, [35] relied on motion cues and [17] made use

of a huge amount of web-crawled data (4606 videos with

960,517 frames).

In the same setting of multiple foreground vs. sin-

gle background, several methods have proposed to rely on

additional supervision. For instance, [63] relied on the

CPMC [8] region detector, which has been trained from

pixel-level annotations, to segment foreground from back-

ground. In [58] and [15], object proposal methods trained

from pixel-level and bounding box annotations, respec-

tively, were employed. Similarly, [13] relied on an ob-

ject detector trained from bounding boxes. The method

of [55] utilized the FCN trained on PASCAL VOC in a

fully-supervised manner to generate initial object segments.

All the weakly-supervised approaches discussed above

assume to observe a single background class. In many

cases, such as autonomous navigation, however, it is crucial
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Figure 3. Proposed Network Structure. Our two-stream semantic segmentation network leverages both image and optical flow to extract

the features. These features are fused in two stages. An early, trainable fusion that puts in correspondence the spatial and temporal

information, and a late fusion that merges the resulting spatio-temporal stream with the appearance one for final prediction.

to differentiate the multiple background classes. To the best

of our knowledge, only two methods are able to handle this

scenario. In [27], a nearest-neighbor-based label transfer

technique was introduced, which relies on a simple distance

between handcrafted features. While this strategy would

work well for classes such as grass or sky in which ap-

pearance variations are limited, it translates poorly to more

challenging and complex scenes, such as urban ones, where

individual classes can depict a large range of appearances.

As a consequence, this method was only demonstrated on

simple scenes containing at most one or two instances of a

few classes. In [64], more advanced, deep learning features

were exploited. However, this method makes use of pixel-

level supervision to train an FCN to label pixels as either

scene vs. object, or multiple scene classes vs. object.

By contrast, we introduce a method that handles multi-

ple foreground and background classes, but only relies on

video-level tags. To this end, we introduce a loss func-

tion based on classifier heatmaps, and exploit it to train a

two-stream network jointly leveraging complementary spa-

tial and temporal information in an end-to-end manner.

3. Our Approach

In this section, we introduce our approach to weakly-

supervised video semantic segmentation. First, we intro-

duce the classifier heatmaps that allow us to model both

multiple foreground and background classes. We then intro-

duce our two-stream architecture, which jointly leverages

motion and appearance, and discuss our learning scheme,

including our loss based on the classifier heatmaps.

3.1. Classifier Heatmaps

One of the main challenges when working with tags only

for weakly-supervised semantic segmentation is that the an-

notations do not provide any information about the location

of the different classes. While mitigated in the presence of

only few foreground classes and a single background one,

this problem becomes highly prominent when dealing with

complex urban scenes containing many instances of each

foreground class and several background classes, such as

road, grass, buildings. Existing weakly-supervised meth-

ods are dedicated to handle multiple foreground objects, but

cannot handle multiple background ones, typically because

they inherently rely on object recognition networks, which

only tackle foreground classes. To address this, we propose

to extract class-specific heatmaps that localize the different

classes. Our goal here is to achieve this for both foreground

and background classes, and without requiring any pixel-

level or bounding box annotations.

Prior work has shown that ConvNets trained with a

classification loss can yield remarkable localization re-

sults [32, 65]. Hence, similarly, for foreground classes, we

make use of the VGG-16 network [49] trained on the stan-

dard 1000 ImageNet classes. Specifically, we transform the

VGG-16 model into a fully-convolutional network by con-

verting its fully-connected layers into convolutional ones,

while keeping the trained weights. In other words, the out-

put of the last layer of the transformed model becomes a

W × H × 1000 tensor, and passing an image through the

network yields a map showing the activation of each class

at each pixel in a low-resolution version of the input image.

In practice, we can then access the activations of the fore-

ground classes of interest by only considering a subset of

the 1000 ImageNet classes.

The standard 1000 ImageNet classes, however, do not

include background. To this end, we collected iconic back-

ground images by crawling the background classes on the

ImageNet website [12]. We then trained one-vs-all VGG-16

models (pre-trained on the standard 1000 ImageNet classes)

for these background classes and followed the same strategy

as for the foreground ones to obtain heatmaps. More details

are provided in section 4.1.

In Fig. 2, we show the heatmaps for some of the fore-

ground and background classes of the CityScapes [10]

dataset. Note that, while sometimes a bit coarse, the

heatmaps still provide valuable information about the loca-

tion of these classes. In the next section, we introduce our
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two-stream network that jointly leverages appearance and

motion, and show how our heatmaps can be used to train it.

3.2. Weaklysupervised Twostream Network

Videos have two intrinsic features: Appearance and Mo-

tion. To leverage these two sources of information, inspired

by the approach of [14] for action recognition, we develop

the two-stream network depicted in Fig. 3. One stream takes

an RGB image as input, and the other optical flow. Com-

pared to taking a series of images as input, explicitly us-

ing optical flow to represent motion has the advantage of

relieving the network from having to estimate motion im-

plicitly. Below, we discuss how we encode optical flow and

describe our fusion strategy. We then introduce our weakly-

supervised learning framework.

Encoding Optical Flow. Dense optical flow [6] can be

represented as a displacement vector field between a pair

of frames at time t and t + 1. The horizontal and vertical

components of the displacement vector field can be thought

of as image channels, which makes them well suited to act

as input to a convolutional network, such as the one shown

in the upper stream of the model in Fig. 3. To represent

the motion across a video clip, we stack the flow channels

corresponding to both directions (vertical and horizontal) of

L consecutive frames, in range (t− ⌊L
2
⌋, t+ ⌊L

2
⌋], to form

a total of 2L input channels.

Fusing Appearance and Motion. As can be seen in

Fig. 3, the appearance and motion streams both consist of

a series of convolutional layers, following the VGG-16 ar-

chitecture [49]. The outputs of these streams are then fused

at two different levels. In particular, fusion occurs after the

fifth convolutional layer (Conv5-3) of each stream, which

has been shown to contain a rich semantic representation

of the input [45, 3]. The first, early fusion puts in cor-

respondence the activations of both streams corresponding

to the same pixel location. As [14], instead of performing

sum- or max-fusion, we rely on a convolutional fusion strat-

egy. This gives more flexibility to the network and allows

it to learn which channels from the motion and appearance

streams should be combined together. The second, late fu-

sion of our network merges the spatio-temporal stream re-

sulting from early fusion with the appearance stream. This

fusion is achieved at the point where each stream predicts

class scores. The rationale behind this is that the appearance

stream provides valuable semantic information on its own,

and should thus be propagated to the end of the network.

The resulting scores are then passed through a deconvolu-

tion layer to obtain the final, full-resolution, semantic map.

3.2.1 Weakly-Supervised Learning

We now introduce our learning algorithm for weakly-

supervised semantic segmentation. We first introduce a sim-

ple loss based on image tags only, and then show how we

can incorporate the localization information of our classifier

heatmaps to the loss function.

Intuitively, given image tags, one would like to encour-

age the image pixels to be labeled as one of the classes that

are observed in the image, while preventing them to be as-

signed to unobserved classes. Note that this assumes that

the full set of tags available cover all the classes depicted

in the image, which is a common assumption in weakly-

supervised semantic segmentation [36, 34, 37, 2, 23, 45].

Formally, given an input video V , let L be the set of tags

associated to V and L̄ the class labels that are not among

the tags. Furthermore, let us denote by ski,j(θ) the score

produced by our network with parameters θ for the pixel at

location (i, j) and for class k, 0 ≤ k < N , in the current

input video frame I . Note that, in general, we will omit the

explicit dependency of the variables on the network param-

eters. Finally, let Sk
i,j be the probability of class k obtained

after a softmax layer, i.e.,

Sk
i,j =

exp(ski,j)
∑N

c=1
exp(sci,j)

. (1)

Encoding the above-mentioned intuition can then simply

be achieved by designing a loss of the form

Ltag = −
1

|L|

∑

k∈L

logSk −
1

|L̄|

∑

k∈L̄

log(1− Sk) , (2)

where Sk represents a candidate score for each class in the

input frame. In short, the first term in Eq. 2 expresses the

fact that the present classes should be in the input frame,

while the second term penalizes the pixels that have high

probabilities for the absent classes. In practice, instead of

computing Sk as the maximum probability (as previously

used in [37, 2]) for class k over all pixels in the input frame,

we make use of the convex Log-Sum-Exp (LSE) approx-

imation of the maximum (as previously used in [38, 45]),

which can be written as

S̃k =
1

r
log





1

|I|

∑

i,j∈I

exp(rSk
i,j)



 , (3)

where |I| denotes the total number of pixels in the input

frame and r is a parameter allowing this function to behave

in a range between the maximum and the average. In prac-

tice, following [38, 45], we set r to 5.

The loss of Eq. 2 does not rely on any localization cues.

As a consequence, minimizing it will typically yield poor

object localization accuracy. To overcome this issue, we

propose to make use of the classifier heatmaps introduced

in Section 3.1. To this end, we first generate binary masks

Bk for each class k. These binary masks are obtained by
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Table 1. Background classes used to train our classifiers (Sec-

tion 3.1) for the CityScapes and CamVid datasets.

Class

ro
ad

si
de

w
al

k

bu
il
di

ng

ve
ge

ta
ti
on

te
rr

ai
n

sk
y

#Samples 126 306 670 176 190 180

setting to 1 the values that are above 20% of the maximum

value in the heatmap of class k, and to 0 the other ones.

Our goal then is to encourage the model to have, for each

class, high probability at pixels inside the corresponding bi-

nary mask. To this end, we introduce the loss function

Lheatmap = −
1

|L|

∑

k∈L

1

|Bk|

∑

i,j∈Bk

logSk
i,j , (4)

which we use in conjunction with the loss of Eq. 2.

While this heatmap-based loss significantly helps lo-

calizing the different classes, the heatmaps typically only

roughly match the class boundaries. To overcome this, we

follow the CRF-based strategy of [23]. Specifically, we con-

struct a fully-connected CRF, with unary potentials corre-

sponding to the probability scores predicted by our segmen-

tation network, and image-dependent Gaussian pairwise po-

tentials [24]. We then add another term to the loss function,

corresponding to the mean KL-divergence between the out-

puts of the network and the outputs of the fully connected

CRF. This term encourages the network prediction to coin-

cide with the CRF output, which produces segmentations

that better respect the image boundaries.

Altogether, our network can handle multiple foreground

and background classes, and, as discussed in more detail in

Section 4.2, can be trained in an end-to-end fashion.

4. Experiments

In this section, we first describe the datasets used in

our experiments and provide details about our learning and

inference procedures. We then present the results of our

model and compare it to state-of-the-art weakly-supervised

semantic segmentation methods.

4.1. Datasets

To demonstrate the effectiveness of our approach, and

evaluate the different components of our model, we use the

challenging CityScapes [10] and CamVid [4] road scene

datasets. Furthermore, to compare to the state-of-the-art,

we make use of YouTube-Objects [40], which most weakly-

supervised video semantic segmentation methods report on.

Note that, although different annotation types are provided

in each of these datasets, we only make use of tags, indicat-

ing which classes are present in each video clip.

CityScapes: Cityscapes [10] is a recently released large-

scale dataset, containing high quality pixel-level annota-

tions for 5000 images collected in street scenes from 50

different cities. The images of Cityscapes have resolution

2048×1024, making it a challenge to train very deep net-

works with limited GPU memory. We therefore down-

sampled the images by a factor of 2. The annotations

correspond to the 20th frame of 30-frame video snip-

pets. We then extracted optical flow from 10 consecu-

tive frames, from the 16th to the 25th, and used the RGB

frames and image-level tags in conjunction with these opti-

cal flows to train our model. We made use of the standard

training/validation/test partitions, containing 2975,500, and

1525 images, respectively. Following the standard evalua-

tion protocol [10], we used 19 semantic labels (belonging

to 7 super categories: ground, construction, object, nature,

sky, human, and vehicle) for evaluation (the void label is

not considered for evaluation).

CamVid: CamVid dataset consists of over 10 minutes

of high quality 30 Hz footage. The videos are captured at

960 × 720 resolution with a camera mounted inside a car.

Three of the four sequences were shot in daylight, and the

fourth one was captured at dusk. This dataset contains 32

categories. In our experiments, following [5, 25, 1], we used

a subset of 11 classes. The dataset is split into 367 train-

ing, 101 validation and 233 test images. As for CityScapes,

ground-truth labels are provided every 30 frames. We ex-

tracted optical flow in 10 frames around the labeled ones,

and used them with the RGB frames for training.

Iconic Data: The background classes and number of

samples per class, extracted from the background images

of the ImageNet website, as mentioned in Section 3.1, and

used to train our background classifiers for CityScapes and

CamVid are given in Table 1. Note that, in the standard

1000 classes of ImageNet, there is no general person class,

which appears in both datasets. To handle this class, we

therefore proceeded in a similar manner as for the back-

ground classes, but making use of a small subset of the sam-

ples (1300 samples) from [11, 33].

YouTube-Objects: The YouTube-Objects dataset is

composed of videos collected from YouTube by querying

for the names of 10 object classes of the PASCAL VOC

Challenge. It contains between 9 and 24 videos per class.

The duration of each video ranges from 30 seconds to 3

minutes. The videos are weakly annotated, with each video

containing at least one object of the corresponding queried

class. In the dataset, the videos are separated into shots. For

our experiments, we randomly extracted 6-8 frames from

each shot to obtain a total of 13800 frames out of 700,000

ones available in the dataset. We again made use of snippets

of 10 frames to encode optical flow.

For evaluation, we used the subset of images with pixel-

level annotations provided by [20]. Note that there is no

overlap between this subset and the shots from which we

extracted the training data.
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4.2. Implementation Details

To train our two-stream network, introduced in Sec-

tion 3.2, we relied on stochastic gradient descent with a

learning rate starting at 10−5 with a decrease factor of 10
every 10k iterations, a momentum of 0.9, a weight decay

of 0.0005, and mini-batches of size 1. Similarly to recent

weakly-supervised segmentation methods [45, 2, 37, 34,

23], the weights of our two-stream network were initialized

with those of the 16-layer VGG classifier [49] pre-trained

for 1000-way classification on the ILSVRC 2012 [44].

Hence, for the last convolutional layer, we used the weights

corresponding to the classes shared by the datasets used

here and in ILSVRC. For the background classes, we ini-

tialized the weights with zero-mean Gaussian noise with a

standard deviation of 0.1. At inference time, given only the

test image and optical flow, the network generates a dense

prediction as a complete semantic segmentation map.

For both CamVid and CityScapes, we used the GPU im-

plementation of [6] to generate the stack of optical flow for

each snippet of length 10. For YouTube-Objects, we used

the optical flow information pre-computed by [7]. Note that

neither of these methods relies on any learning strategy, and

thus they can be directly applied to our input images. We

used C++ and Python (the Caffe framework [21]) for our

implementation. As other methods [23, 34, 45, 36, 60], we

further applied a dense CRF [24] to refine this initial seg-

mentation. To this end, we used the default CRF parameter

values as in the original paper [24].

4.3. Experimental Results

Below, we first evaluate the different components of our

method on the validation set of the two challenging road

scene datasets. We then provide results of our complete

framework on their respective test sets. Finally, we compare

our approach to state-of-the-art weakly-supervised segmen-

tation methods on YouTube-Objects.

4.3.1 Ablation Study

To evaluate the influence of the different components of

our approach, we designed the following baselines. No-

Heatmap corresponds to a single-stream model exploiting

the RGB image only, without exploiting our heatmap-based

loss of Eq. 4, i.e., using the loss of Eq. 2 and the CRF loss.

Foreground-Heatmap consists of a similar single stream

network, additionally using the loss of Eq. 4, but only for

the foreground classes extracted from the VGG-16 network

pre-trained on ILSVRC. Our-Heatmap corresponds to us-

ing all our heatmaps, i.e., for foreground and background

classes, with a single-stream network. Finally, Ours corre-

sponds to our two-stream network with all the loss terms.

We report the results of these different models in Ta-

ble 2 for Cityscapes and in Table 3 for CamVid. In par-

ticular, we report the mean Intersection over Union (mIoU),

Table 2. Influence of our heatmaps and of optical flow. These re-

sults were obtained using the CityScapes validation set.

Setup Mean IOU Mean Class Acc. Global Acc.

No-Heatmap 8.4% 18.8% 20.9%

ImageNet-Heatmap 11.4% 33.2% 22.0%

Our-Heatmap 20.6% 40.6% 54.0%

Our Two-Stream 23.6% 40.3% 63.9%

Table 3. Influence of our heatmaps and of optical flow. These re-

sults were obtained using the CamVid validation set.

Setup Mean IOU Mean Class Acc. Global Acc.

No-Heatmap 10.2% 24.9% 19.5%

ImageNet-Heatmap 11.0% 25.8% 28.9%

Our-Heatmap 29.5% 49.7% 62.6%

Our Two-Stream 31.1% 50.2% 67.4%

the average per-class accuracy and global accuracy. The

general behavior is the same for both datasets: Exploit-

ing heatmaps for foreground class improves over not us-

ing heatmaps at all. However, also relying on heatmaps

for background classes gives a significant boost in perfor-

mance. Finally, jointly leveraging appearance and motion

in our two-stream network further improves segmentation

accuracy. As can be observed in Table 4, which provides the

per-class intersection over union for CamVid, our heatmaps

and our two-stream network add significant improvement

to the baselines for most of the classes, especially in back-

ground classes, e.g., sky and road.

Furthermore, we evaluated the influence of the CRF on

our results. On CityScapes, our two-stream network with-

out the CRF loss achieves 20.3% mIOU vs 23.6% with the

CRF, thus showing that the CRF helps, but is not the key to

our results.

Regarding runtimes, the average inference time of our

method per image on CityScapes given optical flow is 0.56s

without CRF inference as post-processing and 3.6s with

CRF inference. This matches the runtimes reported in other

papers that worked on CityScapes, although in the fully-

supervised setting, such as [28] (0.5s without CRF) and [9]

(4s with CRF).

4.3.2 Results on Test Sets

We then evaluated our complete approach on the test sets of

CamVid and CityScapes. In Table 5 and Table 6, we com-

pare the results of our weakly-supervised approach to those

of fully-supervised methods. Note that, while these meth-

ods make use of much stronger supervision during train-

ing, thus making the comparison unfair to us, the gap in ac-

curacy with our method, especially for background classes

(sky, building, road and tree) is remarkably low. This fur-

ther illustrates the strength of our approach, which, despite

using only tags, yields good segmentation accuracy.

Qualitative results of our two-stream network on samples
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Table 4. Influence of our heatmaps and of optical flow. Per-class IoU for the CamVid validation set.

Setup

b
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sk
y

ca
r

si
g
n

ro
ad

p
ed

es
tr

ia
n

fe
n
ce

p
o
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si
d
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al
k

cy
cl
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t

No-HeatMap 37.0 33.0 0.0 28.6 7.8 4.6 0.0 0.1 0.7 0.4 0

ImageNet-HeatMap 29.8 0.0 0.1 14.1 7.5 53.4 4.9 4.9 0.2 0.0 6.2

Our-HeatMap 54.1 76.1 86.3 19.4 6.6 56.3 9.0 0.9 0.5 6.0 9.0

Our Two-Stream 63.4 72.2 84.2 19.3 8.9 60.6 14.3 0.0 0.0 4.1 15.2

Table 5. Comparison to fully-supervised semantic segmentation methods on the CamVid test set. While we use the weakest level of

supervision, the difference to fully supervised methods, especially in background classes (sky, building, road and tree) is remarkably low.
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mIOU

SegNet [1] pixel level annotation 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4

Liu and He [26] pixel level annotation 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 47.2

Ours image-level tags 58.9 46.4 83.8 26.5 12.0 64.4 8.0 11.3 3.1 1.1 11.0 29.7

Table 6. Comparison to fully-supervised semantic segmentation methods on the CityScapes test set. As on CamVid, while we use the

weakest level of supervision, the gap with fully supervised methods is quite low, particularly on background classes.
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FCN-8s [28] pixel-level annotation 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3 85.7

Deeplab [9] pixel-level annotation 97.3 77.6 87.7 43.6 40.4 29.7 44.5 55.4 89.4 67.0 92.7 71.2 49.4 91.4 48.7 56.7 49.1 47.9 58.6 63.1 81.2

SegNet [1] pixel-level annotation 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 56.9 79.1

Ours image-level tags 78.5 2.7 45.0 6.6 9.8 5.4 0.7 2.1 63.3 22.0 71.5 17.6 8.0 43.6 16.0 15.5 33.0 17.9 13.6 24.9 47.2

Table 7. Comparison to the state-of-the-art on the YouTube-Objects dataset. We report the per-class and mean IoU. Note that our two-stream

network significantly outperforms the state-of-the-art baselines.

Method aeroplane bird boat car cat cow dog horse motorbike train mIOU

Papazoglou et al. [35] 67.4 62.5 37.8 67.0 43.5 32.7 48.9 31.3 33.1 43.4 46.8

Tang et al. [50] 17.8 19.8 22.5 38.3 23.6 26.8 23.7 14.0 12.5 40.4 23.9

Ochs et al. [30] 13.7 12.2 10.8 23.7 18.6 16.3 18.0 11.5 10.6 19.6 15.5

Ours 67.6 72.3 58.1 60.1 59.8 42.6 60.1 46.3 53.6 12.4 53.3

from CityScapes and CamVid are also depicted in Fig. 4.

4.3.3 Comparison to the State-of-the-Art

To further show the effectiveness of our method, we

compare it with other weakly-supervised video semantic

segmentation baselines on the standard YouTube-Objects

dataset. Note that, here, all the classes correspond to

foreground objects, with a single background class, which

makes this dataset a less attractive candidate for our method.

This comparison, however, lets us evaluate the performance

of our two-stream network with respect to the state-of-the-

art in weakly-supervised video semantic segmentation. As

shown in Table 7, our results significantly outperform the

state-of-the-art on this dataset, thus again showing the ben-

efits of our approach (see Fig. 4 for qualitative results).

Note that other approaches that make use of additional

supervision, such as object detectors trained from pixel-

level [63] or bounding box [13] annotations, have also re-

ported results on this dataset. While we only exploit tags,

our approach yields results comparable to those of these

methods (53.3% for our method versus 54.1% for [63] and

55.8% for [13]).

5. Conclusion

In this paper, we have proposed the first weakly-

supervised video semantic segmentation approach that con-

siders both multiple foreground and background classes. To

this end, we have introduced a two-stream network that

leverages optical-flow and RGB image, trained using a loss

based on classifier heatmaps. Our experiments have demon-

strated the benefits of using such heatmaps and of exploiting

optical flow on challenging urban datasets. Furthermore,

our two-stream network has also outperformed the state-

of-the-art weakly-supervised video semantic segmentation

methods on the standard YouTube-Object benchmark. In

the future, we plan to investigate other fusion strategies

within our two-stream formalism. Moreover, we will aim

to leverage depth information from stereo images, which

does not require any additional annotations.
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CityScapes Dataset

CamVid Dataset

YouTube-Objects Dataset

Figure 4. Qualitative results on CityScapes, CamVid, and YouTube-Objects. Note that for each dataset, from top to bottom, there is the

RGB frame, Ground-truth and the prediction of our two-stream network.
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