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Figure 1: Results of the proposed method. Reconstructed geometries are shown next to the corresponding input images.

Abstract

It has been recently shown that neural networks can re-

cover the geometric structure of a face from a single given

image. A common denominator of most existing face ge-

ometry reconstruction methods is the restriction of the solu-

tion space to some low-dimensional subspace. While such

a model significantly simplifies the reconstruction problem,

it is inherently limited in its expressiveness. As an alter-

native, we propose an Image-to-Image translation network

that jointly maps the input image to a depth image and a

facial correspondence map. This explicit pixel-based map-

ping can then be utilized to provide high quality reconstruc-

tions of diverse faces under extreme expressions, using a

purely geometric refinement process. In the spirit of recent

approaches, the network is trained only with synthetic data,

and is then evaluated on “in-the-wild” facial images. Both

qualitative and quantitative analyses demonstrate the accu-

racy and the robustness of our approach.

1. Introduction

Recovering the geometric structure of a face is a fun-

damental task in computer vision with numerous applica-

tions. For example, facial characteristics of actors in re-

alistic movies can be manually edited with facial rigs that

are carefully designed for manipulating the expression [42].

While producing animation movies, tracking the geometry

of an actor across multiple frames allows transferring the

expression to an animated avatar [14, 8, 7]. Image-based

face recognition methods deform the recovered geometry

for producing a neutralized and frontal version of the in-

put face in a given image, reducing the variations between

images of the same subject [49, 19]. As for medical ap-

plications, acquiring the structure of a face allows for fine

planning of aesthetic operations and plastic surgeries, de-

signing of personalized masks [2, 37] and even bio-printing

facial organs.

Here, we focus on the recovery of the geometric structure

of a face from a single facial image under a wide range of

expressions and poses. This problem has been investigated

for decades and most existing solutions involve one or more

of the following components.

• Facial landmarks [25, 46, 32, 47] - a set of automati-

cally detected key points on the face such as the tip of

the nose and the corners of the eyes, which can guide

the reconstruction process [49, 26, 1, 12, 29].

• A reference facial model - an average neutral face that

is used as an initialization of optical flow or shape from

shading procedures [19, 26].

• A three-dimensional morphable model - a prior low-

dimensional linear subspace of plausible facial geome-

tries which allows an efficient, yet rough, recovery of

a facial structure [4, 6, 49, 36, 23, 33, 43],

While using these components can simplify the recon-

struction problem, they introduce some inherent limitations.

Methods that rely only on landmarks are limited to a sparse

set of constrained points. Classical techniques that use a
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Figure 2: The algorithmic reconstruction pipeline.

reference facial model might fail to recover extreme expres-

sions and non-frontal poses, as optical flows restrict the de-

formation to the image plane. The morphable model, while

providing some robustness, limits the reconstruction as it

can express only coarse geometries. Integrating some of

these components together could mitigate the problems, yet,

the underlying limitations are still manifested in the final re-

construction.

Alternatively, we propose an unrestricted approach

which involves a fully convolutional network that learns to

translate an input facial image to a representation containing

two maps. The first map is an estimation of a depth image,

while the second is an embedding of a facial template mesh

in the image domain. This network is trained following the

Image-to-Image translation framework of [22], where an

additional normal-based loss is introduced to enhance the

depth result. Similar to previous approaches, we use syn-

thetic images for training, where the images are sampled

from a wide range of facial identities, poses, expressions,

lighting conditions, backgrounds and material parameters.

Surprisingly, even though the network is still trained with

faces that are drawn from a limited generative model, it

can generalize and produce structures far and beyond the

limited scope of that model. To process the raw network

results, an iterative facial deformation procedure is used

which combines the representations into a full facial mesh.

Finally, a refinement step is applied to produce a detailed re-

construction. This novel blending of neural networks with

purely geometric techniques allows us to reconstruct high-

quality meshes with wrinkles and details at a mesoscopic-

level from only a single image.

While using a neural network for face reconstruction was

proposed in the past [33, 34, 43, 48, 24], previous methods

were still limited by the expressiveness of the linear model.

In [34], a second network was proposed to refine the coarse

facial reconstruction, yet, it could not compensate for large

geometric variations beyond the given subspace. For exam-

ple, the structure of the nose was still limited by the span

of a facial morphable model. By learning the unconstrained

geometry directly in the image domain, we overcome this

limitation, as demonstrated by both quantitative and qual-

itative experimental results. To further analyze the poten-

tial of the proposed representation we devise an application

for translating images from one domain to another. As a

case study, we transform synthetic facial images into real-

istic ones, enforcing our network as a loss function to pre-

serve the geometry throughout the cross domain mapping.

The main contributions of this paper are:

• A novel formulation for predicting a geometric repre-

sentation of a face from a single image, which is not

restricted to a linear model.

• A purely geometric deformation and refinement proce-

dure that utilizes the network representation to produce

high quality facial reconstructions.

• A novel application of the proposed network which al-

lows translating synthetic facial images into realistic

ones, while keeping the geometric structure intact.
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2. Overview

The algorithmic pipeline is presented in Figure 2. The

input of the network is a facial image, and the network

produces two outputs: The first is an estimated depth map

aligned with the input image. The second output is a dense

map from each pixel to a corresponding vertex on a refer-

ence facial mesh. To bring the results into full vertex cor-

respondence and complete occluded parts of the face, we

warp a template mesh in the three-dimensional space by an

iterative non-rigid deformation procedure. Finally, a fine

detail reconstruction algorithm guided by the input image

recovers the subtle geometric structure of the face. Code

for evaluation is available at https://github.com/

matansel/pix2vertex.

3. Learning the Geometric Representation

There are several design choices to consider when work-

ing with neural networks. First and foremost is the training

data, including the input channels, their labels, and how to

gather the samples. Second is the choice of the architecture.

A common approach is to start from an existing architec-

ture [27, 39, 40, 20] and to adapt it to the problem at hand.

Finally, there is the choice of the training process, including

the loss criteria and the optimization technique. Next, we

describe our choices for each of these elements.

3.1. The Data and its Representation

The purpose of the suggested network is to regress a ge-

ometric representation from a given facial image. This rep-

resentation is composed of the following two components:

Depth Image A depth profile of the facial geometry. In-

deed, for many facial reconstruction tasks providing only

the depth profile is sufficient [18, 26].

Correspondence Map An embedding which allows map-

ping image pixels to points on a template facial model,

given as a triangulated mesh. To compute this signature

for any facial geometry, we paint each vertex with the x, y,

and z coordinates of the corresponding point on a normal-

ized canonical face. Then, we paint each pixel in the map

Figure 3: A reference template face presented alongside the

dense correspondence signature from different viewpoints.

Figure 4: Training data samples alongside their representa-

tions.

with the color value of the corresponding projected vertex,

see Figure 3. This feature map is a deformation agnostic

representation, which is useful for applications such as fa-

cial motion capture [44], face normalization [49] and tex-

ture mapping [50]. While a similar representation was used

in [34, 48] as feedback channel for an iterative network, the

facial recovery was still restricted to the span of a facial

morphable model.

For training the network, we adopt the same synthetic

data generation procedure proposed in [33]. Each random

face is generated by drawing random mesh coordinates S

and texture T from a facial morphable model [4]. In prac-

tice, we draw a pair of Gaussian random vectors, αg and αt,

and recover the synthetic face as follows

S = µg +Agαg

T = µt +Atαt.

where µg and µt are the stacked average facial geometry

and texture of the model, respectively. Ag and At are ma-

trices whose columns are the bases of low-dimensional lin-

ear subspaces spanning plausible facial geometries and tex-

tures, respectively. Notice that geometry basis Ag is com-

posed to both identity and expression basis elements, as pro-

posed in [10]. Next, we render the random textured meshes

under various illumination conditions and poses, generat-

ing a dataset of synthetic facial images. As the ground-truth

geometry is known for each synthetic image, one readily

has the matching depth and correspondence maps to use as

labels. Some examples of input images alongside their de-

sired outputs are shown in Figure 4.

Working with synthetic data can still present some gaps

when generalizing to “in-the-wild” images [9, 33], however

it provides much-needed flexibility in the generation pro-

cess and ensures a deterministic connection from an image

to its label. Alternatively, other methods [16, 43] proposed

to generate training data by employing existing reconstruc-

tion algorithms and regarding their results as ground-truth
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labels. For example, Güler et al. [16], used a framework

similar to that of [48] to match dense correspondence maps

to a dataset of facial images, starting from only a sparse set

of landmarks. These correspondence maps were then used

as training labels for their method. Notice that such data

can also be used for training our network without requiring

any other modification.

3.2. Image to Geometry Translation

Pixel-wise prediction requires a proper network archi-

tecture [30, 17]. The proposed structure is inspired by

the recent Image-to-Image translation framework proposed

in [22], where a network was trained to map the input im-

age to output images of various types. The architecture used

there is based on the U-net [35] layout, where skip connec-

tions are used between corresponding layers in the encoder

and the decoder. Additional considerations as to the net-

work implementation are given in the supplementary.

While in [22] a combination of L1 and adversarial loss

functions were used, in the proposed framework, we chose

to omit the adversarial loss. That is because unlike the prob-

lems explored in [22], our setup includes less ambiguity in

the mapping. Hence, a distributional loss function is less

effective, and mainly introduces artifacts. Still, since the

basic L1 loss function favors sparse errors in the depth pre-

diction and does not account for differences between pixel

neighborhoods, it is insufficient for producing fine geomet-

ric structures, see Figure 5b. Hence, we propose to aug-

ment the loss function with an additional L1 term, which

penalizes the discrepancy between the normals of the re-

constructed depth and ground truth.

LN (ẑ, z) = ‖~n (ẑ)− ~n (z)‖1 , (1)

where ẑ is the recovered depth, and z denotes the ground-

truth depth image. During training we set λL1
= 100 and

λN = 10, where λL1
and λN are the matching loss weights.

Note that for the correspondence image only the L1 loss was

applied. Figure 5 demonstrates the contribution of the LN

to the quality of the depth reconstruction provided by the

network.

(a) (b) (c)

Figure 5: (a) the input image, (b) the result with only the L1

loss function and (c) the result with the additional normals

loss function. Note the artifacts in (b).

4. From Representations to a Mesh

Based on the resulting depth and correspondence we in-

troduce an approach to translate the 2.5D representation to

a 3D facial mesh. The procedure is composed of an iterative

elastic deformation algorithm (4.1) followed by a fine detail

recovery step driven by the input image (4.2). The resulting

output is an accurate reconstructed facial mesh with a full

vertex correspondence to a template mesh with fixed trian-

gulation. This type of data is helpful for various dynamic

facial processing applications, such as facial rigs, which al-

lows creating and editing photo-realistic animations of ac-

tors. As a byproduct, this process also corrects the pre-

diction of the network by completing domains in the face

which are mistakenly classified as part of the background.

4.1. Non­Rigid Registration

Next, we describe the iterative deformation-based regis-

tration pipeline. First, we turn the depth map from the net-

work into a mesh, by connecting neighboring pixels. Based

on the correspondence map from the network, we compute

the affine transformation from a template face to the mesh.

This operation is done by minimizing the squared Euclidean

distances between corresponding vertex pairs. Next, sim-

ilar to [28], an iterative non-rigid registration process de-

forms the transformed template, aligning it with the mesh.

Note that throughout the registration, only the template is

warped, while the target mesh remains fixed. Each iteration

involves the following four steps.

1. Each vertex in the template mesh, vi ∈ V , is associ-

ated with a vertex, ci, on the target mesh, by evalu-

ating the nearest neighbor in the correspondence em-

bedding space. This step is different from the method

described in [28], which computes the nearest neigh-

bor in the Euclidean space. As a result, the proposed

step allows registering a single template face to differ-

ent facial identities with arbitrary expressions.

2. Pairs, (vi, ci), which are physically distant and those

whose normal directions disagree are detected and ig-

nored in the next step.

3. The template mesh is deformed by minimizing the fol-

lowing energy

E(V,C) = αp2point

∑

(vi,ci)∈J

‖vi − ci‖
2
2

+αp2plane

∑

(vi,ci)∈J

|~n(ci)(vi − ci)|
2

+αmemb

∑

i∈V

∑

vj∈N (vi)

wi,j‖vi − vj‖
2
2,

(2)

where, wi,j is the weight corresponding to the bihar-

monic Laplacian operator (see [21, 5]), ~n(ci) is the
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normal of the corresponding vertex at the target mesh

ci, J is the set of the remaining associated vertex pairs

(vi, ci), and N (vi) is the set 1-ring neighboring ver-

tices about the vertex vi. Notice that the first term

above is the sum of squared Euclidean distances be-

tween matches. The second term is the distance from

the point vi to the tangent plane at the corresponding

point of the target mesh. The third term quantifies the

stiffness of the mesh.

4. If the motion of the template mesh between the current

iteration and the previous one is below a fixed thresh-

old, we divide the weight αmemb by two. This relaxes

the stiffness term and allows a greater deformation in

the next iteration.

This iterative process terminates when the stiffness weight

is below a given threshold. Further implementation infor-

mation and parameters of the registration process are pro-

vided in the supplementary material. The resulting output

of this phase is a deformed template with fixed triangula-

tion, which contains the overall facial structure recovered

by the network, yet, is smoother and complete, see the third

column of Figure 9.

4.2. Fine Detail Reconstruction

Although the network already recovers some fine geo-

metric details, such as wrinkles and moles, across parts

of the face, a geometric approach can reconstruct details

at a finer level, on the entire face, independently of the

resolution. Here, we propose an approach motivated by

the passive-stereo facial reconstruction method suggested

in [3]. The underlying assumption here is that subtle geo-

metric structures can be explained by local variations in the

image domain. For some skin tissues, such as nevi, this as-

sumption is inaccurate as the intensity variation results from

the albedo. In such cases, the geometric structure would be

wrongly modified. Still, for most parts of the face, the re-

constructed details are consistent with the actual variations

in depth.

The method begins from an interpolated version of the

deformed template. Each vertex v ∈ VD is painted with the

intensity value of the nearest pixel in the image plane. Since

we are interested in recovering small details, only the high

spatial frequencies, µ(v), of the texture, τ(v), are taken into

consideration in this phase. For computing this frequency

band, we subtract the synthesized low frequencies from the

original intensity values. This low-pass filtered part can be

computed by convolving the texture with a spatially vary-

ing Gaussian kernel in the image domain, as originally pro-

posed. In contrast, since this convolution is equivalent to

computing the heat distribution upon the shape after time

dt, where the initial heat profile is the original texture, we

Figure 6: Mesoscopic displacement. From left to right:

an input image, the shape after the iterative registration,

the high-frequency part of the texture - µ(v), and the final

shape.

propose to compute µ(v) as

µ(v) = τ(v)− (I − dt ·∆g)
−1τ(v), (3)

where I is the identity matrix, ∆g is the cotangent weight

discrete Laplacian operator for triangulated meshes [31],

and dt is a scalar proportional to the cut-off frequency of

the filter.

Next, we displace each vertex along its normal direction

such that v′ = v + δ(v)~n(v). The step size of the displace-

ment, δ(v), is a combination of a data-driven term, δµ(v),
and a regularization one, δs(v). The data-driven term is

guided by the high-pass filtered part of the texture, µ(v). In

practice, we require the local differences in the geometry to

be proportional to the local variation in the high frequency

band of the texture. For each vertex v, with a normal ~n(v),
and a neighboring vertex vi, the data-driven term is given

by

δµ(v) =

∑

vi∈N (v)

α(v,vi) (µ(v)− µ(vi))
(

1− |〈v−vi,~n(v)〉|
‖v−vi‖

)

∑

vi∈N (v)

α(v,vi)
,

(4)

where α(v,vi) = exp (−‖v − vi‖). For further explanation

of Equation 4, we refer the reader to the supplementary

material of this paper or the implementation details of [3].

Since we move each vertex along the normal direction,

triangles could intersect each other, particularly in domains

of high curvature. To reduce the probability of such col-

lisions, a regularizing displacement field, δs(v), is added.

This term is proportional to the mean curvature of the orig-

inal surface, and is equivalent to a single explicit mesh fair-

ing step [11]. The final surface modification is given by

v′ = v + (ηδµ(v) + (1− η)δs(v)) · ~n(v), (5)

for some constant η ∈ [0, 1]. A demonstration of the results

before and after this step is presented in Figure 6

5. Experiments

Next, we present evaluations on both the proposed net-

work and the pipeline as a whole, and comparison to differ-

ent prominent methods of single image based facial recon-

struction [26, 49, 34].
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Figure 7: Network Output.

Figure 8: Texture mapping via the embedding.

5.1. Qualitative Evaluation

The first component of our algorithm is an Image-to-

Image network. In Figure 7, we show samples of output

maps produced by the proposed network. Although the

network was trained with synthetic data, with simple ran-

dom backgrounds (see Figure 4), it successfully separates

the hair and background from the face itself and learns the

corresponding representations. To qualitatively assess the

accuracy of the correspondence, we present a visualiza-

tion where an average facial texture is mapped to the im-

age plane via the predicted embedding, see Figure 8, this

shows how the network successfully learns to represent the

facial structure. Next, in Figure 9 we show the reconstruc-

tion of the network, alongside the registered template and

the final shape. Notice how the structural information re-

trieved by the network is preserved through the geometric

stages. Figure 10 shows a qualitative comparison between

the proposed method and others. One can see that our

method better matches the global structure, as well as the

facial details. To better perceive these differences, see Fig-

ure 11. Finally, to demonstrate the limited expressiveness

of the 3DMM space compared to our method, Figure 12

presents our registered template next to its projection onto

the 3DMM space. This clearly shows that our network is

able to learn structures which are not spanned by the 3DMM

model.

5.2. Quantitative Evaluation

For a quantitative comparison, we used the first 200 sub-

jects from the BU-3DFE dataset [45], which contains fa-

cial images aligned with ground truth depth images. Each

method provides its own estimation for the depth image

alongside a binary mask, representing the valid pixels to

be taken into account in the evaluation. Obviously, since

the problem of reconstructing depth from a single image is

ill-posed, the estimation needs to be judged up to global

scaling and transition along the depth axis. Thus, we com-

pute these paramters using the Random Sample Concensus

(RANSAC) approach [13], for normalizing the estimation

according to the ground truth depth. This significantly re-

duces the absolute error of each method as the global pa-

rameter estimation is robust to outliers. Note that the pa-

rameters of the RANSAC were identical for all the methods

and samples. The results of this comparison are given in Ta-

ble 1, where the units are given in terms of the percentile of

the ground-truth depth range. As a further analysis of the

reconstruction accuracy, we computed the mean absolute

error of each method based on expressions, see Table 2.

Figure 9: The reconstruction stages. From left to right: the

input image, the reconstruction of the network, the regis-

tered template and the final shape.
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Input Proposed [34] [26] [49] Proposed [34] [26] [49]

Figure 10: Qualitative comparison. Input images are presented alongside the reconstructions of the different methods.

Input Proposed [34] [26] [49]

Figure 11: Zoomed qualitative result of first and fourth sub-

jects from Figure 10.

5.3. The Network as a Geometric Constraint

As demonstrated by the results, the proposed network

successfully learns both the depth and the embedding rep-

resentations for a variety of images. This representation is

the key part behind the reconstruction pipeline. However,

it can also be helpful for other face-related tasks. As an

example, we show that the network can be used as a ge-

ometric constraint for facial image manipulations, such as

transforming synthetic images into realistic ones. This idea

Mean Err. Std Err. Median Err. 90% Err.

[26] 3.89 4.14 2.94 7.34

[49] 3.85 3.23 2.93 7.91

[34] 3.61 2.99 2.72 6.82

Ours 3.51 2.69 2.65 6.59

Table 1: Quantitative evaluation on the BU-3DFE Dataset.

From left to right: the absolute depth errors evaluated by

mean, standard deviation, median and the average ninety

percent largest error.

AN DI FE HA NE SA SU

[26] 3.47 4.03 3.94 4.30 3.43 3.52 4.19

[49] 4.00 3.93 3.91 3.70 3.76 3.61 3.96

[34] 3.42 3.46 3.64 3.41 4.22 3.59 4.00

Ours 3.67 3.34 3.36 3.01 3.17 3.37 4.41

Table 2: The mean error by expression. From left to right:

Anger, Disgust, Fear, Happy, Neutral, Sad, Surprise.

is based on recent advances in applying Generative Adver-

sarial Networks (GAN) [15] for domain adaption tasks [41].

In the basic GAN framework, a Generator Network (G)

learns to map from the source domain, DS , to the target do-

main DT , where a Discriminator Network (D) tries to dis-
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Figure 12: 3DMM Projection. From left to right: the input

image, the registered template, the projected mesh and the

projection error.

tinguish between generated images and samples from the

target domain, by optimizing the following objective

min
G

max
D

V (D,G) = Ey∼DT
[logD (y)] (6)

+ Ex∼DS
[log (1−D (G (x)))] .

Theoretically, this framework could also translate im-

ages from the synthetic domain into the realistic one. How-

ever, it does not guarantee that the underlying geometry of

the synthetic data is preserved throughout that transforma-

tion. That is, the generated image might look realistic, but

have a completely different facial structure from the syn-

thetic input. To solve that potential inconsistency, we sug-

gest to involve the proposed network as an additional loss

function on the output of the generator.

LGeom (x) = ‖Net (x)−Net (G (x))‖1 , (7)

where Net(·) represents the operation of the introduced net-

work. Note that this is feasible, thanks to the fact that the

proposed network is fully differentiable. The additional ge-

ometric fidelity term forces the generator to learn a map-

ping that makes a synthetic image more realistic while keep-

ing the underlying geometry intact. This translation pro-

cess could potentially be useful for data generation proce-

dures, similarly to [38]. Some successful translations are

visualized in Figure 13. Notice that the network implicitly

learns to add facial hair and teeth, and modify the texture

the and shading, without changing the facial structure. As

demonstrated by this analysis, the proposed network learns

a strong representation that has merit not only for recon-

struction, but for other tasks as well.

6. Limitations

One of the core ideas of this work was a model-free

approach, where the solution space is not restricted by a

low dimensional subspace. Instead, the Image-to-Image

Figure 13: Translation results. From top to bottom: syn-

thetic input images, the correspondence and the depth maps

recovered by the network, and the transformed result.

network represents the solution in the extremely high-

dimensional image domain. This structure is learned from

synthetic examples, and shown to successfully generalize to

“in-the-wild” images. Still, facial images that significantly

deviate from our training domain are challenging, resulting

in missing areas and errors inside the representation maps.

More specifically, our network has difficulty handling ex-

treme occlusions such as sunglasses, hands or beards, as

these were not seen in the training data. Similarly to other

methods, reconstructions under strong rotations are also not

well handled. Reconstructions under such scenarios are

shown in the supplementary material. Another limiting fac-

tor of our pipeline is speed. While the suggested network

by itself can be applied efficiently, our template registration

step is currently not optimized for speed and can take a few

minutes to converge.

7. Conclusion

We presented an unrestricted approach for recovering the

geometric structure of a face from a single image. Our algo-

rithm employs an Image-to-Image network which maps the

input image to a pixel-based geometric representation, fol-

lowed by geometric deformation and refinement steps. The

network is trained only by synthetic facial images, yet, is

capable of reconstructing real faces. Using the network as a

loss function, we propose a framework for translating syn-

thetic facial images into realistic ones while preserving the

geometric structure.
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