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Abstract

Low-rank and sparse representation based methods have

attracted wide attention in background subtraction and

moving object detection, where moving objects in the scene

are modeled as pixel-wise sparse outliers. Since in real sce-

narios moving objects are also structurally sparse, recently

researchers have attempted to extract moving objects us-

ing structured sparse outliers. Although existing methods

with structured sparsity-inducing norms produce promis-

ing results, they are still vulnerable to various illumination

changes that frequently occur in real environments, specif-

ically for time-lapse image sequences where assumptions

about sparsity between images such as group sparsity are

not valid. In this paper, we first introduce a prior map ob-

tained by illumination invariant representation of images.

Next, we propose a low-rank and invariant sparse decom-

position using the prior map to detect moving objects under

significant illumination changes. Experiments on challeng-

ing benchmark datasets demonstrate the superior perfor-

mance of our proposed method under complex illumination

changes.

1. Introduction

Moving object segmentation from an image sequence or

a video stream is a fundamental problem in various appli-

cations of computer vision such as visual surveillance [20],

traffic monitoring [5], object-based video encoding and so-

cial signal processing [22] where the accuracy of segmen-

tation can significantly affect the overall performance of

the application. However, current solutions are vulnera-

ble to various illumination changes frequently occurring in

real environments and are often not able to distinguish be-

tween changes caused by illumination and those caused by

moving objects in the scene. Currently, many surveillance

systems, specifically those that use security cameras and

wildlife monitoring cameras, capture a scene using a mo-

 

 

 

 

Figure 1. first row: selected images from an image sequence cap-

tured by a motion triggered camera for wildlife monitoring. sec-

ond row: detected foreground objects of our method.

tion trigger sensor or timer-lapse photography in order to

detect moving objects of interest over time. Since captured

images by these cameras are in different time of a day with

different illumination and weather conditions, their process-

ing is challenging. Fig. 1 shows an example of this kind of

images and illustrates the problem of object detection un-

der significant illumination changes. The first row in Fig.1

shows selected images captured by a motion-trigger camera

for wildlife monitoring and the second row shows the re-

sults of our method described in this paper to detect moving

objects from the images.

Recent years have seen the development of a new group

of methods, based on low-rank and sparse decomposition,

under one major assumption that images in a sequence

are correlated. Methods in this group follow the basic

idea from [17] where the principal component analysis

(PCA) for background modeling was proposed. Extending

this idea, current methods exploit the fact that the back-

ground model in an image sequence can be defined as a

low-rank matrix by those pixels that are temporally cor-

related [4]. Many methods have been proposed based on

this idea for background subtraction and foreground detec-

tion [10, 7, 18]. But, moving object detection in a time lapse

video is different from that in a regular video due to the dis-

continuous object motion and significant lighting change.

While existing solutions can handle discontinuous object

motion, they are not able to distinguish between moving

objects and background changes due to illumination.

In this paper, we offer a solution to the problem within

the low-rank approximation (LRA) framework that specifi-
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cally addresses this challenge. We formulate the problem in

a unified framework named Low-rank and Invariant Sparse

Decomposition (LISD). Since changes due to illumination

and shadow are easily lumped with moving objects and de-

tected as the sparse outliers in the low-rank formulation,

first we compute a prior map using illumination invariant

representation of images to provide information about the

effect of illumination. Then we define two penalty terms

based on the prior map to decompose an image into three

parts: the background model, illumination changes, and

moving objects. The key to our solution is incorporating

the prior information in the LRA framework. The corre-

sponding optimization problem can be readily solved with

existing tools. We also propose an iterative version of LISD

(ILISD) to improve the performance of LISD by updating

the prior map. Since we use two representations (grayscale

and illumination invariant representations), the prior map in

ILISD is updated iteratively from the results of each repre-

sentation that is used as a constraint in another representa-

tion. We also propose a new dataset consists of time-lapse

videos which are challenging to exiting methods and we use

them to demonstrate the superiority of our solution.

The remainder of the paper is organized as follows. Re-

lated works on moving object detection using low-rank and

sparse decomposition are summarized in Section 2. Sec-

tion 3 explains the details of our low-rank and invariant

sparse decomposition method for foreground detection in

time-lapse videos under significant illumination changes.

Experimental results and discussion are presented in Sec-

tion 4, and concluding remarks in Section 5.

2. Moving object detection using low-rank and

sparse decomposition

Recently, one approach to moving object detection at-

tempts to decompose a matrix D of the observed image se-

quence into a low-rank matrix L and a sparse matrix S so as

to recover background and foreground [1]. The problem can

be solved by the well known robust principal component

analysis (RPCA), which has been widely studied. Based on

different constraints on S, RPCA methods can be catego-

rized into different groups. Candes et al. [4] used l1-norm

to constrain the sparse matrix by the following convex opti-

mization.

min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

where ‖L‖∗ denotes the nuclear norm of matrix L - i.e., the

sum of its singular values - and ‖S‖1 is the l1-norm of S.

Following this approach, Zhou et al. [27] proposed approx-

imated RPCA methods GoDec and semi-soft GoDec (SS-

GoDec) to accelerate the decomposition. Wang et al. [23]

proposed a propabilistic matrix factorization (PRMF) using

Laplace error and Gaussian prior, which correspond to an l1
loss and l2 regularizer, respectively.

To improve the performance of moving object detec-

tion, some other constraints have been recently imposed on

sparse matrix S using prior knowledge of spatial continu-

ity of objects [10, 7]. Guyon et al. [10] proposed the low-

rank and block sparse matrix decomposition (RPCA-LBD)

using l2,1-norm as a spatial continuity to enforce the block-

sparsity of the foreground. Although the method is more

robust than conventional RPCA in the presence of illumina-

tion changes, the block-sparsity property is unable to model

sparse outliers or filter out significant illumination changes

and moving shadows. Besides, in the case of time-lapse

video or low frame rate image sequences, where consecu-

tive frames are captured with a large time-interval the posi-

tion of an object in each frame is discontinuous from other

frames and l2,1-norm cannot handle the situation.

Another group of methods used the connectivity con-

straint on moving objects [26, 24, 28, 18, 25, 15]. Xu

et al. [26] proposed an online subspace update method

GOSUS that defines an objective function with a super-

pixel method to achieve sparsity of the groups. Wang et

al. [24] proposed a full Bayesian robust matrix factoriza-

tion (BRMF). They further extended it by assuming that the

outliers form clusters with close within-group spatial prox-

imity which correspond to moving objects. This is achieved

by placing a first-order Markov random field (MRF) [12],

and the method is referred to as Markov BRMF or MBRMF.

Zhou et al. [28] proposed DECOLOR by assuming that

the moving objects are also small. Under this constraint,

a sequential implementation of DECOLOR to moving ob-

ject detection (COROLA) is proposed [18]. Due to use

of GMM, COROLA can deal with background changes.

Although COROLA improves the accuracy of moving ob-

ject detection compared to DECOLOR, it is still not able

to handle severe illumination changes and moving shadow,

especially in a low frame-rate image sequence. Follow-

ing the connectivity constraint, Liu et al. [15] proposed a

method using a structured sparsity norm [16] based on 3×3
overlapping-patch groups. Since the foreground is usually

spatially contiguous in each image, computing the maxi-

mum values of each group promotes the structural distri-

bution of sparse outliers during the minimization. They

also used a motion saliency map to distinguish the fore-

ground object from background motion. Using this saliency

map, the method is robust in the case of background mo-

tion and sudden illumination change in the image sequence.

However [15] cannot handle severe illumination changes or

moving shadows in time-lapse videos where the foreground

objects are completely stochastic as are shadow and illumi-

nation changes.

In this paper, we introduce a prior map for outliers and

we use this prior information in a new formulation for mov-

ing object detection under the framework of low-rank rep-

resentation and invariant sparse outliers. Due to use of this
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prior map in our formulation as a penalty term, the proposed

method significantly improves foreground detection in the

case of moving shadows and severe illumination changes.

3. Low-rank and invariant sparse decomposi-

tion

Our proposed formulation seeks to decompose a data

matrix D into a low-rank background matrix L, sparse il-

lumination change matrix C, and sparse foreground matrix

S as follows.

D = L+ C + S (2)

In (2), C and S are considered as outliers. Since both of

them are stochastic in time-lapse video or low frame rate

image sequences, separating them is an ill-posed problem.

We address this challenge by using an illumination invari-

ant representation of an image, which serves as a prior for

outliers in our formulation. This prior enables us to have

a pattern for estimating C and S through the optimization

as will be detailed in Section 3.1. Then in Section 3.2 we

introduce our formulation to detect moving objects under

significant illumination changes and in Section 3.3 we de-

scribe a solution to the formulation.

3.1. Initialization of the prior map

In this section we focus on obtaining the prior informa-

tion, which enables us to distinguish between moving ob-

jects and illumination changes in our proposed formulation.

In the case of time-lapse images, shadows and illumina-

tion changes are unstructured phenomena and most of the

time they are mistakenly considered as moving objects. Il-

lumination invariant and shadow free images have been well

studied and many methods have been proposed. One of the

most popular methods for this task is proposed by Finlayson

et al. [8]. This method assumes the camera sensor sensitiv-

ities are Dirac delta functions and illumination can be mod-

eled by Planck’s law. For removing the effect of illumina-

tion, [8] computes the two-vector log-chromaticity χ′ using

red, green and blue channels. Finlayson et al. [8] showed

that by changing illumination, χ′ moves along a straight line

e roughly. Projecting the vector χ′ onto the vector orthog-

onal to e, which is called invariant direction, we obtain the

invariant representation I = χ′e⊥. The best direction for e
can be found by minimizing Shannon’s entropy [8].

Although this method works with the mentioned as-

sumptions for some real images, in case of significant illu-

mination changes, specially if the assumptions do not hold,

χ′ necessarily does not move along a straight line. This is-

sue causes two major problems in the invariant representa-

tion I . First, χ′ vectors of the same material under different

illumination are not projected to the same location in the

orthogonal vector and therefore, the method cannot remove

Figure 2. (a):log-chromaticity vectors of pixels from one mate-

rial in different illumination condition, (b) Columns from left to

right: two images with extreme illumination changes, their corre-

sponding invariant image I , and their corresponding final invariant

representation I inv

the effect of illumination accurately. Secondly, in the pro-

cess of projection onto the orthogonal direction of illumina-

tion variation, some pixels with the same log-chromaticity

but from different objects are projected to the same location

in the orthogonal vector, and the invariant representation re-

moves much meaningful information about the image, espe-

cially around edges.

Although the first issue would be problematic for an indi-

vidual image, if we have an image sequence, corresponding

pixels of the images in invariant representation are corre-

lated to each other and therefore those pixels can be cap-

tured in a low-rank matrix. Fig. 2(a) shows the details of

this concept. Four different locations but from one mate-

rial are selected. Sample points with the same color show

log-chromaticity of corresponding pixels from the selected

locations in a sequence of images with different illumina-

tion. Assuming that the camera is fixed, the invariant di-

rection between images is roughly similar. Black circles

in Fig. 2(a) show the projected pixels of the same material

from all images to the average invariant directions of all im-

ages, where corresponding pixels of all images with differ-

ent illumination are projected to one coordinate or are close

to each other in invariant representation. In other words, the

corresponding pixels of all images under different illumina-

tion are correlated.

To alleviate the effect of the second issue for preserving

the structural imformation of images, we extract invariant

features Ĩ from each image using Wiener filter, which has

been used successfully for face recognition in [6]. Wiener

filter decomposes a signal into its components from two sta-

tionary processes with different autocorrelation functions,

where the Fourier transform of the autocorrelation function

is the power spectrum density in the frequency domain. [6]

showed that this method retains features at every frequency.

We add Ĩ to the invariant image I . This final invariant rep-

resentation is called Iinv . Fig. 2(b) shows the effect of

adding the invariant features Ĩ to the invariant representa-

tion I . First column shows two images from one scene with

the light switch on/off and the second column shows the
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