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Abstract

Low-rank and sparse representation based methods have

attracted wide attention in background subtraction and

moving object detection, where moving objects in the scene

are modeled as pixel-wise sparse outliers. Since in real sce-

narios moving objects are also structurally sparse, recently

researchers have attempted to extract moving objects us-

ing structured sparse outliers. Although existing methods

with structured sparsity-inducing norms produce promis-

ing results, they are still vulnerable to various illumination

changes that frequently occur in real environments, specif-

ically for time-lapse image sequences where assumptions

about sparsity between images such as group sparsity are

not valid. In this paper, we first introduce a prior map ob-

tained by illumination invariant representation of images.

Next, we propose a low-rank and invariant sparse decom-

position using the prior map to detect moving objects under

significant illumination changes. Experiments on challeng-

ing benchmark datasets demonstrate the superior perfor-

mance of our proposed method under complex illumination

changes.

1. Introduction

Moving object segmentation from an image sequence or

a video stream is a fundamental problem in various appli-

cations of computer vision such as visual surveillance [20],

traffic monitoring [5], object-based video encoding and so-

cial signal processing [22] where the accuracy of segmen-

tation can significantly affect the overall performance of

the application. However, current solutions are vulnera-

ble to various illumination changes frequently occurring in

real environments and are often not able to distinguish be-

tween changes caused by illumination and those caused by

moving objects in the scene. Currently, many surveillance

systems, specifically those that use security cameras and

wildlife monitoring cameras, capture a scene using a mo-

 

 

 

 

Figure 1. first row: selected images from an image sequence cap-

tured by a motion triggered camera for wildlife monitoring. sec-

ond row: detected foreground objects of our method.

tion trigger sensor or timer-lapse photography in order to

detect moving objects of interest over time. Since captured

images by these cameras are in different time of a day with

different illumination and weather conditions, their process-

ing is challenging. Fig. 1 shows an example of this kind of

images and illustrates the problem of object detection un-

der significant illumination changes. The first row in Fig.1

shows selected images captured by a motion-trigger camera

for wildlife monitoring and the second row shows the re-

sults of our method described in this paper to detect moving

objects from the images.

Recent years have seen the development of a new group

of methods, based on low-rank and sparse decomposition,

under one major assumption that images in a sequence

are correlated. Methods in this group follow the basic

idea from [17] where the principal component analysis

(PCA) for background modeling was proposed. Extending

this idea, current methods exploit the fact that the back-

ground model in an image sequence can be defined as a

low-rank matrix by those pixels that are temporally cor-

related [4]. Many methods have been proposed based on

this idea for background subtraction and foreground detec-

tion [10, 7, 18]. But, moving object detection in a time lapse

video is different from that in a regular video due to the dis-

continuous object motion and significant lighting change.

While existing solutions can handle discontinuous object

motion, they are not able to distinguish between moving

objects and background changes due to illumination.

In this paper, we offer a solution to the problem within

the low-rank approximation (LRA) framework that specifi-
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cally addresses this challenge. We formulate the problem in

a unified framework named Low-rank and Invariant Sparse

Decomposition (LISD). Since changes due to illumination

and shadow are easily lumped with moving objects and de-

tected as the sparse outliers in the low-rank formulation,

first we compute a prior map using illumination invariant

representation of images to provide information about the

effect of illumination. Then we define two penalty terms

based on the prior map to decompose an image into three

parts: the background model, illumination changes, and

moving objects. The key to our solution is incorporating

the prior information in the LRA framework. The corre-

sponding optimization problem can be readily solved with

existing tools. We also propose an iterative version of LISD

(ILISD) to improve the performance of LISD by updating

the prior map. Since we use two representations (grayscale

and illumination invariant representations), the prior map in

ILISD is updated iteratively from the results of each repre-

sentation that is used as a constraint in another representa-

tion. We also propose a new dataset consists of time-lapse

videos which are challenging to exiting methods and we use

them to demonstrate the superiority of our solution.

The remainder of the paper is organized as follows. Re-

lated works on moving object detection using low-rank and

sparse decomposition are summarized in Section 2. Sec-

tion 3 explains the details of our low-rank and invariant

sparse decomposition method for foreground detection in

time-lapse videos under significant illumination changes.

Experimental results and discussion are presented in Sec-

tion 4, and concluding remarks in Section 5.

2. Moving object detection using low-rank and

sparse decomposition

Recently, one approach to moving object detection at-

tempts to decompose a matrix D of the observed image se-

quence into a low-rank matrix L and a sparse matrix S so as

to recover background and foreground [1]. The problem can

be solved by the well known robust principal component

analysis (RPCA), which has been widely studied. Based on

different constraints on S, RPCA methods can be catego-

rized into different groups. Candes et al. [4] used l1-norm

to constrain the sparse matrix by the following convex opti-

mization.

min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

where ‖L‖∗ denotes the nuclear norm of matrix L - i.e., the

sum of its singular values - and ‖S‖1 is the l1-norm of S.

Following this approach, Zhou et al. [27] proposed approx-

imated RPCA methods GoDec and semi-soft GoDec (SS-

GoDec) to accelerate the decomposition. Wang et al. [23]

proposed a propabilistic matrix factorization (PRMF) using

Laplace error and Gaussian prior, which correspond to an l1
loss and l2 regularizer, respectively.

To improve the performance of moving object detec-

tion, some other constraints have been recently imposed on

sparse matrix S using prior knowledge of spatial continu-

ity of objects [10, 7]. Guyon et al. [10] proposed the low-

rank and block sparse matrix decomposition (RPCA-LBD)

using l2,1-norm as a spatial continuity to enforce the block-

sparsity of the foreground. Although the method is more

robust than conventional RPCA in the presence of illumina-

tion changes, the block-sparsity property is unable to model

sparse outliers or filter out significant illumination changes

and moving shadows. Besides, in the case of time-lapse

video or low frame rate image sequences, where consecu-

tive frames are captured with a large time-interval the posi-

tion of an object in each frame is discontinuous from other

frames and l2,1-norm cannot handle the situation.

Another group of methods used the connectivity con-

straint on moving objects [26, 24, 28, 18, 25, 15]. Xu

et al. [26] proposed an online subspace update method

GOSUS that defines an objective function with a super-

pixel method to achieve sparsity of the groups. Wang et

al. [24] proposed a full Bayesian robust matrix factoriza-

tion (BRMF). They further extended it by assuming that the

outliers form clusters with close within-group spatial prox-

imity which correspond to moving objects. This is achieved

by placing a first-order Markov random field (MRF) [12],

and the method is referred to as Markov BRMF or MBRMF.

Zhou et al. [28] proposed DECOLOR by assuming that

the moving objects are also small. Under this constraint,

a sequential implementation of DECOLOR to moving ob-

ject detection (COROLA) is proposed [18]. Due to use

of GMM, COROLA can deal with background changes.

Although COROLA improves the accuracy of moving ob-

ject detection compared to DECOLOR, it is still not able

to handle severe illumination changes and moving shadow,

especially in a low frame-rate image sequence. Follow-

ing the connectivity constraint, Liu et al. [15] proposed a

method using a structured sparsity norm [16] based on 3×3
overlapping-patch groups. Since the foreground is usually

spatially contiguous in each image, computing the maxi-

mum values of each group promotes the structural distri-

bution of sparse outliers during the minimization. They

also used a motion saliency map to distinguish the fore-

ground object from background motion. Using this saliency

map, the method is robust in the case of background mo-

tion and sudden illumination change in the image sequence.

However [15] cannot handle severe illumination changes or

moving shadows in time-lapse videos where the foreground

objects are completely stochastic as are shadow and illumi-

nation changes.

In this paper, we introduce a prior map for outliers and

we use this prior information in a new formulation for mov-

ing object detection under the framework of low-rank rep-

resentation and invariant sparse outliers. Due to use of this
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prior map in our formulation as a penalty term, the proposed

method significantly improves foreground detection in the

case of moving shadows and severe illumination changes.

3. Low-rank and invariant sparse decomposi-

tion

Our proposed formulation seeks to decompose a data

matrix D into a low-rank background matrix L, sparse il-

lumination change matrix C, and sparse foreground matrix

S as follows.

D = L+ C + S (2)

In (2), C and S are considered as outliers. Since both of

them are stochastic in time-lapse video or low frame rate

image sequences, separating them is an ill-posed problem.

We address this challenge by using an illumination invari-

ant representation of an image, which serves as a prior for

outliers in our formulation. This prior enables us to have

a pattern for estimating C and S through the optimization

as will be detailed in Section 3.1. Then in Section 3.2 we

introduce our formulation to detect moving objects under

significant illumination changes and in Section 3.3 we de-

scribe a solution to the formulation.

3.1. Initialization of the prior map

In this section we focus on obtaining the prior informa-

tion, which enables us to distinguish between moving ob-

jects and illumination changes in our proposed formulation.

In the case of time-lapse images, shadows and illumina-

tion changes are unstructured phenomena and most of the

time they are mistakenly considered as moving objects. Il-

lumination invariant and shadow free images have been well

studied and many methods have been proposed. One of the

most popular methods for this task is proposed by Finlayson

et al. [8]. This method assumes the camera sensor sensitiv-

ities are Dirac delta functions and illumination can be mod-

eled by Planck’s law. For removing the effect of illumina-

tion, [8] computes the two-vector log-chromaticity χ′ using

red, green and blue channels. Finlayson et al. [8] showed

that by changing illumination, χ′ moves along a straight line

e roughly. Projecting the vector χ′ onto the vector orthog-

onal to e, which is called invariant direction, we obtain the

invariant representation I = χ′e⊥. The best direction for e
can be found by minimizing Shannon’s entropy [8].

Although this method works with the mentioned as-

sumptions for some real images, in case of significant illu-

mination changes, specially if the assumptions do not hold,

χ′ necessarily does not move along a straight line. This is-

sue causes two major problems in the invariant representa-

tion I . First, χ′ vectors of the same material under different

illumination are not projected to the same location in the

orthogonal vector and therefore, the method cannot remove
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Figure 2. (a):log-chromaticity vectors of pixels from one mate-

rial in different illumination condition, (b) Columns from left to

right: two images with extreme illumination changes, their corre-

sponding invariant image I , and their corresponding final invariant

representation Iinv

the effect of illumination accurately. Secondly, in the pro-

cess of projection onto the orthogonal direction of illumina-

tion variation, some pixels with the same log-chromaticity

but from different objects are projected to the same location

in the orthogonal vector, and the invariant representation re-

moves much meaningful information about the image, espe-

cially around edges.

Although the first issue would be problematic for an indi-

vidual image, if we have an image sequence, corresponding

pixels of the images in invariant representation are corre-

lated to each other and therefore those pixels can be cap-

tured in a low-rank matrix. Fig. 2(a) shows the details of

this concept. Four different locations but from one mate-

rial are selected. Sample points with the same color show

log-chromaticity of corresponding pixels from the selected

locations in a sequence of images with different illumina-

tion. Assuming that the camera is fixed, the invariant di-

rection between images is roughly similar. Black circles

in Fig. 2(a) show the projected pixels of the same material

from all images to the average invariant directions of all im-

ages, where corresponding pixels of all images with differ-

ent illumination are projected to one coordinate or are close

to each other in invariant representation. In other words, the

corresponding pixels of all images under different illumina-

tion are correlated.

To alleviate the effect of the second issue for preserving

the structural imformation of images, we extract invariant

features Ĩ from each image using Wiener filter, which has

been used successfully for face recognition in [6]. Wiener

filter decomposes a signal into its components from two sta-

tionary processes with different autocorrelation functions,

where the Fourier transform of the autocorrelation function

is the power spectrum density in the frequency domain. [6]

showed that this method retains features at every frequency.

We add Ĩ to the invariant image I . This final invariant rep-

resentation is called Iinv . Fig. 2(b) shows the effect of

adding the invariant features Ĩ to the invariant representa-

tion I . First column shows two images from one scene with

the light switch on/off and the second column shows the
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corresponding invariant image I . Last column illustrates

Iinv , the results of adding invariant features Ĩ to the invari-

ant image I . To combine Ĩ and I , we use simple weighted

averaging similar to [19].

Now, to construct the prior map formally, let D ∈ Rm×n

be an observed matrix (an image sequence in our problem),

where each column of matrix D is a vectorized image from

the sequence with m pixels, and n is the total number of im-

ages in the sequence. Then the following function convert

all Di images i = 1, 2, .., n to the invariant representation

Dinv .
Dinv = Ω(D) (3)

where Dinv ∈ Rm×n be a matrix of all vectorized invariant

representations Iinvt
, t = 1, 2, ...n. We can decompose

matrix Dinv into low-rank matrix Linv and sparse matrix

Sinv using optimization, so that all illumination variations

are absorbed into the low-rank matrix Linv .

min
Linv,Sinv

‖Linv‖∗+λinv‖Sinv‖1 s.t.Dinv=Linv+Sinv (4)

To solve (4) we use inexact augmented Lagrangian mul-

tiplier (ALM) [13]. Optimization problem (4) can account

for most of the illumination and shadow changes with the

low-rank part and for the moving objects with the sparse

part Sinv . Finally, we can use Sinv to build the prior map Φ
as follows.

Φ =
1

1 + e−α(|Sinv|−σ)
(5)

where σ shows the standard deviation of corresponding pix-

els in Dinv , and α is a constant. We use the prior map Φ,

to define two penalty terms in the LRA framework to ex-

tract the invariant sparse outliers as moving object, as will

be explained in the next section.

3.2. Lowrank and invariant sparse decomposition

To detect moving objects in time-lapse videos under se-

vere illumination changes, standard low-rank method is in-

sufficient because we need to separate illumination changes

and moving shadows from real changes and both of them

are sparse outliers. To do so, we define a constraint based on

the prior knowledge from illumination invariant representa-

tion introduced in the previous section. In particular, real

changes should be included in the subspace that is orthogo-

nal to the illumination change subspace. Since outliers are

completely independent in different frames of a low frame-

rate image sequence, real changes in the ith frame should

satisfy the following properties.

(Φ⊥
i )

T |Si| = 0, ΦT
i |Ci| = 0 (6)

where Φ⊥
i = [1]m×1−Φi, is the complement of Φi. Sparse

S and C are the detected objects and illumination changes

in the grayscale domain.

To formalize the prior knowledge from illumination in-

variant representation on the outliers, we propose Low-rank

and Invariant Sparse Decomposition (LISD) method, as fol-

lows.

min
L,S,C

‖L‖∗ + λ(‖S‖1 + ‖C‖1) + γΨ(S,C,Φ)

s.t. D = L+ S + C (7)

where ‖L‖∗ is the nuclear norm, i.e. the sum of the singular

values, and it approximates the rank of L. S and C are

detected foreground and illumination changes, respectively.

Ψ(S,C,Φ) =
∑

i(Φ
⊥
i )

T |Si|+
∑

i Φ
T
i |Ci|, is the geometric

constraint function. To make the problem more tractable,

the geometric constraint Ψ can be relaxed to the penalty

terms Σi‖GiCi‖2F , and Σi‖G⊥
i Si‖2F so that (7) becomes

min
L,S,C

‖L‖∗ + λ(‖S‖1 + ‖C‖1) + γΣi(‖GiCi‖2F + ‖G⊥
i Si‖2F )

s.t. D = L+ S + C (8)

where λ and γ are positive parameters and Gi =
diag[

√
Φ1i;

√
Φ2i; ...;

√
Φmi].

3.3. Optimization algorithm

In order to solve (8), we use inexact ALM method [13],

and start by computing the augmented Lagrangian function

L(L, S,C, Y ;µ), given by

L(L, S,C, Y ;µ)=‖L‖∗+λ(‖S‖1+‖C‖1)+γΣi(‖GiCi‖2F
+‖G⊥

i Si‖2F )+ < Y,D − L− S − C >

+
µ

2
‖D − L− S − C‖2F

= ‖L‖∗ + λ(‖S‖1 + ‖C‖1)−
1

2µ
‖Y ‖2F

+h(L, S,C, Y, µ) (9)

where < A,B >= trace(ATB), µ is a positive scalar, Y
is a Lagrangian multiplier matrix, and h(L, S,C, Y, µ) =
Σi(

µ
2 ‖Di−Li−Si−Ci+

Yi

µ
‖2F+γ‖GiCi‖2F+γ‖G⊥

i Si‖2F )
is a quadratic function. We optimize (9) by updating each

of the variables L, S, C, and Y in turn, iteratively until

convergence.

Updating Lk+1: From (9), the augmented Lagrangian re-

duces to the following form:

Lk+1= argmin
L

‖L‖∗+
µ

2
‖Lk−(D−Sk− Ck−Y k

µ
)‖2F (10)

The subproblem (10) has the closed-form solution by ap-

plying the singular value thresholding algorithm [3], with

the soft-thresholding shrinkage operator Sǫ(x), which is de-

fined as Sǫ(x) = max(0, x− ǫ), where x ≥ 0 and ǫ ≥ 0.

Updating Sk+1: From (9), the augmented Lagrangian re-

duces to

min
S

λ‖S‖1 + h(L, S,C, µ) (11)
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Since h(L, S,C, µ) is a quadratic function, it is conve-

nient to use the linearization technique of the LADMAP

method [14] to update Sk+1 by replacing the quadratic term

h with its first order approximation, computed at iteration k
and add a proximal term giving the following update.

Sk+1= argmin
S

λ‖S‖1+Σi(
ηµ

2
‖Si− Sk

i +[−µ(Di−Lk+1
i

−Sk
i −Ck

i +
Y k
i

µ
)+ 2γ(G⊥

i )
TG⊥

i S
k
i ]/(ηµ)‖2F ) (12)

Updating Ck+1: From (9), the augmented Lagrangian re-

duces to

min
S

λ‖C‖1 + h(L, S,C, µ) (13)

Similar to (11) we use the LADMAP method to update

Ck+1 by giving the following update

Ck+1= argmin
C

λ‖C‖1+Σi(
ηµ

2
‖Ci−Ck

i +[−µ(Di−Lk+1
i

−Sk+1
i − Ck

i +
Y k

µ
) + 2γGT

i GiC
k
i ]/(ηµ)‖2F ) (14)

The error is computed as‖D−Lk−Sk−Ck‖F /‖D‖F . The

loop stops when the error reaches the value lower than 10−5.

3.4. Updating the prior map

In our proposed LISD method, we first compute a prior

map from illumination invariant representation of images

and then use the map to separate foreground from back-

ground and illumination changes in the grayscale represen-

tation of images. Although LISD provides satisfactory re-

sults in our experiments, still we can improve the perfor-

mance by updating the prior map (5) iteratively. We refer to

this iterative version as Iterative LISD (ILISD). In ILISD,

the first step is exactly similar to LISD where we compute

the prior map in one representation and use it in another rep-

resentation. Ideally, moving object in both representations

should build similar prior maps. Using this assumption, we

compute the second prior map Φinv from the result of LISD

to use in illumination invariant representation. To do it, we

rewrite (4) similar to (7) as follows.

min
Linv,Sinv,Cinv

‖Linv‖∗ + λinv(‖Sinv‖1 + ‖Cinv‖1)

+γΨ(Sinv, Cinv,Φinv)

s.t. Dinv = Linv + Sinv + Cinv (15)

where Ψ is defined the same as (7) but for illumination in-

variant representation. Φinv is computed similar to (5) us-

ing the obtained S from LISD method. To solve (15) we use

the same idea that we have described on grayscale images

from (9) to (14). Generally speaking in ILISD the obtained

map from each representation is used into another represen-

tation in the next iteration until convergence. The conver-

gence criterion is ‖Sj+1 − Sj‖F /‖Sj‖F < 10−5. All

details about ILISD are described in Algorithm 1.

Algorithm 1 Iterative Low-rank and Invariant Sparse De-

composition via Inexact ALM (ILISD)

Input: Observation matrix D, Φinv = [1]m×n, Parameters λ,γ,η,
1: computing invariant representation Dinv according to Section 3.1

2: while not converged do

3: [Lj+1
inv, S

j+1
inv, C

j+1
inv ] = LISD(Dinv ,Φinv , λ, γ, µinv)

4: compute Φ according to (5) using Sj+1
inv

5: [Lj+1, Sj+1, Cj+1] = LISD(D,Φ, λ, γ, µ)
6: compute Φinv according to (5) using Sj+1; j = j + 1
7: end while

Output Lj , Sj , Cj

function [Lk, Sk, Ck] = LISD(D,Φ, λ, γ, µ)
8: while not converged do

9: (U,Σ, V )=svd(D−Sk−Ck + µ−1Y k) //lines 9-10 solve (10)

10: Lk+1 = US(1/µ)(Σ)V T

11: Compute for all coulmns i //lines 11-13 solve (12)

12: tempSi = Sk
i + [µ(Di − Lk+1

i − Sk
i − Ck

i + µ−1Y k
i )

−2γ(G⊥
i )TG⊥

i Sk
i ]/(ηµ)]

13: Sk+1 = Sλ/(ηµ)(tempS), tempS = [tempS1, ..., tempSn]
14: Compute for all coulmns i //lines 14-16 solve (14)

15: tempCi = Ck
i + [µ(Di −Lk+1

i − Sk+1
i −Ck

i + µ−1Y k
i )

−2γGT
i GiC

k
i ]/(ηµ)]

16: Ck+1= Sλ/(ηµ)(tempC), tempC= [tempC1, ..., tempCn]

17: Y = Y + µ(D − Lk+1 − Sk+1 − Ck+1)
18: µ = ρµ; k = k + 1
19: end while

Output Lk, Sk, Ck

4. Experimental Results and Discussion

Our main application of interest is moving object detec-

tion in time-lapse videos with varing illumination. There-

fore, we evaluate our method under two increasingly dif-

ficult conditions. First, we use datasets that contain mov-

ing objects and significant illumination changes or shadows

but in real-time sequences with continuous object motion.

Secondly, we use a challenging dataset that contains mov-

ing objects, illumination, and shadows, where images are

captured via time-lapse or motion-trigger photography with

large inter-image time intervals. In this case, the position of

an object between two consecutive images may not be con-

tinuous. This is a common phenomenon in many long-term

surveillance applications such as wildlife monitoring. Since

real benchmark datasets only contain the first condition, we

have built a new dataset which contains the second condi-

tion and use it in this paper. Then we perform two sets of

experiments on benchmark and the newly proposed dataset.

4.1. Experiment Setup

Benchmark datasets: We evaluate our proposed method on

selected sequences from the CDnet dataset [9], Wallflower

dataset [21], and I2R dataset [11]. Since the goal of the

experiments is to illustrate the ability of our method to

detect real changes from illumination changes, we select

sequences with varying illumination or moving shadows.

From CDnet dataset four sequences are in this category de-
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Figure 3. Selected images from each sequence of ICD.

Dataset Sequences Size × Number of frames

Illumination Changes Wildlife1 [508,358] × 194

Dataset (ICD) Wildlife2 [508,358] × 225

Wildlife3 [508,358] × 136

WinterStreet [460,240] × 75

MovingSunlight [640,360] × 237

Table 1. Details of all sequences of ICD

picting indoor and outdoor scenes exhibiting moderate il-

lumination changes and moving shadows. We also use se-

quences “Camouflage” and “LightSwitch” from Wallflower

dataset and image sequence “Lobby” from I2R dataset,

which include images with global and sudden illumination

changes.

Illumination change dataset (ICD): In this paper we intro-

duce the dataset that we have built, which includes five im-

age sequences with severe illumination changes. Selected

images from these sequences are shown in Fig. 3, and the

number of images and the image size of each sequence are

described in Table 1. Some of these images are without any

object and just illumination change. The sequences of ICD

are divided into two groups. The first three sequences are

captured using a motion triggered camera for the wildlife

monitoring application on different days. The last two se-

quences are taken with time-lapse photography of a large

time interval to record changes of a scene that take place

over time, which is common for many surveillance appli-

cations. Moving objects in the first sequence are under ex-

treme sunlight or heavy shadow. Color of the objects in the

second sequence are similar to the background or shadow

and since illumination is changing, separating them is a dif-

ficult task. The third sequence shows objects with different

size under varying illumination. The fourth sequence shows

global illumination changes with moving shadows and the

last row shows the sequence of images with moving objects

while a strong moving sunbeam changes illumination of the

scene. For each sequence among those frames that moving

objects are available, we selected 15 frames with highest

illumination changes. The ground truths of these selected

frames were generated manually.

Evaluation metric: For quantitative evaluation, the perfor-

mance metric pixel-level F−measure = 2 recall×precision
recall+precision

is used [2].

4.2. Evaluation on benchmark datasets

In the first set of experiments we use the sequences from

benchmark datasets corresponding to Section 4.1 to eval-

uate the proposed method. We compare LISD as an in-

termediate results of our method and ILISD with the six

related RPCA algorithms, namely SemiSoft GoDec (SS-

GoDec) [27], PRMF [23], PCP [4], Markov BRMF [24],

DECOLOR [28], and LSD [15].

Table 2 shows performance of LISD and ILISD in com-

parison with the competing methods in terms of F-measure.

The proposed method obtains the best average F-measure

against all the other methods, and for the all sequences our

method ranked among the top two of all methods. The first

four rows of Table 2 are from CDnet dataset and our method

has superior performance. The last three rows of Table 2 are

from “Wallflower” and “I2R” datasets. For the “Camou-

flage” sequence a large object comes to the scene and there-

fore the global illumination is changed. In this case, only

DECOLOR, LSD and our method detect the foreground ob-

ject relatively well. LSD uses a structured sparsity term by

selecting a maximum value of outliers in a specific neigh-

borhood for pixels in each iteration. So it can keep the

connectivity of outliers and classifies the foreground better

than our method. Although we can use the structured spar-

sity term in our formulation instead of l1-norm, the solution

becomes significantly slow. For two sequences “Camou-

flage” and “LightSwitch” only one frame has ground-truth

and the results are based on just one frame and cannot be

reliable for the whole sequence; however, our method still

is in the second place. For the “lobby” sequence ground-

truth is available for some selected frames, but none of them

show the ground-truth while illumination is changing. In

this sequence the accuracy of our method is still in the sec-

ond place and the accuracy of DECOLOR is a little better

than ours.

4.3. Evaluation on ICD

In the second set of experiments we evaluate our pro-

posed method on the sequences from ICD which has the

most challenging condition and compare them with compet-

ing methods. Fig. 4 shows the results of our method to de-

Sequence SSGoDec PRMF Decolor PCP BRMF LSD LISD ILISD

Backdoor 0.6611 0.7251 0.7656 0.7594 0.6291 0.7603 0.8015 0.8150

CopyMachine 0.5401 0.6834 0.7511 0.6798 0.3293 0.8174 0.7832 0.8179

Cubicle 0.3035 0.3397 0.5503 0.4978 0.3746 0.4232 0.7201 0.6887

PeopleInShade 0.2258 0.5163 0.5559 0.6583 0.3313 0.6168 0.6733 0.8010

Camouflage 0.6452 0.6048 0.8125 0.3388 0.6048 0.9456 0.8605 0.8663

LightSwitch 0.3804 0.2922 0.5782 0.8375 0.2872 0.6640 0.6904 0.7128

Lobby 0.0831 0.6256 0.7983 0.6240 0.3161 0.7313 0.7830 0.7849

Table 2. Comparison of F-measure score between our proposed

method and other compared methods on benchmark sequences

(Best F-measure: Bold, Second best F-measure: Underline)
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Figure 4. First row: two sample images with different illumination for each sequence. Second row: sparse outliers C. Third row: detected

objects S.

     Input              Ground-truth          SSGoDec                PRMF                    PCP                  MBRMF             DECOLOR                 LSD                      ILISD      

 

 

Figure 5. Comparison of qualitative results between our method and six competing methods on selected images of sequence ”Wildlife3”.

       Input             Ground-truth         SSGoDec                 PRMF                   PCP                    MBRMF             DECOLOR                  LSD                      ILISD      

 

Figure 6. Comparison of qualitative results between our method and six competing methods on selected images of sequence ”WinterStreet”.

tect objects and separating them from illumination changes.

In the first row of Fig. 4, two samples per sequence are

shown where real changes and illumination changes occur

at the same time. The second and the third rows show the

sparse outliers of C and S, respectively. Based on our ex-

periments most of illumination changes can be classified

as the outliers C and the real changes are separated into

matrix S. To show the capability of the proposed method,

we compare qualitatively and quantitatively the results of

our method with the results of the competing six sparse de-

composition methods. As a sample, we show the compar-

ison of qualitative results on selected images of sequence

“Wildlife3”. Since the illumination variations in the time-

lapse image sequences are significant, we show five images

of the sequence in Fig. 5 to provide a better comparison.

The second and the fourth rows depict heavy illumination

changes, and all competing methods fail to detect objects.

In the first, the third, and the last rows of Fig. 5, where the

illumination is relatively unchanged, PCP and DECOLOR

can show relatively meaningful results. However, both of
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Figure 7. Comparison of qualitative results between our method and competing methods on selected images of sequence ”MovingSunlight”

Sequence SSGoDec PRMF PCP MBRMF DECOLOR LSD LISD ILISD

Wildlife1 0.2826 / 0.2113 0.2586 / 0.2000 0.5968 / 0.2042 0.2679 / 0.2117 0.3409 / 0.2834 0.6480 / 0.1302 0.7747 / 0.0557 0.8033 / 0.0416

Wildlife2 0.2585 / 0.1369 0.4141 / 0.2324 0.6430 / 0.0996 0.2654 / 0.1410 0.3517 / 0.2200 0.3899 / 0.1659 0.7168 / 0.0625 0.7277 / 0.0298

Wildlife3 0.0753 / 0.0722 0.0754 / 0.0745 0.3124 / 0.2656 0.0510 / 0.0441 0.1019 / 0.0929 0.0871 / 0.0825 0.7318 / 0.1269 0.7398 / 0.1234

WinterStreet 0.1120 / 0.0752 0.1677 / 0.1433 0.1766 / 0.1021 0.0871 / 0.0440 0.4575 / 0.2509 0.1604 / 0.1086 0.6869 / 0.0824 0.6931 / 0.0928

MovingSunlight 0.2926 / 0.1927 0.2925 / 0.1732 0.3451 / 0.1387 0.2426 / 0.1403 0.3466 / 0.2590 0.3593 / 0.2426 0.6163 / 0.1393 0.6475 / 0.1601

Table 3. Comparison of F-measure score between our proposed method and other compared methods on ICD sequences

them are not reliable over the entire sequence.

We also compare the results of ILISD with the results

of other competing methods on two more sequences ”Win-

terStreet” and ”MovingSunlight”. For the first one, global

illumination changes and for the second one, sunbeam is

moving. The comparison results of these two sequences

are shown in Figs. 6 and 7, respectively. Fig. 6 shows that

only DECOLOR can be comparable with our method for se-

quence ”WinterStreet” and all other methods fail. As Fig. 7

shows, although all competing methods can detect the fore-

ground in the last row the same as our method, all of them

make many false positives and even cannot show meaning-

ful results for the first four rows.

For quantitative evaluation on all sequences of ICD, Ta-

ble 3 shows the F-measure of the competing methods on the

five sequences in ICD. For each sequence we also compute

standard deviations of all results that can show the reliabil-

ity of each method for clear conclusions on the performance

of the proposed method. The numerical results demonstrate

that our method can provide better performance in handling

such illumination changes than other competing methods in

time-lapse videos.

5. Conclusion

In this paper, we have proposed a novel method named

LISD to detect moving objects in a time-lapse video using

the framework of low-rank and sparse decomposition. In

our proposed method, first a prior map is built based on an

illumination invariant representation and then the obtained

prior map is used into the proposed low-rank and invari-

ant sparse decomposition framework to extract foreground

under severe illumination changes. We also have proposed

an iterative version of LISD by updating the prior map in

one representation and impose it as a constraint into the

LISD formulation with another representation. Based on

our extensive experiments on real data sequences from pub-

lic datasets, we are able to establish that LISD and ILISD

achieve the best performance in comparison with all eval-

uated methods including the state-of-the-art methods. We

have also constructed novel datasets involving time-lapse

sequences with significant illumination changes, which will

be publicly upon publication of this paper. Currently, many

security and wildlife monitoring cameras use a motion trig-

ger sensors or timer-lapse photography. The problem of

moving object detection in these cases cannot be solved

by existing methods and we proposed a new formulation to

solve the problem with a great improvement in comparison

with the existing methods.

Despite its satisfactory performance in all our experi-

ments, a challenge facing our proposed method is dynamic

background. The reason is our proposed method uses l1-

norm for outliers without any structural constraint. In the

future, we plan to develop a version of LISD that can work

with dynamic background.

Acknowledgements

This work was supported by the Natural Sciences and En-
gineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN) and by Alberta
Innovates Technology Future (AITF).

5130



References

[1] T. Bouwmans and E. H. Zahzah. Robust pca via principal

component pursuit: A review for a comparative evaluation

in video surveillance. Computer Vision and Image Under-

standing, 122:22–34, 2014. 2
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