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Abstract

Convolutional Neural Networks have been a subject of

great importance over the past decade and great strides

have been made in their utility for producing state of the

art performance in many computer vision problems. How-

ever, the behavior of deep networks is yet to be fully under-

stood and is still an active area of research. In this work,

we present an intriguing behavior: pre-trained CNNs can

be made to improve their predictions by structurally per-

turbing the input. We observe that these perturbations - re-

ferred as Guided Perturbations - enable a trained network

to improve its prediction performance without any learn-

ing or change in network weights. We perform various ab-

lative experiments to understand how these perturbations

affect the local context and feature representations. Fur-

thermore, we demonstrate that this idea can improve per-

formance of several existing approaches on semantic seg-

mentation and scene labeling tasks on the PASCAL VOC

dataset and supervised classification tasks on MNIST and

CIFAR10 datasets.

1. Introduction

Convolutional Neural Networks (CNNs) have achieved

state of the art results on several computer vision bench-

marks such as ILSVRC [15] and PASCAL VOC [4] over

the past few years. Despite their overwhelming success,

recent results have highlighted that they can be sensitive

to small adversarial noise in the input [5] or can be eas-

ily fooled using structured noise patterns [14]. To under-

stand how a CNN can learn complex and meaningful rep-

resentations but at the same time be easily fooled by sim-

ple and imperceptible perturbations still remains an open

research problem. The work of Goodfellow et. al. [5] and

Szegedy et al. [17] among others, bring out the intrigu-
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Figure 1: Self-corrective behavior due to Guided Perturba-

tions for segmentation and classification tasks.

ing properties of neural networks by introducing perturba-

tions in either the hidden layer weights or the input image.

While these approaches have focused on understanding the

effect of adversarial noise in deep networks, in this work we

present an interesting observation: input perturbations can

enable a CNN to correct its mistakes. We find that these per-

turbations exploit the local neighborhood information from

network’s prediction which in turn results in contextually

smooth predictions.

In almost all the CNN based approaches, the output is

obtained using a single forward pass during the prediction

time. In the proposed approach, we use the prediction made

by the network during the forward pass to generate pertur-

bations at the input. Specifically, we backpropagate the gra-

dient of the prediction error all the way to the input. We

would like to emphasize that the error gradients are gener-

ated purely based on the network’s prediction without any
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knowledge of ground truth. We perturb the input image by

adding to it a scaled version of the gradient signal. This is

fed back to the network again for prediction. Figure 1 shows

an example of the self-corrective behavior of the generated

perturbations for segmentation and classification tasks. This

example shows that these perturbations of the input image

could be viewed as a form of structured distortion that is

added to the input such that the context gets amplified in

each pixel’s neighborhood which enables the network to

correct its own mistakes. The proposed approach is sim-

ple and easy to implement and does not require retraining

or modification in network’s architecture.

Existing approaches to improve performance on segmen-

tation and classification tasks have been geared towards

novelties in network architecture or using large amount of

training data or both. While these are valid ways to im-

prove the networks performance, the proposed approach

highlights an inherent behavior of CNNs that can be used to

improve their prediction without requiring additional learn-

ing or training data. We would like to note here that while

the behavior of Guided Perturbations (GP) is similar to Con-

ditional Random Fields based approaches, the difference in

our case is that there is no explicit modeling of context or

neighborhood interactions. Since our approach is network

independent, this doesn’t preclude networks which model

context explicitly and we show improvements in such net-

works too.

To the best of our knowledge, this is the first approach to

show existence of a self-corrective behavior in CNNs and

use of such behavior for improvement in performance on

segmentation and classification tasks. To summarize, the

major contributions of this paper are:

• We present a novel and intriguing observation: there exist

structured perturbations which when used to perturb the

input leads to a corrective behavior in CNNs.

• We propose a generalized framework to improve the per-

formance of any pretrained CNN model that is architec-

ture independent and requires no learning assuming the

network is trained end-to-end.

2. Background

In recent years, there have been several approaches that

attempt to analyze the behavior of CNNs for classification

problems. Mahendran et al. [12] proposed an approach to

invert the function learned by the CNN in order to generate

as faithful a reconstruction of the input as possible. This is

performed by minimizing a regularized energy function that

approximates the representation function that is learned by

the deep network. Another interesting work in this direc-

tion is the Fooling Images work of Nguyen et al. [14] that is

further extended by Yosinski et al. [19]. The main objective

in both the approaches is to synthesize images to confuse

CNN by maximizing the activation of individual neurons

from different layers of a deep network. This leads to in-

teresting results such as images that look like random noise

but which the CNN classifies into different classes with high

confidence. The approaches that are closer in spirit to our

proposed approach are the ones that predate these recent

ones: Szegedy et al. [17] and Goodfellow et al. [5]. Their

study shows that there exist a lot of adversarial examples

which are the result of minor pertubations of the input that

causes the CNN to misclassify input images on classifica-

tion tasks; these examples can be generated by adding a

fraction of the gradient that is generated by wiggling the

classifier output in the direction of the target class.

One of the applications that this paper focuses on is se-

mantic segmentation. A lot of research have gone into un-

derstanding the expressive ability of CNNs for such prob-

lems. Recent methods for image segmentation such as Fully

Convolutional Networks (FCN) by Long et al. [16] have

provided an easy framework that casts the image segmen-

tation problem as a pixelwise label classification problem

The major difference in their work was the image level out-

put generation and backpropogation which was made pos-

sible by the work of Zeiler et al. [21]. This image level

back propogation provides a simple way to learn a discrim-

inative representation of classes at the pixel level. Several

recent approaches such as CRFasRNN by Zheng et al. [22],

DeepLab by Chen et al. [2] and GCRF by Vemulapalli et

al. [18] have improved the FCN framework by explicitly

modeling context. CRFasRNN casts the CRF iterations,

which has been traditionally used as a post processing func-

tion in image segmentation problem to ensure label compat-

ibility, as a Recurrent Neural Network. They formulate the

steps required to perform a mean field iteration in a CRF

including message passing and learning a label compatibil-

ity transform as a layer in a CNN, which is unrolled in time

over T iterations. The unary potentials are computed using

the FCN-8s network which is then refined using the RNN

strucure. By casting this as a CNN layer they perform end-

to-end training. More recently, Yu et al. [20] propose to

train a multiscale context aggregation module on top of a

modified FCN-8s network. This context module improves

the performance of the base network on its own or in com-

bination with CRF based approaches.

In this paper, we describe an interesting property of deep

networks about how it can change its predictions for the

better using minor perturbations of the input. Furthermore,

we provide useful applications of our approach by showing

how it can be used to improve prediction performance on

challenging computer vision tasks.

3. Our Approach

In this section, we describe our approach to generate

guided perturbations by using the gradient information ob-
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tained from the network’s output. We perform experiments

to study different aspects of these perturbations and how

they affect the network representations. Since our approach

to generate guided perturbation is different for segmentation

and classification tasks, we discuss them separately.

3.1. Semantic Segmentation

Figure 2 illustrates our approach for semantic segmenta-

tion task. Given an input image we perform a forward pass

to compute the output - which is usually the output of a soft-

max function that gives a class probability vector for each

pixel. The prediction output is then binarized by setting the

probability of the most confident class to one and the others

to zero. This is done for each pixel and the error gradient

is computed at the softmax layer by setting this modified

output as ground truth. Let X ∈ RM×N×Cin represent

the input image to the deep network, Y ∈ RM×N×Cout

represent ground truth labeling, where Cin is the num-

ber of input channels, Cout is the number of classes and

M ×N is the dimensionality of the input image. Let θ rep-

resent the parameters of the network and J (θ,X,Y) rep-

resent the loss function that is optimized during training.

During prediction time, let Ypred be the predicted label-

ing. In order to generate an error gradient for backpropa-

gation, we create a pseudo ground truth labeling Ypseudo

by modifying Ypred as follows: We initialize Ypseudo with

Ypred. Let the kth component of Ypseudo be represented as

yk = [yk1
, .., ykCout

], which is a Cout-dimensional score

vector. We modify yk to be a 1-hot encoded vector with the

maximally confident class set to 1 and others to zero. Then,

the error gradient signal is computed based on the loss func-

tion J (θ,X,Ypseudo) and backpropagated through the net-

work up to the input. Let the backpropagated error gradient

signal at the input be represented as: ∇XJ (θ,X,Ypseudo).

Input

Forward / inference

21

FCN output

Class probabilities

. . . co
w

h
o

rs
e

ca
t

. . .

0.85

0.1 0.04

. . . co
w

h
o

rs
e

ca
t

. . .

0.25

0.7

0.03

. . . co
w

h
o

rs
e

ca
t

. . .

1.0

. . . co
w

h
o

rs
e

ca
t

. . .

1.0

Perturbed

Input

21

Our output

Backward

Forward / inference

perturbation

Step 1

Step 2

Step 3

Figure 2: Processing pipeline for the proposed approach for

semantic segmentation

The perturbed input in then generated as follows:

Xper = X+ ǫsign(∇XJ (θ,X,Ypseudo)), ǫ > 0 (1)

where ǫ is a non negative scaling factor that is model

dependent and sign(.) represents the signum function taken

elementwise. Xper is then fed into the network for a forward

pass to generate the final output.

It can be argued that the above method of generating gra-

dients using the network’s prediction can lead to inaccurate

gradient information propagated through the network espe-

cially in cases where the network’s output contains many

misclassified pixels. The key insight we provide in this

work is that despite misclassifications by the deep network,

the gradients at the input obtained from the network’s pre-

diction, in general, improve the final output of the deep net-

work.
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Figure 3: Visualization of filter responses showing how the

correct context is propagated along the FCN-32s network.

Column (a): filter responses during the forward pass using

the original input. Column (b): filter responses during the

forward pass using the perturbed input. Column (c): differ-

ence between (a) and (b)
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3.1.1 Understanding Guided Perturbations

In this section, we perform several experiments to provide

insight into different aspects of guided perturbations. Please

refer to Figure 2 for the steps (Step 1, Step 2, Step 3) men-

tioned in this section.

Impact of perturbations on filter responses: To get

a clear understanding of what happens during the forward

pass in Step 3 that vastly changes the network’s prediction,

we visualize the filter responses for the FCN-32s network

in Figure 3. This model was chosen due to its simpler ar-

chitecture but we observed similar behavior in other deep

architectures too. In Figure 3, we plot the average filter re-

sponses at different layers through the deep network after

upsampling them bilinearly to image size. As can be ob-

served, the influence of the added perturbations are not vi-

sually explicit until the pool5 layer but the difference of the

filter responses in Column (c) indicate that the information

propagates from layers as early as pool2.

Next, we analyze the pixels for which the network pre-

dictions changed from Step 1 to Step 3. Figure 4(c) shows

the pixels that were classified wrongly during the forward

pass in Step 1 but were correctly classified at the final out-

put. On the other hand, 4(d) shows the pixels that were

correctly classified in Step 1 but were incorrect at the final

output. Observe that, the correctly classified pixels between

Step 1 and Step 3 are mostly internal to the image where ad-

ditional contextual information is available for the network

to switch its prediction whereas the small number of mis-

classified pixels are largely concentrated along the bound-

ary regions of the image where the context is ambiguous.

We present more of such visualization examples in the sup-

plementary material.

Approximating ideal gradient direction: In this exper-

iment, we would like to answer the question: what are the

ideal perturbations that can be generated at the input? The

best one can do is to use the ground truth to generate error

gradients at the softmax layer which is then backpropagated

to generate the perturbed input. When this perturbed input

is fed back to the network, the result is a vastly improved

prediction as shown in Figure 5 (c). While perturbations

from ground truth significantly improve the performance,

this information is not available during prediction time. The

(a) (b) (c) (d)

Figure 4: (a) Output of FCN-32s network (b) Output from

the proposed approach (c) Pixels that were incorrectly clas-

sified by FCN-32s corrected by our approach (d) Pixels that

were incorrectly classified by our approach that FCN-32s

classified correctly.

novelty of the current work is that the ground truth gradi-

ent direction is being approximated well enough by the pre-

dicted gradient directions that are computed using only the

network’s prediction.

(a) (b)

(d) (e) (f)

(c)

Figure 5: (a) Output of FCN-32s (b)Ground truth labeling

(c) Output of perturbed input using ground truth gradients

(d)-(f) Output of perturbed input using guided perturbations

for iteration 1, 2 and 3 respectively.

To understand the extent of usefulness of the predicted

gradients, we performed an experiment where the three

steps outlined in our approach (Figure 2) is applied over

successive iterations Figure 5 (d) shows the output of our

approach obtained in the first iteration and Figure 5 (e)-(f)

show the output over successive iterations. This shows that

the most significant improvement happens at the first itera-

tion and the subsequent iterations yield little improvement.

We observe similar behavior on average over the PASCAL

VOC2012 validation set.

Intuition based on overlapping receptive fields: In a

CNN, the receptive fields of neighboring pixels define a

context for their interactions. The advantage of having over-

lapping receptive fields is that the neighborhood connectiv-

ity is established automatically without explicitly specify-

ing it. As long as the errors made by the CNN are sparse

with respect to each pixel’s receptive fields, the error gradi-

ents when accumulated over the entire network and used to

perturb the input image exhibit a corrective behavior. The

effect of GP can be seen as a type of residual information

that is propagated through the network which results in con-

textual smoothing. This is evident by looking at the filter re-

sponses in Figure 3, more specifically in Column 3, which

shows the difference in responses with and without GP. It

can be observed from the pool5 responses that the peak ac-

tivations occur around neighborhoods where there are com-

peting classes. GP perturb these neighborhoods the most

thus resulting in contextually smooth predictions in those

regions.

Analyzing GP in depth: In figure 6, we show how

guided perturbations impact the decisions made by the deep

network by considering a local region in the input image

and tracking its classification scores at score-fr layer (be-

fore upsampling layer) across different values of ǫ. In the

top half of figure 6a, the patch of interest in the RGB image

is marked by a red box and its corresponding region in the
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Figure 6: (a) The top half shows an RGB patch in the input image and its corresponding patch in the score-fr layer output

of the FCN-32s network, before upsampling to image size. In the bottom half, we show, for different values of ǫ the guided

perturbations, the perturbed RGB patches and the score-fr output. Notice how the the scores become contextually smoother

for ǫ > 0. (b) The actual score values of the top-5 predicted classes for the 3x3 grid marked in blue in figure (a) are

plotted. Observe that for a range of positive values of ǫ, the correct class score (cow) dominates the others across the entire

neighborhood. The legend in (1,1) applies to all the plots. Best viewed in screen. Please zoom for clarity.

score-fr output is marked by a blue box. Immediately be-

low, the following are shown for different values of ǫ: (1)

Guided perturbations generated at the input (2) perturbed

RGB patches (3) output of the score-fr layer. Important ob-

servations that can be made from figure 6a are:

• Input perturbations corresponding to positive ǫ improve

the score output over a vast range of values. This visual-

ization shows how guided perturbations are able to oper-

ate at a local level by leveraging neighborhood contextual

information as can be directly observed from the images

of score layer shown in the bottom row.

• Even a small negative value of ǫ results in a large adverse

effect on the score output, without any perceptible change

in the perturbed RGB patch. This shows that a negative ǫ

corresponds to an adversarial setting.

This discussion motivates our choice of using ǫ > 0 to

generate GP. To further analyze how these input perturba-

tions affect the actual classifier score, we show in figure 6b,

the predictions of the deep network for the 3x3 grid in the

score-fr output from figure 6a, for different values of ǫ.

For clarity, we only show the predicted scores of the top-5

classes. From the score values of the grid position (2,2), we

can observe that as ǫ increases, the score of true class (cow)

keeps increasing while the scores of the confusing classes

do not vary much. The other plots show that this trend is

observed across the entire neighborhood of the 3x3 grid.

Thus, it can be inferred that perturbations at the input affect

the decision of the deep network in a contextually consis-

tent manner. We again observe that the score of the true

class drops significantly even for a small negative ǫ which

is consistent with our earlier observations.

Figure 7: Qualitative results on the PASCAL VOC2012 re-

duced validation set. In the top two rows, we compare our

result with the FCN-8s part of CRFasRNN that has been

trained on MS.COCO dataset [11] and publicly released by

[22]. In the bottom row, we compare with the complete

CRFasRNN framework[22]. More results can be found in

supplementary material.

4. Experiments

In this section, we perform several experiments show-

ing how our approach could be seamlessly applied on top

of several pretrained deep networks. We test our method

on the semantic segmentation task on PASCAL VOC2012

dataset [4], scene labeling task on the PASCAL Context 59-

class dataset [13] and classification tasks on the MNIST and

CIFAR10 datasets [9]. These results support how our ap-

proach is able to generalize across different types of prob-
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Table 1: Results on the reduced VOC2012 validation set

with 346 images. ’-coco’ denotes that the model was trained

on MS COCO data in addition to the SBD dataset. Numbers

in brackets show the magnitude of change compared to the

corresponding base models.

Method Base Base+GP

FCN-32s 62.10 64.71 (+2.6)

FCN-8s 63.97 66.97 (+3.0)

MS-COCO data

FCN-8s-coco 69.85 71.99 (+2.1)

CRFasRNN-coco 72.95 73.75 (+0.8)

Deeplab-VGG16 66.9 69.1 (+2.2)

Deeplab-ResNet101 74.1 75.3 (+1.2)

lems in computer vision and highlights the advantage that

it can be used with any pretrained model. For segmentation

problems, we evaluate our approach using the mean Inter-

section over Union (mIoU) metric commonly used for se-

mantic segmentation as reported in [16]. For MNIST and

CIFAR-10, we use classification accuracy as a metric to

compare against the baseline.

4.1. Semantic Segmentation

We use PASCAL VOC2012 dataset for evaluating our

approach for semantic segmentation task. It consists of 21

classes including background. We use the following pre-

trained models as baselines and show the improvement that

can be obtained using our approach for each of them:(1)

FCN-32s and FCN-8s [16]: these models are trained us-

ing the SBD dataset[6] that consists of 9,600 images. (2)

FCN-8s-coco and CRFasRNN [22]: these are trained using

the images from MS COCO[10] and the SBD dataset us-

ing a total of 77,784 images. (3) Deeplab [3]: We evaluate

on the Deeplab-VGG16 and ResNet101 models which use

atrous convolutions and multi scale evaluation. They are

also trained on MS COCO and the SBD datasets.

For all these methods, we use the publicly available mod-

els at the time of submission. We use a single NVIDIA Ti-

tanX GPU for our experiments and CAFFE library[7] for

implementation. The pretrained models used in this section

are obtained from the CAFFE Model Zoo [1] at the time of

submission. All the reported results are computed with 1 it-

eration of our approach unless mentioned otherwise. Table

1 shows the results of applying the proposed approach to

the different pretrained models during prediction time over

a reduced validation set of 346 images as done in [22]. As

can be observed, the proposed approach results in increased

performance over all the listed pretrained models. This re-

iterates the fact that our approach is indeed architecture in-

dependent and can be easily integrated even with complex

feedforward architectures like CRFasRNN. Table 3 shows

the evaluation of our approach on PASCAL VOC2012 test

set using FCN-8s pretrained network as the base model to

demonstrate the improvement shown by our method in an

unbiased setting. The ǫ value used for the test set was tuned

on the validation set.

4.2. Scene Labeling

The scene labeling task is a dense pixel labeling task

that is evaluated on the PASCAL Context dataset. While

there are more than 400 classes defined, the challenge en-

tails evaluating on the 59 classes that are specified as most

frequent [13]. The labeled classes contain scene elements

in addition to objects that appear in the PASCAL VOC

segmentation challenge, making this a much harder bench-

mark. To evaluate our approach on this task, we use the

FCN-8s model from [16] as our baseline that was trained on

the standard training split of 10,000 images provided with

the dataset. The results, which were generated on the val-

idation set consisting of 5105 images are shown in Table

2. We improve the performance of the FCN-8s network by

1.3% which is significant given the large size of the valida-

tion set. Please note that the ǫ value was not tuned to fit this

dataset rather the best performing ǫ from Table 1 was used.

Table 2: Results on the PASCAL-Context 59-classes vali-

dation set.
Method mean IU

FCN-8s 39.12
FCN-8s + GP 40.44

5. Ablative Experiments

For all the experiments in this section, we use FCN-32s

network and the validation set used in section 4.1.

Speed-Performance trade-off The guided perturbations

generated at the input layer of a deep network improves the

performance of the base model. However, there is a com-

putational overhead due to performing an additional back-

ward and forward pass. As an alternative, the backward

pass could be performed up to an intermediate layer in the

deep network instead of the input layer. In this section,

we provide results addressing the trade off between com-

putational time and resulting performance due to perturbing

layers other than the input. It can be observed from Table

4 that even using the perturbed input from as late as pool4

layer the improvement in performance remains almost con-

stant while computation time drops significantly. This ex-

periment shows that effect of GP is not only observed at the

input but also in the intermediate layers of the deep network

and hence can be leverages for reducing the computational

cost.

Comparison with CRF approaches The behavior of GP

resembles the contextual smoothing provided by VRF ap-

proaches that have been popularly used in Semantic Seg-

mentation. In this section, we provide empirical evidence

that GP captures additional dependencies in the data com-

pared to pairwise interactions that are modeled by CRFs.
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Table 3: Results on the PASCAL VOC2012 test set consisting of 1456 images using FCN-8s as the base network. Use of

Guided Perturbations improves the performance of the base network on 19 out of 21 classes.

Method bkg aero bicycle bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

FCN-8s [16] 92.0 82.4 36.1 75.6 61.4 65.4 83.3 77.2 80.1 27.9 66.8 51.5 73.6 71.9 78.9 77.1 55.3 73.4 44.3 74.0 63.2 67.2

FCN-8s + GP 92.4 84.4 35.9 79.3 62.6 70.5 86.2 80.0 82.8 28.0 71.9 55.2 74.6 75.6 80.2 77.4 56.9 75.6 45.8 77.4 63.18 69.3

Table 4: Trade-off between performance and computation

times obtained by truncating guided perturbations over dif-

ferent layers across the deep network. Original time taken

is 0.12s per image. The baseline performance is 62.1%

layer input pool2 pool3 pool4

Time 0.33s 0.27s 0.24s 0.22s

mIOU 64.71 64.61 64.55 64.3

Table 5 shows the mean IoU values for cases with/without

CRF [8] applied on top of the network outputs. These re-

sults demonstrate that GP indeed captures extra dependen-

cies compared to CRF and that GP can even improve upon

CRF outputs.

Table 5: Results with and without CRF

Method Base +CRF +GP +CRF+GP

FCN-8s-coco 69.8 71.1 72.0 72.7

Deeplab-ResNet-101 74.1 74.9 75.3 75.8

Guided Perturbations (vs) other strategies In this sec-

tion, we perform an ablative experiment where we per-

turb the input image in different ways in order to distin-

guish them from Guided Perturbations and show that the GP

yields the most improvement in performance. As explained

in Section 3.1, to generate a guided perturbation, we replace

the softmax output with a one-hot encoded vector for the

class of maximum confidence. We consider different meth-

ods to modify the label distribution that is obtained from the

softmax function as follows:

• random-onehot: The class label is chosen in an uniformly

random manner and used as ground truth instead of the

maximum probability class.

• Uniform-label: An uniform label distribution is produced

by assigning equal probability to all the classes and used

as encoding to generate the error gradient.

• top2-label: Modified label distribution contains equal

probability to top two predicted classes and used as en-

coding to generate the error gradient.

Figure 8 shows the effect of different types of label dis-

tribution on the segmentation performance. At the outset, it

can be observed that GP gives the best quantitative perfor-

mance of 64.7% compared to the second best case, which

is the uniform setting with negative ǫ which scores 63.8%.

We can also observe that when we perform GP, ǫ < 0 cor-

responds to the adversarial setting. Intuitively, this setting

Figure 8: Mean IOU values for several perturbations gen-

erated by using different types of label distributions on the

validation set over the range ǫ = [−1, 1] with FCN-32s as

the base network. Please refer to section 5 for details.

is equivalent to maximizing the loss of the softmax classifi-

cation function during training. Hence, the backpropagated

gradient always moves away from the correct class. In our

approach, GP is always generated by setting ǫ > 0 as men-

tioned in sections 3.1 and 5. The setting involving choosing

a random label to generate the one-hot vector at the soft-

max output results in poor performance across all values of

ǫ since gradient directions become random and the resulting

perturbations adversely affect the performance of the deep

network on the perturbed input image.

The interesting case to analyze from Figure 8 is the per-

formance of the Uniform-label setting for ǫ < 0. To under-

stand this effect, Figure 9 illustrates a toy example showing

the difference between the error gradients generated using

GP and Uniform-label setting for a different possible out-

put score distributions from the CNN. In this toy example,

the CNN is trained to classify among 5 classes. Observe

that, for the unimodal case, the gradient signal generated

for a uniform output label distribution has the same relative

magnitude as the gradient signal generated for GP but the

dominant gradient direction is exactly the opposite. How-

ever, GP still gives a better performance compared to the

uniform label distribution. In this case, the score vector is

bimodal and hence there are two dominant directions in the

gradient signal. Notice that the top gradient direction in the

case of GP still points towards the correct class and all other

directions move away from the correct class, as expected.

But in the case of uniform label distribution, there are two

competing directions and hence there is higher probability

for the gradient to move in the wrong direction.
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0 1 0 0 0

One-hot encoded label vector
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Error gradient

0.2 0.2 0.2 0.2 0.2

Uniform label vector

0.0 -0.08 0.026 0.02 0.034

Label Encoding

0.35 0.1 0.45 0.06 0.04

0 0 1 0 0

One-hot encoded label vector

-0.157 -0.045 0.247 -0.027 -0.018

0.2 0.2 0.2 0.2 0.2

Uniform label vector

-0.03 0.02 -0.05 0.028 0.032

Unimodal score distribution

Bimodal score distribution

Figure 9: Difference in the gradient signal generated be-

tween Uniform-label setting and GP for the case of uni-

modal output score distribution (top) and bimodal output

score distribution (bottom). The dominant gradient direc-

tion in both cases is shown in the colored boxes. The exact

derivation for computing these gradient values is given in

the supplementary material.
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Figure 10: Effect of scaling factor ǫ on performance of

FCN-32s (left) and FCN-8s (right) networks evaluated on

the reduced PASCAL VOC2012 validation set. Best viewed

in screen. Please zoom for clarity.

Effect of Scaling parameter We evaluate the perfor-

mance of our approach using FCN-32s and FCN-8s net-

works over a range of scaling parameter ǫ on the validation

set. Figure 10 shows how the performance varies based on

the scaling factor. It can be observed that improvement in

performance is generally obtained over a wide range of val-

ues of ǫ. This indicates that network’s behavior is not very

sensitive to the value of ǫ though there seems to be an op-

timal value for best performance that depends on the deep

model. We use ǫ = 0.55 for FCN-32s, ǫ = 0.7 for FCN-

8s network and ǫ = 0.22 for CRFasRNN network for our

experiments.

Image Classification The method described in Section

3.1 for semantic segmentation cannot be applied directly for

classification tasks. Since context for a classification task

is not defined naturally, we extract contextual information

from the learned feature space. Given an input image, we

first extract the feature from the deep network and use it to

select top k nearest neighbors from the training set using eu-

clidean distance metric. We then perturb the test image with

the weighted average of gradients generated using the class

of the selected nearest neighbors and perform a forward

pass to predict the final output. Let nni be the class of the

ith nearest neighbor. Following the notation established in

Section 3.1, the equation for perturbed image is given as fol-

lows: Xper = X + ǫ
∑k

i=1
(wisign(∇XJ (θ,Xi,Ynni

))),

where Xi is the ith nearest neighbor; k is the number of

nearest neighbors and wi is weight associated with each

nearest neighbor i and J (.) corresponds to the loss func-

tion. Figure 11 shows an example where the network cor-

rectly classifies the perturbed input generated using this pro-

cedure.

Input  1‐NN  Gradients  Perturbed Input 

5 6

Figure 11: The input image is classified as ‘5’. By per-

turbing the input from the gradients generated using the top

nearest neighbor class, the network changes its prediction

to ‘6’

To evaluate the performance of GP on classification, we

tested the method on two standard datasets: MNIST and

CIFAR10. MNIST consists of grayscale images of digits

while CIFAR10 consists of more realistic images of ob-

ject classes. We follow the standard training/testing split

for both the cases. We use 3 nearest neighbor with equal

weights for all our experiments. For MNIST, we use a CNN

with 2 conv. layers and 2 fully-connected layers with a 20-

50-500-10 architecture and for CIFAR10, we use a CNN

with 5 conv. and 2 fully-connected layers with a 64-64-

128-128-128-128-10 architecture.

Table 6: Results on the classification task on MNIST and

CIFAR10 datasets.

Dataset Baseline Proposed

MNIST 98.92 99.15

CIFAR10 76.31 76.95

Table 6 shows the results of our classification experi-

ments. GP improves performance over the baseline on both

the datasets. However, the improvement in performance is

not as high as in the segmentation case which could be at-

tributed to two reasons: (1) the base networks themselves

have learned a very strong representation and (2) the con-

text information in the classification task is relatively weak

compared to the segmentation task.

6. Conclusion

In this paper, we have shown novel self-corrective be-
havior of CNNs for segmentation and classification tasks.
We showed that guided perturbations can improve the net-
work’s performance without additional training or network
modification. We have demonstrated this effect on several
publicly available datasets and using different network ar-
chitectures. We have presented several experiments that
try to understand and explain different aspects of guided
perturbations. We believe that this behavior can lead to
novel network designs and better end-to-end training pro-
cedures.
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