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Abstract

Interestingly, shape of the high-altitude clouds serves as

a beacon for weather forecasting, so its detection is of vital

importance. Besides these clouds often cause hindrance in

an endeavor of satellites to inspect our world. Even thin

clouds produce the undesired superposition of visual in-

formation, whose decomposition into the clear background

and cloudy layer using a single satellite image is a highly

ill-posed problem. In this work, we derive sophisticated im-

age priors by thoroughly analyzing the properties of high-

altitude clouds and geological images; and formulate a

non-convex optimization scheme, which simultaneously de-

tects and removes the clouds within a few seconds. Ex-

perimental results on real world RGB images demonstrate

that the proposed method outperforms the other competitive

methods by retaining the comprehensive background details

and producing the precise shape of the cloudy layer.

1. Introduction

Artificial satellites are the earth watchers! They inspect

the world through electronic eyes from hundreds of kilo-

meters above surface of the earth and beam the topologi-

cal, geological and climatic information to a base station.

However high altitude clouds, which cover around 70%
area of the tropical regions [2], often cause hindrance in

their endeavor. Clouds camouflage the vital image details

by altering their color and brightness, thereby resulting in

blurring and contrast reduction among the earthly objects.

Thus cloud cover causes significant loss of satellite visual

data [12, 29, 57, 74], which creates difficulty for cartogra-

phy, water body identification [76], land-scape ecological

change detection [32], archeology, geological scene analy-

sis [8, 19] and agricultural assessment [61].

Furthermore the shape of these clouds guides the

weather forecasting [3, 43, 64, 68], for example, streak like

rippling cloud patterns indicate the high-altitude climate in-

stability and signals the approach of poorer weather [3, 43].

So the removal as well as detection of cloudy layer from an

aerial image (e.g. Figure 1) has a vital importance.

Background layer ሺܤሻCloudy layer ሺܥሻ
Aerial image contaminated
with high-altitude clouds ሺ�ሻ Cloud Detection Cloud Removal

Figure 1: Cloud detection and removal using our method.

Cloud removal is essentially a background reconstruc-

tion whereas cloud detection is the background removal

process, so they are not mutually exclusive; and the prior

work on this affair can be grouped into two categories: (i)
multimodal approaches use various modes of input data like

multispectral or multitemporal images; (ii) unimodal meth-

ods rely on a single type of input data or an optical image.

Multimodal. Multispectral images are captured by mul-

tiple sensors, each sensitive to a selective wavelength which

acquires multiple interpretations of the same scene at a

given time instant using diverse spectral bands [25]. This

type of methods remove clouds by fusing complementary

information from different spectral images [53, 54, 62, 75].

Multitemporal approaches [11, 70, 79, 83] use both tempo-

ral and spatial coherence [38], so they have better ability to

cope with thick and vast clouds. They assume that the land

cover change insignificantly over a short period [25], so a

long revisiting period of satellite may become a bottleneck

in their performance [73]. Use of both multispectral and

multitemporal data helps to improve the cloud removal per-

formance [21, 35, 46, 59] but suffers in cloud detection [69]

due to the presence of a cloud variability in temporal im-

ages. Clouds appear in almost all bands of multispectral im-

ages [69]; for example, high-altitude clouds restrict passage

of the most of infrared light [39] thereby creating a void in

infrared band which in turn attributed to the presence of a

cloud in the infrared image; so cloud removal using mul-

timodal input data is still a challenging issue. Moreover

multimodal data are expensive, prone to a mode failure and

not ubiquitous, which puts limit on their wide applicability.
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Unimodal. Missing pixel interpolation [58, 72], image

inpainting [26, 42, 44, 80] and image enhancement or noise

removal [10, 31, 51, 52, 84] strategies are commonly used

for a single image thin cloud removal. Missing regions are

synthesized by propagating the nearby texture, color and

geometrical traits inside those regions. Utilizing multiple

modes, the regions can be filled with the retrieved spectro-

geometrical information [42]. Efficiency of these region

substitution based methods relies on precise image registra-

tion, hue adjustment and presence of smooth or clutter-less

background in aerial images. They yield visually plausi-

ble results but the absence of restoring information of the

cloud contaminated pixels makes them inapt for inferen-

tial analysis in the remote sensing [38]. Image-based at-

mospheric artifacts correction methods like haze or fog re-

moval [18, 27, 41, 82] treat all pixels equally and can effec-

tively remove the thin clouds spread over an entire image.

Thus they assume uniform distribution of haze and noise

over the image plane. However high-altitude aerial scan-

ners have large angular view. As variety of clouds may si-

multaneously exist in an image, it invalidates their assump-

tions. The clouds differ from haze, fog and smoke, mainly

in texture, size, shape, unevenness and concentration of at-

mospheric particles [40, 78]. Alternatively model based

methods [37] parametrize the clouds and ground structures

which can subsume the cloud peculiarities but they require

a lot of input data for refining the model.

Detection. Cloud mask detection is essentially an im-

age segmentation problem [81], whereas precise cloud layer

(i.e. including cloud feathery structure) recovery is more

challenging task as aerial images have both bright non-

cloud regions and semitransparent (less bright) cloud pix-

els. The recovery of accurate underlying cloud layer em-

powers automatic cloud classification methods, which assist

in regional climate analysis by inspecting the cloud appear-

ance [43, 68]. Several methods have been developed just

for cloud detection using multispectral [20, 60], special ap-

paratus [22] or a single color image [45, 81].

Contributions. Thin transparent cloud detection is more

challenging than removal task whereas thick translucent

cloud removal is more arduous than its detection. So to ad-

dress the demanding problem of simultaneous cloud detec-

tion and removal from a single image; we firstly, analyze the

comprehensive properties of high-altitude clouds and ge-

ological images; secondly, derive sophisticated image pri-

ors (e.g. sparse gradient prior with online estimation of im-

age statistical properties, weighted map prior engrafted with

cloud properties) and; thirdly, embed all this domain knowl-

edge in a unified non-convex optimization framework. To

the best of our knowledge, the proposed approach is the first

optimization based scheme for simultaneous cloud detec-

tion and removal. We have constructed a new real world

aerial image database to extensively verify its effectiveness.
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Figure 2: Aerial image formation and degradation model.

2. Our Approach

Considering the physical model for cloud distortion pro-

cess [47] as shown in Figure 2, an aerial image I having

total N pixels can be expressed at each pixel i as,

(I)i = a(r)i(t)iL+ (1− (t)i)L, (1)

where L is the intensity of incident solar radiation hav-

ing attenuation coefficient a, the ground object reflectance

and cloud transmittance are given as r and t respec-

tively (0≤a, r, t≤ 1). The signal reflected by earthly back-

ground a(r)iL, subsequently passes through cloud and be-

comes a(r)i(t)iL. High-altitude clouds have low thickness

(sec.2.2), so t is high. Thus we can simplify the model (1)

as, I=B+C, by considering first term as an earthly back-

ground layer B and second as a cloudy layer C. This layer

separation problem is highly ill-posed, as two unknowns B

and C each of N pixels need to discovered from a single

image I i.e. unknowns are twice the measurements. We ad-

dress this ill-posed problem by enforcing the different priors

on each latent layer in an optimization framework.

2.1. Aerial Image Gradient Statistics

The research in natural image statistics indicates that

typical real-world images obey sparse spatial gradient dis-

tributions [34, 65]. Similarly, we design our prior on back-

ground layer B as sparse gradients, but improve further by

tunning it to the detailed statistics of aerial image gradients.

Figure 3 shows typical cloud free aerial images (layer B), a

high altitude (Cirrus [56]) cloud image (layer C) and their

respective gradient distributions. The distribution for B can

be modeled as a generalized Laplace distribution like,

P (B) =
∏

i∈I

1

w1
exp



−
1

σ1

∑

∂j∈JB

|(∂j ∗B)i|
α



 , (2)

where i is the pixel index ∈ I = {1, · · · , N}, ∗ is the con-

volution operator, w1 is a normalizing weight, σ1 is a scale

parameter, and ∂j denotes the derivative filters belonging to

the set JB . We used JB = {[1,−1], [1,−1]T } in our im-

plementation. The power α is a parameter within [0.0, 1.0].
If we let α=1 then the energy term in (2) will reduce to the
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(a) Mountain (b) Night city (c) Ocean

(d) Outskirts (e) Farmland (f) Cirrus clouds

We set empirically�� = Ͳ.1 (sec.2.3).��
0.1-0.1

(g) Empirical and estimated gradient statistics for various images

Figure 3: Aerial image statistics: (a) to (e) show typical geological images scanned by satellites; (f) portrays high-altitude

(Cirrus [56]) clouds captured from the ground level; their empirical and estimated (via (7)) gradient statistics are given in (g).

ℓ1-norm of gradients (a.k.a. total variation (TV) regular-

ization [9, 14]), which is convex function and convenient to

optimize using off-the-shelf solvers [4, 7]. However empiri-

cally it is evident that the gradient statistics for various kinds

of aerial images (few are shown in Figure 3a to 3e) obeys

strictly hyper-Laplacian (α<1) distribution and there is no

unique α for all aerial images. Flat terrains (e.g. dessert,

sea, grass land etc.) demand high α∈([0.8, 0.9], where as

cluttered regions (e.g. metropolis, mountain etc.) urge low

α∈([0.5, 0.6]. So instead of specifying α a priori, it is nec-

essary to infer it from a given data. But initially the layer

B is latent and we only have access to input image I . How

can we infer gradient statistical properties (α) for B from

I? (see the section 2.3).

2.2. High Altitude Cloud Properties

High altitude clouds (having three main genera: Cirrus,

Cirrocumulus and Cirrostratus) are composed of tiny ice

crystals [56]. So they reflect around 9% of the incoming

sunlight and prevent almost 50% of the outgoing infrared

radiation from earth [39], which creates obstruction in an

aerial imaging. They often produce hair-like filaments or

wispy strands stretched across several thousand kilometers

in the sky, but only a few kilometers deep [6, 17]. So these

clouds appear translucent, pale, thin and are furnished with

milky sheen or striated sheet [15, 56].

The cloud layer C does not have sharp or high magnitude

gradients. Its gradient distribution falls quickly and thereby

rendering very short tail, which can be modeled by narrow

Gaussian distribution as in Figure 3g, i.e. with a small stan-

dard deviation σ2 the Gaussian falls quickly and given as,

P (C) =
∏

i∈I

1

w2
exp



−
1

σ2
2

∑

∂j∈JC

‖(∂j ∗ C)i‖
2



 , (3)

where w2 is a normalizing weight and we have used second

order derivative filters in set JC = {[1,−2, 1], [1,−2, 1]T }.

Above properties also indicate that the cloud layer C

is not uniform and may not span the entire image plane.

So the construction of spatial cloud or non-cloud confi-

dence map will help us to boost the layer separation pro-

cess by imposing additional prior on one of the latent lay-

ers. Cloud regions show low saturation component in HSV

color space [63]. It is statistically observed that the cloud

pixels distribute linearly and closely parallel to the cross di-

agonal of RGB cube [36, 49]. Let (Irgb)i be the RGB color

triplet (3 dimensional vector) at pixel i, (Irgb)i be the mean

of its RGB components; and S be saturation of I then we

define the cloud confidence map for each of its N pixels as,

(MC)i=
1

w3
exp

(

−σ3(S)i−σ4

∣

∣

∣||(Irgb)i||
2−(Irgb)

2
i

∣

∣

∣

)

, (4)

where σ3, σ4 are positive scalars and w3 is normalizing

weight such that (MC)i≤1. Whereas non-cloud or back-

ground confidence map is (MB)i = 1 − (MC)i. So while

separating the layers, we impose the soft penalty for intru-

sion of C in non-cloud regions as,

γ

2
‖MB⊙C‖

2
, (5)

where γ is a scalar parameter controlling the importance of

penalty term and ⊙ denotes element-wise multiplication.

2.3. Estimating Gradient Statistics for Latent Layer

As C lacks high magnitude gradients and has very short

tail gradient distribution (sec. 2.2), we can infer statistics for

B (i.e. α) from I by considering only high magnitude gradi-

ents or outlying tail regions (>|xo|) as shown in Figure 3g.

Let |JB | be the cardinality of set JB ,

x =
1

|JB |

∑

∂j∈JB

(∂j ∗ I), (6)

P (x) be the histogram of (6) and considering model (shift-

ing) parameter as b, we estimate α = α̂ by solving the con-
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10.54 dB 6.72 dB 10.44 dB 12.62 dB 13.23 dB ←PSNR [30]

0.6074 0.2336 0.7034 0.8019 0.8515 ←SSIM [30]

(a) Synthetic input (b) No constraints (c) High sparsity (d) Optimal sparsity (e) Full optimization (f) Ground truth

(α 6=0, γ 6=0, ignoring (α=0.6 by (7) but use (using estimated α= (using α=0.6 via (7)

the constraints in (8)) α=0.2, γ=0 in (8)) 0.6 by (7),γ=0 in (8)) and γ 6=0 in (8))

Figure 4: Example showing importance of the different optimization terms in (8) for cloud removal. (b) shows that constraints

in (8) are necessary to maintain the sanity of a solution by limiting it within a sensible bound. Highly sparse gradient prior

is not always helpful as shown in (c), however by using domain knowledge (sec.2.1, 2.3) we can enforce the optimal sparsity

and thereby improving the solution to (d). The prior (5) derived via analysing high-altitude cloud properties helps to boost

the performance to (e). PSNR and SSIM are derived after one to one comparing (a) to (e) images with the ground truth in (f).

strained least squares optimization (using [13]) as follows,

α̂ = argmin
α

∥

∥ log(P (x))− |x|α − b
∥

∥

2

subject to |x| ≥ |xo| and 0 < α < 1. (7)

2.4. Optimization for Latent Layers

The latent layers can be separated by maximizing the

joint probability P (B,C), which is equivalent to minimiz-

ing − logP (B,C). Similar to [77] assuming the two lay-

ers are independent, thus their gradients will also be inde-

pendent (i.e. P (B,C)=P (B)P (C)). Background should

be non-negative (0≤(B)i) and cannot be more than the ac-

tual image ((B)i≤(I)i). Now by abusing the notations as

(∂j∗X)i=D
j
iX and ∂j∈JX≡j∈JX ; substituting C=I−B

in (3) and (5); and after integrating the weights (σ1, σ2) as-

sociated with (2) and (3) together as a single parameter λ,

we formulate the energy minimization problem as,

min
B

∑

i∈I







∑

j∈JB

|Dj
iB|

α +
∑

j∈JC

λ

2

∥

∥

∥D
j
iB −D

j
i I
∥

∥

∥

2







+
γ

2
‖MB⊙(B − I)‖2, s.t. 0≤(B)i≤(I)i. (8)

In (8), α is given by (7). As α<1, (8) is non-convex, so we

use half-quadratic splitting procedure [23, 33, 50] for find-

ing its solution. For casting (8) into half-quadratic splitting

framework, we have to make its objective function separa-

ble. So introducing auxiliary variables y
j
i at each pixel, we

can split the cost function in (8) as,

min
B,yj

∑

i∈I

∑

j∈JB

{

|yji |
α +

β

2

(

D
j
iB − y

j
i

)2
}

+ (9)

∑

i∈I

∑

j∈JC

λ

2

∥

∥

∥D
j
iB −D

j
i I
∥

∥

∥

2

+
γ

2
‖MB⊙(B − I)‖2 ,

where the positive weight β monotonically increases with

each iteration and as β→∞, (9) gets closer to the cost func-

tion in (8). Thus the optimization problem (8) is solved

iteratively like: for a fixed β, we solve (9) by alternating

between updating yj and recovering B while imposing the

constraints stated in (8) at the end of every iteration t. Fig-

ure 7 shows the effect of different initial values of β, vari-

ation of the costs in (8), (9), how they converge as β in-

creases with t and how the clouds look like as optimization

progresses; whereas Figure 4 analyzes in detail the impor-

tance of various terms in the objective function of (8) for

cloud removal on a synthetic input.

Updating-y. Once B is recovered at iteration t then for

a fixed Bt, y
j can be updated for each pixel as,

y
j
t+1 = argmin

yj

{

|yj |α +
β

2
(yj −D

j
iBt)

2

}

. (10)

As this is a single variable optimization, it can be quickly

solved by using a lookup table (LUT) [33], which maps the

values from D
j
iBt to yj . We fill the LUT by generating 104

different gradient values between −0.5 to 0.5 (this range is

determined from Figure 3g), for specified α and β values.

Required value is interpolated if it is missing from the LUT.

Recovering-B. With fixed y
j
t , (9) becomes quadratic in

B, which can simply be solved by differentiating and setting

it to 0. We further apply 2D FFT F to quickly recover B as,

Qt = λ
∑

j∈JC

F(Dj)⊙F(Dj)⊙F(I) + β
∑

j∈JB

F(Dj)⊙F(yjt )

R = λ
∑

j∈JC

F(Dj)⊙F(Dj) + β
∑

j∈JB

F(Dj)⊙F(Dj),

Bt = F
−1

(

Qt + γF(MT
B⊙MB⊙I)

R+ γF(MT
B⊙MB) + ǫ

)

, (11)
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Algorithm 1 Cloud Removal: An Optimization Scheme

1: Input: input image I; optimization weights λ, γ; total

number of iterations T

2: Initialize: B0 ← I, β = β0

3: for iteration t from 1 to T do

4: update y
j
t using (10)

5: recover Bt using (11)

6: update Bt : ∀ i (Bt)i ← η + (Bt)i using (12)

7: close the gap between (8) and (9) via β ← 2β

8: output: cleared cloud image B = BT

where the division in (11) is performed element-wise, F(·)
is a complex conjugate of F(·) and ǫ (=10−10) avoids divi-

sion by 0. Here F(yjt ) need to be computed at each itera-

tion, whereas rest of the terms are precomputed only once.

Imposing constraints. The constraints in (8) can be sat-

isfied at each iteration by adding a global normalizing con-

stant η to all elements in Bt such that η+(Bt)i falls within

[0, (I)i]. The suitable η can be obtained by minimizing the

following loss function using a gradient descent method,

min
η

∑

i∈I

H
(

η + (Bt)i − (I)i
)2
+H

(

− η − (Bt)i
)2
, (12)

where the Heaviside step (or unit step) function

H(x) =

{

1 ∀x > 0

0 otherwise,
(13)

penalizes only those terms that violate the constraints given

in (8). Thus for each pixel i, (Bt)i is updated to η+(Bt)i.
Algorithm 1 summarizes the whole iterative optimization

process for a high altitude cloud removal.

Cloud detection. After executing the Algorithm 1 we

can trivially obtain the crude cloudy layer as CT=I−BT .

Then we refine it by leveraging the bilateral filtering tech-

nique but additionally guiding it via the cloud map MC

from (4) to obtain the final cloudy layer as,

(C)i=
1

w

∑

k∈Ni

G
(

∣

∣∆
i,k
MC

∣

∣

)

G
(

∣

∣∆
i,k
CT

∣

∣

)

G
(

∣

∣∆
i,k

∣

∣

)

(CT )i,

(14)

where G(·) is a Gaussian kernel; Ni is the neighborhood of

pixel i in the image plane; ∆i,k=i−k; ∆i,kX=(X)i−(X)k
and w is the normalizing term given as,

w =
∑

k∈Ni

G
(

|∆
i,k
MC |

)

G
(

|∆
i,k
CT |

)

G
(

|∆
i,k
|
)

. (15)

The simultaneous use of spatial blurring factor G(|∆i,k|),
intensity smoothing weight G(|∆i,kCT |) and regularizing

term based on cloud properties G(|∆i,kMC |), avoids the

smoothing of CT across the edges and preserve its fine de-

tails to produce the precise cloudy layer C.

3. Experiments

Here, we first describe the experimental setup and im-

plementation details; then verify efficiency of the proposed

method using synthetic as well as real world aerial images.

Dataset. We constructed a dataset with 100 real-world

aerial images gathered from authentic satellite image repos-

itories [1, 16, 24, 48, 71]. For incorporating versatility,

the dataset includes diverse geological images (e.g. flat ter-

rain like ocean, dessert etc., scenes with moderate clutter

like agricultural, rocky territory etc. and highly cluttered

regions like residential, commercial area etc.) having va-

riety of clouds (e.g. thick translucent, haze like uniformly

spread, feathery locally stretched, thin transparent clouds

etc.) scanned at different time instances (e.g. daytime,

evening, night). All are color RGB images with the reso-

lution varying from 600×400 to 1600×1200. Our Cloudy

Aerial Image (CAI) dataset and Matlab implementation will

be available for download (http://pil.snu.ac.kr).

Implementation. All experiments were conducted on

a PC equipped with Intel Core i5 R© 3.4GHz CPU and

8GB RAM. The proposed method (Algorithm 1) was im-

plemented in Matlab without any GPU acceleration. All

the cloud removal results (i.e. background BT ) were ob-

tained via Algorithm 1 without any further contrast en-

hancement and cloudy layer was detected using (14). The

constrained least squares optimization in (7) was solved

using inbuilt Matlab function lsqnonlin to obtain the

parameter α. First the input image was converted to the

YUV color space and only the luminance (Y ) component

is processed via proposed optimization scheme (i.e. I=Y )

while keeping the UV components intact (i.e. to get cloud

removed color output: Y=BT and Y UV→RGB). The

saturation needed in (4) was obtained by RGB to HSV

color transformation. The parameters were either empir-

ically fixed or tuned within a range as γ = 0.1 to 10,

β0=30, λ=4×103, σ3=10, σ4=1, T=6 and Ni as 4-pixel

neighborhood.

3.1. Quantitative Comparison

We compared our method with the unimodal cloud and

haze removal methods [5, 18, 27, 28, 31, 51, 55, 66, 67, 84]

by using the implementations provided by the authors. As

the ground truth (GT) was necessary for quantitative analy-

sis, we synthesized the input image by mixing a clear back-

ground with the Cirrus cloud (Figure 3f) using the image

formation model (1). Thus our synthetic inputs (Figure 4

and 5) get rendered with a typical cloudy layer, which is

feathery, curvy, globally diffused and locally condensed.

Figure 5 shows the recovered background B images on

top of the discovered cloudy layer C by [18, 28, 31, 55] and

our method. Each image from Figure 5a to 5e was com-

pared with the GT in 5f for evaluating PSNR (peak signal-
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9.86 dB 14.21 dB 14.88 dB 12.28 dB 17.57 dB 17.45 dB ←PSNR

0.6915 0.7601 0.5743 0.7143 0.6332 0.8743 ←SSIM color

5.54 dB 9.89 dB 12.77 dB 9.85 dB 11.18 dB 27.01 dB ←PSNR

0.0003 0.3137 0.5755 0.4544 0.5396 0.9653 ←SSIM gray

(a) Synthetic (b) Jobson [31] (c) He et al. [28] (d) Fattal [18] (d) Ren [55] (e) Ours (f) Ground truth

Figure 5: Quantitative comparison using a synthetic input in (a). Images in (b) to (e) show the results by various methods for

cloud removal and detection (B on top of C). We show PSNR and SSIM for comparing the color and gray images in (a) to

(e) with the ground truth (f). Cloud layer in the synthetic input (a) is completely black image having all pixel values as zero.

to-noise ration) and SSIM (structural similarity index) [30].

Cloudy image in 5a is completely black image, so exhib-

ited extremely low SSIM and 5.54 dB PSNR and served as

a lower limit for comparative analysis, thus trivially all the

other methods triumphed over baseline for cloud detection;

whereas the B in 5a scored 0.6915 baseline SSIM, which

He et al. [28] and Ren et al. [55] fell short to beat. The haze

removal method by He et al. [28] nicely cleared the dif-

fused or fuzzy portions of the cloud but failed on removing

curvy condensed parts as shown in Figure 5c. Moreover

as it enhanced the image contrast with uncleared cloudy

area, the image composition greatly diverged from the GT

Method
Cloud Detection Cloud Removal

PSNR SSIM PSNR SSIM

Homomorphic [51] 9.49 dB 0.3944 12.93 dB 0.5903

CLAHE [84] 6.54 dB 0.1099 18.44 dB 0.8915

He et al. [27] 13.01 dB 0.6071 15.22 dB 0.5577

Jobson et al. [31] 9.89 dB 0.3137 14.21 dB 0.7601

Tarel et al. [66] 8.34 dB 0.2168 11.55 dB 0.6865

He et al. [28] 12.77 dB 0.5755 14.88 dB 0.5743

Fattal [18] 9.85 dB 0.4544 12.28 dB 0.7143

Ren et al. [55] 11.18 dB 0.5396 17.57 dB 0.6332

Berman et al. [5] 11.74 dB 0.4017 14.73 dB 0.6336

Tarel et al. [67] 17.22 dB 0.5629 17.51 dB 0.7243

Ours 27.01 dB 0.9653 17.45 dB 0.8743

Table 1: Quantitative comparison (using input Figure 5a)

with the various cloud and haze removal methods (top 3 re-

sults in each column are color coded as RGB respectively).

thereby produced the below baseline 0.5743 SSIM. PSNR

is a global measure and does not account for local dispar-

ity between images. Peak signal is almost constant in all

cases (Figure 5a to 5e) as images always have some satu-

rated pixels (with intensity 255), whereas mean square er-

ror compared with GT decreases so all the methods perform

better than baseline (Figure 5a) on the PSNR measure and

[55] produced the highest PSNR (17.57 dB).

Intensity in the cloudy layers indirectly indicates at

which image parts the method has devoted more efforts

for the recovery of the latent background. So C indicates

that [31] worked on condensed clouds but intermittently,

whereas contrastingly [28] and [55] operated on diffused

clouds. Considering SSIM, though [18] and [31] enhanced

the B, they did not match their C with the GT. As our pri-

ors ((2), (3), (5) and (14)) finely align with properties of the

high-altitude cloud (sec. 2.2) and the background (sec. 2.1)

in synthetic image, the proposed method shows (Figure 5e)

significantly higher SSIM (0.8743) and PSNR (17.45 dB)

for cloud removal.

Extensive comparison with the related methods is shown

in Table 1. Contrast Limited Adaptive Histogram Equaliza-

tion (CLAHE [84]) outperformed all the methods on cloud

removal, however disastrously failed on the cloud detec-

tion; plausibly because it removed the diffuse clouds by

marginally enhancing the input to B, so the image color

configuration around remaining condensed clouds did not

deviate much from the GT (unlike [28] in Figure 5c). This

contrasting results indicate the importance of simultaneous

evaluation on cloud detection and removal. Our method

quantitatively outperformed other methods on simultaneous

cloud detection and removal from an image.
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Proc. time→ 1.04 sec. 1.61 sec. 57.94 sec. 10.58 sec. 3.54 sec.

(a) Inputs ↑ (b) Jobson et al. [31] (c) He et al. [28] (d) Fattal [18] (e) Tarel et al. [66] (f) Ours

Figure 6: Qualitative comparison with competitive methods. (a) shows the real-world satellite input images covered with

various clouds (from 1st to 3rd row as thin locally condensed, thick local and thin diffused with thick striped) and illuminated

differently (from 1st to 3rd row as dark, bright and faint). For these inputs, the (b) to (e) show the cloud removal and detection

(B on top of C) results. Average computation time for processing all the inputs from (a) is compared in the bottom row.

3.2. Results on Real­World Inputs

Figure 6 shows the comparison on real-worlds images

from [24, 48, 71] having variety of clouds and illumina-

tions. Top row shows that the bright Antarctic iceberg [48]

camouflages the spongy clouds whereas the dark calm sea

unmasks them. Thus it serves as an excellent input for as-

sessing the cloud detection ability. As in Figure 6c, [28]

correctly detected and removed clouds over the sea but con-

fused ice parts for the white clouds. Instead of detecting the

clouds, [18] and [31] mistakenly detected complementary

regions sea and iceberg respectively. Along with evident

clouds over the sea, our method also correctly found the ob-

scure cloudy patches over the icebergs (green boxes in 6f).

In Figure 6a, middle row has relatively thicker clouds

where the transmission is negligible (t)i≈0. It is an exam-

ple of ‘low’-altitude clouds, which can only be removed via

inpainting based methods [26, 42, 80]. However it presents

a good test case for analyzing how the image enhancement

based cloud removal methods perform in the presence of

saturated image regions (i.e. thick clouds) within the color-

ful background. The contrast of the input was diminished

by [18] whereas over enhanced by [28] and appropriately

amplified by [66] to produce visually pleasing B. [18] de-

tected more precise cloudy regions than the rest of methods.

Our method preserved the contrast but as it is tailored to-

wards high-altitude clouds, it made a mistake similar to [31]

in detecting low-altitude thick clouds (red box in Figure 6f).
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Figure 7: Effect of initializer β0 and variation of the costs

in (8), (9) with the iterations given in Algorithm 1. Inter-

mittent results (B on top of C) are shown in the inset.

The last row input in Figure 6a has both globally diffused

and locally striped high-altitude clouds. As in Figure 6c,

[28] cleared the diffused clouds but failed to remove con-

densed clouds, which can also be seen as the void strips in

C. Previously [18] did the best job on detecting low-altitude

clouds but here on high-altitude clouds it broke down (C

in Figure 6d). Our method not only cleared the diffused

clouds but also removed to much extent the bright striped

clouds (left-side blue box in B of Figure 6f) along with pre-

serving the original image structure of bright striped coastal

line (right-side blue box in B of Figure 6f).

Our method arguably shows the best results as given in

Figure 6f, considering detection of the thin camouflaged

clouds, detecting the feathery, striped structures of the

clouds and preservation of the accurate color configuration

while removing the diffused as well as locally condensed

high-altitude clouds.

Computation-time. Average computational time on the

images of about HD resolution (CAI dataset) is reported in

the Figure 6. The proposed method is the not the fastest

but consumes decent time about 3.5 seconds. The quicker

methods Jobson et al. [31] and He et al. [28] enhance the

fuzzy cloud images within a second but suffer on structured

cloudy images. On the other hand Fattal [18] and Tarel

et al. [66] takes about 58 and 10 seconds respectively. So

the faster convergence (sec.3.3) and considerably lower pro-

cessing time of the proposed method can be credited to the

LUT and FFT based iterative optimization scheme.

3.3. Optimization Convergence Analysis

Figure 7 shows the values of the cost function given in

(8) and (9) at each iteration t of the Algorithm 1. Starting

from β0, the β doubles at every iteration. As β increases,

the discrepancy between D
j
iB and y

j
i decreases in (9). This

can be seen in Figure 7 i.e. the gap between (8) and (9)

declines with the progress of iteration. The higher initial-

izer value (β0=200) makes (9) to converge quicker but to a

slightly higher value than the lower initializer (β0=20) i.e.

Heterogeneous Fog H. Fog Detection H. Fog Removal

Figure 8: Testing our method on heterogeneous fog.

convergence ։

{

gap-rate: R Rβ0

20 < Rβ0

200

limit-value: L Lβ0

20 < Lβ0

200,
(16)

where the rate of gap reduction is the change in cost dif-

ference per unit iteration change i.e. R = ∆|(8)−(9)|
∆t

and

limit L is the value to which the objective function con-

verges. For this cost splitting based minimization problem,

lower L and higher R is preferred, so with some tradeoff

we have used β0=30. Four pairs of in-between results for

cloud removal and detection (B,C) are also shown in Fig-

ure 7 after 2, 4, 6 and 13 iterations. We can see that the

results at t=6 are qualitatively similar to those at t=13. So

by trading between the accuracy and the speed we set T=6
in our implementation. Thus empirically the Algorithm 1

rapidly converges to a good solution.

4. Discussion

We have proposed a novel algorithm for simultaneous

detection and removal of the high-altitude clouds from a

single image. We have comprehensively analyzed the prop-

erties of geological images and high-altitude clouds to de-

rive the appropriate image priors. Our method exploits the

statistical gradient disparity of cloud and non-cloud regions,

non-uniformity, low-saturation of the clouds and gradient

sparsity of the aerial images, by incorporating all the priors

in a unified optimization framework; whose FFT and LUT

based iterative solution quickly removes the clouds within a

few seconds on real-world satellite images.

Visually heterogeneous fog [67] looks like clouds de-

scended to ground. However intrinsically it differs from

high-altitude clouds on many aspects such as: ground imag-

ing process does not follow the model in Figure 2; some

portion of the fog is diffused throughout the scene like haze;

background remains at variable distance from the camera;

and gradient statistics is not globally consistent as image

contains some flat sky regions. Figure 8 shows that though

our method can reduce the non-diffused portions of the fog,

the heterogeneous fog removal needs a separate treatment.
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