
DSOD: Learning Deeply Supervised Object Detectors from Scratch

Zhiqiang Shen∗1, Zhuang Liu∗2, Jianguo Li3, Yu-Gang Jiang1, Yurong Chen3, Xiangyang Xue1

1Fudan University, 2Tsinghua University, 3Intel Labs China

{zhiqiangshen13, ygj, xyxue}@fudan.edu.cn, liuzhuangthu@gmail.com

{jianguo.li, yurong.chen}@intel.com

Abstract

We present Deeply Supervised Object Detector (DSOD),

a framework that can learn object detectors from scratch.

State-of-the-art object objectors rely heavily on the off-

the-shelf networks pre-trained on large-scale classification

datasets like ImageNet, which incurs learning bias due to

the difference on both the loss functions and the category

distributions between classification and detection tasks.

Model fine-tuning for the detection task could alleviate this

bias to some extent but not fundamentally. Besides, trans-

ferring pre-trained models from classification to detection

between discrepant domains is even more difficult (e.g. RGB

to depth images). A better solution to tackle these two criti-

cal problems is to train object detectors from scratch, which

motivates our proposed DSOD. Previous efforts in this di-

rection mostly failed due to much more complicated loss

functions and limited training data in object detection. In

DSOD, we contribute a set of design principles for training

object detectors from scratch. One of the key findings is that

deep supervision, enabled by dense layer-wise connections,

plays a critical role in learning a good detector. Combining

with several other principles, we develop DSOD following

the single-shot detection (SSD) framework. Experiments on

PASCAL VOC 2007, 2012 and MS COCO datasets demon-

strate that DSOD can achieve better results than the state-

of-the-art solutions with much more compact models. For

instance, DSOD outperforms SSD on all three benchmarks

with real-time detection speed, while requires only 1/2 pa-

rameters to SSD and 1/10 parameters to Faster RCNN.

1. Introduction

Convolutional Neural Networks (CNNs) have produced

impressive performance improvements in many computer

vision tasks, such as image classification [17, 28, 32, 9, 10],

object detection [5, 4, 27, 19, 21, 25], image segmenta-

∗indicates equal contribution. This work was done when Zhiqiang Shen

and Zhuang Liu were interns at Intel Labs China. Jianguo Li is the corre-

sponding author.

tion [23, 8, 2, 36], etc. In the past several years, many

innovative CNN network structures have been proposed.

Szegedy et al. [32] propose an “Inception” module which

concatenates features maps produced by various sized fil-

ters. He et al. [9] propose residual learning blocks with skip

connections, which enable training very deep networks with

more than 100 layers. Huang et al. [10] propose DenseNets

with dense layer-wise connections. Thanks to these excel-

lent network structures, the accuracy of many vision tasks

has been greatly improved. Among them, object detection

is one of the fastest moving areas due to its wide applica-

tions in surveillance, autonomous driving, etc.

In order to achieve good performance, most of the ad-

vanced object detection systems fine-tune networks pre-

trained on ImageNet [3]. This fine-tuning process is also

viewed as transfer learning [24]. Fine-tuning from pre-

trained models has at least two advantages. First, there are

many state-of-the-art deep models publicly available. It is

very convenient to reuse them for object detection. Sec-

ond, fine-tuning can quickly generate the final model and re-

quires much less instance-level annotated training data than

the classification task.

However, there are also critical limitations when adopt-

ing the pre-trained networks in object detection: (1) Limited

structure design space. The pre-trained network models are

mostly from ImageNet-based classification task, which are

usually very heavy — containing a huge number of parame-

ters. Existing object detectors directly adopt the pre-trained

networks, and as a result there is little flexibility to con-

trol/adjust the network structures (even for small changes

of network structure). The requirement of computing re-

sources is also bounded by the heavy network structures.

(2) Learning bias. As both the loss functions and the cate-

gory distributions between classification and detection tasks

are different, we argue that this will lead to different search-

ing/optimization spaces. Therefore, learning may be biased

towards a local minimum which is not the best for detection

task. (3) Domain mismatch. As is known, fine-tuning can

mitigate the gap due to different target category distribu-

tion. However, it is still a severe problem when the source

1919

Plain Connection Dense Connection

Scale 1

38×38

Scale 2

19×19

Scale 3

10×10

Scale 4

5×5

Scale 5

3×3

Scale 6

1×1

1×1 Conv

2×2 Pooling

1×1 Conv

2×2 Pooling

1×1 Conv

2×2 Pooling

1×1 Conv

2×2 Pooling

1×1 Conv

2×2 Pooling

1×1×256 conv

Stride 1

3×3×512 conv

Stride 2

1×1×128 conv

Stride 1

3×3×256 conv

Stride 2

1×1×128 conv

Stride 1

3×3×256 conv

Stride 2

1×1×128 conv

Stride 1

3×3×256 conv

Stride 2

1×1×256 conv

Stride 1

3×3×256 conv

Stride 2

1×1×128 conv

Stride 1

3×3×128 conv

Stride 2

1×1×128 conv

Stride 1

3×3×128 conv

Stride 2

1×1×128 conv

Stride 1

3×3×128 conv

Stride 2

C

C

C

C

C

: down-sampling block

C : concatenation operation

Figure 1: DSOD prediction layers with plain and dense structures (300×300 input). Plain structure is introduced by SSD [21]. See Sec. 3 for more details.

domain (ImageNet) has a huge mismatch to the target do-

main such as depth images, medical images, etc [7].

Our work is motivated by the following two questions.

First, is it possible to train object detection networks from

scratch? Second, if the first answer is positive, are there any

principles to design a resource efficient network structure

for object detection while keeping high detection accuracy?

To meet this goal, we propose deeply supervised objection

detectors (DSOD), a simple yet efficient framework which

could learn object detectors from scratch. DSOD is fairly

flexible, so that we can tailor various network structures for

different computing platforms such as server, desktop, mo-

bile and even embedded devices.

We contribute a set of principles for designing DSOD.

One key point is that deep supervision plays a critical role,

which is motivated by the work of [18, 35]. In [35], Xie et

al. proposed a holistically-nested structure for edge detec-

tion, which included the side-output layers to each conv-

stage of base network for explicit deep supervision. In-

stead of using the multiple cut-in loss signals with side-

output layers, this paper adopts deep supervision implic-

itly through the dense layer-wise connections proposed in

DenseNet [10]. Dense structures are not only adopted in the

backbone sub-network, but also in the front-end multi-scale

prediction layers. Figure 1 illustrates the structure compar-

ison in front-end prediction layers. The fusion and reuse

of multi-resolution prediction-maps help keep or even im-

prove the final accuracy while reducing model parameters

to some extent.

Our main contributions are summarized as follows:

(1) We present DSOD, to the best of our knowledge, the

first framework that can train object detection net-

works from scratch with state-of-the-art performance,

even with limited training data.

(2) We introduce and validate a set of principles to de-

sign efficient object detection networks from scratch

through step-by-step ablation studies.

(3) We show that our DSOD can achieve state-of-the-art

performance on three standard benchmarks (PASCAL

VOC 2007, 2012 and MS COCO datasets) with real-

time processing speed and more compact models.

2. Related Work

Object Detection. State-of-the-art CNN based object de-

tection methods can be divided into two groups: (i) region

proposal based methods and (ii) proposal-free methods.

Proposal based methods include R-CNN [5], Fast R-

CNN [4], Faster R-CNN [27] and R-FCN [19]. R-CNN

uses selective search [34] to first generate potential ob-

ject regions in an image and then perform classification on

the proposed regions. R-CNN requires high computational

costs since each region is processed by the CNN network

separately. Fast R-CNN and Faster R-CNN improve the ef-

ficiency by sharing computation and using neural networks

to generate the region proposals. R-FCN further improves

speed and accuracy by removing fully-connected layers and

adopting position-sensitive score maps for final detection.

Proposal-free methods like YOLO [25] and SSD [21]

have recently been proposed for real-time detection. YOLO

uses a single feed-forward convolutional network to directly

predict object classes and locations. Comparing with the

region-based methods, YOLO no longer requires a second

per-region classification operation so that it is extremely

fast. SSD improves YOLO in several aspects, including (1)

using small convolutional filters to predict categories and

1920

Layers Output Size (Input 3×300 × 300) DSOD

Stem

Convolution 64×150×150 3×3 conv, stride 2

Convolution 64×150×150 3×3 conv, stride 1

Convolution 128×150×150 3×3 conv, stride 1

Pooling 128×75×75 2×2 max pool, stride 2

Dense Block

(1)
416×75×75



1 × 1 conv

3 × 3 conv

]

× 6

Transition Layer

(1)

416×75×75 1×1 conv

416×38×38 2×2 max pool, stride 2

Dense Block

(2)
800×38×38



1 × 1 conv

3 × 3 conv

]

× 8

Transition Layer

(2)

800×38×38 1×1 conv

800×19×19 2×2 max pool, stride 2

Dense Block

(3)
1184×19×19



1 × 1 conv

3 × 3 conv

]

× 8

Transition w/o Pooling Layer (1) 1120×19×19 1×1 conv

Dense Block

(4)
1568×19×19



1 × 1 conv

3 × 3 conv

]

× 8

Transition w/o Pooling Layer (2) 1568×19×19 1×1 conv

DSOD Prediction Layers – Plain/Dense

Table 1: DSOD architecture (growth rate k = 48 in each dense block).

anchor offsets for bounding box locations; (2) using pyra-

mid features for prediction at different scales; and (3) using

default boxes and aspect ratios for adjusting varying object

shapes. Our proposed DSOD is built upon the SSD frame-

work and thus it inherits the speed and accuracy advantages

of SSD, while produces smaller and more flexible models.

Network Architectures for Detection. Significant efforts

have been devoted to the design of network architectures for

image classification. Many different networks are emerged,

such as AlexNet [17], VGGNet [28], GoogLeNet [32],

ResNet [9] and DenseNet [10]. Meanwhile, several regular-

ization techniques [29, 12] have also been proposed to fur-

ther enhance the model capabilities. Most detection meth-

ods [5, 4, 27, 21] directly utilize pre-trained ImageNet mod-

els as the backbone network.

Some other works design specific backbone network

structures for object detection, but still require pre-training

the network on ImageNet classification dataset first. For

instance, YOLO [25] defines a network with 24 con-

volutional layers followed by 2 fully connected layers.

YOLO9000 [26] improves YOLO by proposing a new net-

work named Darknet-19, which is a simplified version of

VGGNet [28]. Kim et al. [15] proposes PVANet for ob-

ject detection, which consists of the simplified “Inception”

block from GoogleNet. Huang et al. [11] investigated vari-

ous combination of network structures and detection frame-

works, and found that Faster R-CNN [27] with Inception-

ResNet-v2 [31] achieved the highest performance. In this

paper, we also consider network structures for generic ob-

ject detection. However, the pre-training on ImageNet is no

longer required by the proposed DSOD.

Learning Deep Models from Scratch. To the best of our

knowledge, there are no works which train object detection

networks from scratch. The proposed approach has very

appealing advantages over existing solutions. We will elab-

orate and validate the method in the following sections. In

semantic segmentation, Jégou et al. [13] demonstrated that

a well-designed network structure can outperform state-of-

the-art solutions without using the pre-trained models. It ex-

tends DenseNets to fully convolutional networks by adding

an upsampling path to recover the full input resolution.

3. DSOD

In this section, we first introduce our DSOD architecture

and its components, and elaborate several important design

principles. Then we describe the training settings.

3.1. DSOD Architecture

Overall Framework. The proposed DSOD method is a

multi-scale proposal-free detection framework similar to

SSD [21]. The network structure of DSOD can be divided

into two parts: the backbone sub-network for feature ex-

traction and the front-end sub-network for prediction over

multi-scale response maps. The backbone sub-network is a

variant of the deeply supervised DenseNets [10] structure,

which is composed of a stem block, four dense blocks, two

transition layers and two transition w/o pooling layers. The

front-end subnetwork (or named DSOD prediction layers)

fuses multi-scale prediction responses with an elaborated

dense structure. Figure 1 illustrates the proposed DSOD

prediction layers along with the plain structure of multi-

scale predicting maps as used in SSD [21]. The full DSOD

network architecture1 is detailed in Table 1. We elaborate

each component and the corresponding design principle in

1The visualization of the complete network structure is avail-

able at: http://ethereon.github.io/netscope/#/gist/

b17d01f3131e2a60f9057b5d3eb9e04d.

1921

http://ethereon.github.io/netscope/#/gist/b17d01f3131e2a60f9057b5d3eb9e04d
http://ethereon.github.io/netscope/#/gist/b17d01f3131e2a60f9057b5d3eb9e04d

the following.

Principle 1: Proposal-free. We investigated all the state-

of-the-art CNN based object detectors, and found that they

could be divided into three categories. First, R-CNN and

Fast R-CNN require external object proposal generators like

selective search. Second, Faster R-CNN and R-FCN re-

quire integrated region-proposal-network (RPN) to gener-

ate relatively fewer region proposals. Third, YOLO and

SSD are single-shot and proposal-free methods, which han-

dle object location and bounding box coordinates as a re-

gression problem. We observe that only the proposal-free

method (the 3rd category) can converge successfully with-

out the pre-trained models. We conjecture this is due to the

RoI (Regions of Interest) pooling in the other two categories

of methods — RoI pooling generates features for each re-

gion proposals, which hinders the gradients being smoothly

back-propagated from region-level to convolutional feature

maps. The proposal-based methods work well with pre-

trained network models because the parameter initialization

is good for those layers before RoI pooling, while this is not

true for training from scratch.

Hence, we arrive at the first principle: training detection

network from scratch requires a proposal-free framework.

In practice, we derive a multi-scale proposal-free frame-

work from the SSD framework [21], as it could reach state-

of-the-art accuracy while offering fast processing speed.

Principle 2: Deep Supervision. The effectiveness

of deeply supervised learning has been demonstrated in

GoogLeNet [32], DSN [18], DeepID3 [30], etc. The cen-

tral idea is to provide integrated objective function as di-

rect supervision to the earlier hidden layers, rather than only

at the output layer. These “companion” or “auxiliary” ob-

jective functions at multiple hidden layers can mitigate the

“vanishing” gradients problem. The proposal-free detection

framework contains both classification loss and localization

loss. The explicit solution requires adding complex side-

output layers to introduce “companion” objective at each

hidden layer for the detection task, similar to [35]. Here we

empower deep supervision with an elegant & implicit so-

lution called dense layer-wise connection, as introduced in

DenseNets [10]. A block is called dense block when all pre-

ceding layers in the block are connected to the current layer.

Hence, earlier layers in DenseNet can receive additional su-

pervision from the objective function through the skip con-

nections. Although only a single loss function is required

on top of the network, all layers including the earlier layers

still can share the supervised signals unencumbered. We

will verify the benefit of deep supervision in Section 4.1.2.

Transition w/o Pooling Layer. We introduce this layer in or-

der to increase the number of dense blocks without reduc-

ing the final feature map resolution. In the original design

of DenseNet, each transition layer contains a pooling op-

eration to down-sample the feature maps. The number of

dense blocks is fixed (4 dense blocks in all DenseNet archi-

tectures) if one wants to maintain the same scale of outputs.

The only way to increase network depth is adding layers in-

side each block for the original DenseNet. The transition

w/o pooling layer eliminates this restriction of the number

of dense blocks in our DSOD architecture, and can also be

used in the standard DenseNet.

Principle 3: Stem Block. Motivated by Inception-v3 [33]

and v4 [31], we define stem block as a stack of three 3×3

convolution layers followed by a 2×2 max pooling layer.

The first conv-layer works with stride = 2 and the other two

are with stride = 1. We find that adding this simple stem

structure can evidently improve the detection performance

in our experiments. We conjecture that, compared with the

original design in DenseNet (7×7 conv-layer, stride = 2 fol-

lowed by a 3×3 max pooling, stride = 2), the stem block can

reduce the information loss from raw input images. We will

show that the reward of this stem block is significant for

detection performance in Section 4.1.2.

Principle 4: Dense Prediction Structure. Figure 1 illus-

trates the comparison of the plain structure (as in SSD) and

our proposed dense structure in the front-end sub-network.

SSD designs prediction-layers as an asymmetric hourglass

structure. For 300×300 input images, six scales of feature

maps are applied for predicting objects. The Scale-1 fea-

ture maps are from the middle layer of the backbone sub-

network, which has the largest resolution (38×38) in order

to handle the small objects in an image. The remaining five

scales are on top of the backbone sub-network. Then, a

plain transition layer with the bottleneck structure (a 1×1

conv-layer for reducing the number of feature maps plus a

3×3 conv-layer) [33, 9] is adopted between two contiguous

scales of feature maps.

Learning Half and Reusing Half. In the plain structure as

in SSD (see Figure 1), each later scale is directly transited

from the adjacent previous scale. We propose the dense

structure for prediction, which fuses multi-scale informa-

tion for each scale. For simplicity, we restrict that each

scale outputs the same number of channels for the predic-

tion feature maps. In DSOD, in each scale (except scale-

1), half of the feature maps are learned from the previ-

ous scale with a series of conv-layers, while the remaining

half feature maps are directly down-sampled from the con-

tiguous high-resolution feature maps. The down-sampling

block consists of a 2×2, stride = 2 max pooling layer fol-

lowed by a 1×1, stride = 1 conv-layer. The pooling layer

aims to match resolution to current size during concatena-

tion. The 1×1 conv-layer is used to reduce the number of

channels to 50%. The pooling layer is placed before the

1×1 conv-layer for the consideration of reducing comput-

ing cost. This down-sampling block actually brings each

scale with the multi-resolution feature maps from all of its

preceding scales, which is essentially identical to the dense

1922

DSOD300

transition w/o pooling?

hi-comp factor θ?

wide bottleneck?

wide 1st conv-layer?

big growth rate?

stem block?

dense pred-layers?

VOC 2007 mAP 59.9 61.6 64.5 68.6 69.7 74.5 77.3 77.7

Table 2: Effectiveness of various designs on VOC 2007 test set. Please

refer to Table 3 and Section 4.1 for more details.

layer-wise connection introduced in DenseNets. For each

scale, we only learn half of new feature maps and reuse

the remaining half of the previous ones. This dense pre-

diction structure can yield more accurate results with fewer

parameters than the plain structure, as will be studied in

Section 4.1.

3.2. Training Settings

We implement our detector based on the Caffe frame-

work [14]. All our models are trained from scratch with

SGD solver on NVidia TitanX GPU. Since each scale of

DSOD feature maps is concatenated from multiple resolu-

tions, we adopt the L2 normalization technique [22] to scale

the feature norm to 20 on all outputs. Note that SSD only

applies this normalization to scale-1. Most of our training

strategies follow SSD, including data augmentation, scale

and aspect ratios for default boxes and loss function (e.g.,

smooth L1 loss for localization purpose and softmax loss

for classification purpose), while we have our own learning

rate scheduling and mini-batch size settings. Details will be

given in the experimental section.

4. Experiments

We conduct experiments on the widely used PASCAL

VOC 2007, 2012 and MS COCO datasets that have 20, 20,

80 object categories respectively. Object detection perfor-

mance is measured by mean Average Precision (mAP).

4.1. Ablation Study on PASCAL VOC2007

We first investigate each component and design principle

of our DSOD framework. The results are mainly summa-

rized in Table 2 and Table 3. We design several controlled

experiments on PASCAL VOC 2007 with our DSOD300

(with 300×300 inputs) for this ablation study. A consistent

setting is imposed on all the experiments, unless when some

components or structures are examined. In this study, we

train the models with the combined training set from VOC

2007 trainval and 2012 trainval (“07+12”), and test

on the VOC 2007 testset.

4.1.1 Configurations in Dense Blocks

We first investigate the impact of different configurations in

dense blocks of the backbone sub-network.

Compression Factor in Transition Layers. We compare

two compression factor values (θ = 0.5, 1) in the transition

layers of DenseNets. Results are shown in Table 3 (rows

2 and 3). Compression factor θ = 1 means that there is no

feature map reduction in the transition layer, while θ = 0.5

means half of the feature maps are reduced. Results show

that θ = 1 yields 2.9% higher mAP than θ = 0.5.

Channels in bottleneck layers. As shown in Table 3

(rows 3 and 4), we observe that wider bottleneck layers

(with more channels of response maps) improve the per-

formance greatly (4.1% mAP).

Channels in the 1st conv-layer We observe that a large

number of channels in the first conv-layers is beneficial,

which brings 1.1% mAP improvement (in Table 3 rows 4

and 5).

Growth rate. A large growth rate k is found to be much

better. We observe 4.8% mAP improvement in Table 3

(rows 5 and 6) when increase k from 16 to 48 with 4k bot-

tleneck channels.

4.1.2 Effectiveness of Design Principles

We now justify the effectiveness of the key design principles

elaborated earlier.

Proposal-free Framework. We tried to train object detec-

tors from scratch using the proposal-based framework such

as Faster R-CNN and R-FCN. However, the training pro-

cess failed to converge for all the network structures we at-

tempted (VGGNet, ResNet, DenseNet). We further tried

to train object detectors using the proposal-free framework

SSD. The training converged successfully but gives much

worse results (69.6% for VGG), compared with the case

fine-tuning from pre-trained model (75.8%), as shown in

Table 4. This experiment validates our design principle to

choose a proposal-free framework.

Deep Supervision. We then tried to train object detec-

tors from scratch with deep supervision. Our DSOD300

achieves 77.7% mAP, which is much better than the

SSD300S that is trained from scratch using VGG16 (69.6%)

without deep supervision. It is also much better than the

fine-tuned results by SSD300 (75.8%). This validates the

principle of deep supervision.

Transition w/o Pooling Layer. We compare the case with-

out this designed layer (only 3 dense blocks) and the case

with the designed layer (4 dense blocks in our design). The

backbone network is DS/32-12-16-0.5. Results are shown

in Table 3. The network structure with the Transition w/o

pooling layer brings 1.7% performance gain, which vali-

dates the effectiveness of this layer.

Stem Block. As can be seen in Table 3 (rows 6 and 9),

the stem block improves the performance from 74.5% to

77.3%. This validates our conjecture that using stem block

can protect information loss from the raw input images.

1923

Method data pre-train transition w/o pooling stem backbone network prediction Layer # parameters mAP

DSOD300 07+12 7 7 7 DS/32-12-16-0.5 Plain 4.1M 59.9

DSOD300 07+12 7 7 DS/32-12-16-0.5 Plain 4.2M 61.6

DSOD300 07+12 7 7 DS/32-12-16-1 Plain 5.5M 64.5

DSOD300 07+12 7 7 DS/32-64-16-1 Plain 6.1M 68.6

DSOD300 07+12 7 7 DS/64-64-16-1 Plain 6.3M 69.7

DSOD300 07+12 7 7 DS/64-192-48-1 Plain 18.0M 74.5

DSOD300 07+12 7 DS/64-12-16-1 Plain 5.2M 70.7

DSOD300 07+12 7 DS/64-36-48-1 Plain 12.5M 76.0

DSOD300 07+12 7 DS/64-192-48-1 Plain 18.2M 77.3

DSOD300 07+12 7 DS/64-64-16-1 Dense 5.9M 73.6

DSOD300 07+12 7 DS/64-192-48-1 Dense 14.8M 77.7

DSOD300 07+12+COCO 7 DS/64-192-48-1 Dense 14.8M 81.7

Table 3: Ablation study on PASCAL VOC 2007 test set. DS/A-B-k-θ describes our backbone network structure. A denotes the number of channels

in the 1st conv-layer. B denotes the number of channels in each bottleneck layer (1×1 convolution). k is the growth rate in dense blocks. θ denotes the

compression factor in transition layers. See Section 4.1 for more explanations.

Method data pre-train backbone network prediction layer speed (fps) # parameters input size mAP

Faster RCNN [27] 07+12 VGGNet - 7 134.7M ∼ 600× 1000 73.2

Faster RCNN [27] 07+12 ResNet-101 - 2.4∗ - ∼ 600× 1000 76.4

R-FCN [19] 07+12 ResNet-50 - 11 31.9M ∼ 600× 1000 77.4

R-FCN [19] 07+12 ResNet-101 - 9 50.9M ∼ 600× 1000 79.5

R-FCNmulti-sc [19] 07+12 ResNet-101 - 9 50.9M ∼ 600× 1000 80.5

YOLOv2 [26] 07+12 Darknet-19 - 81 - 352× 352 73.7

SSD300 [21] 07+12 VGGNet Plain 46 26.3M 300× 300 75.8

SSD300* [21] 07+12 VGGNet Plain 46 26.3M 300× 300 77.2

Faster RCNN 07+12 7 VGGNet/ResNet-101/DenseNet Failed

R-FCN 07+12 7 VGGNet/ResNet-101/DenseNet Failed

SSD300S† 07+12 7 ResNet-101 Plain 12.1 52.8M 300× 300 63.8∗

SSD300S† 07+12 7 VGGNet Plain 46 26.3M 300× 300 69.6

SSD300S† 07+12 7 VGGNet Dense 37 26.0M 300× 300 70.4

DSOD300 07+12 7 DS/64-192-48-1 Plain 20.6 18.2M 300× 300 77.3

DSOD300 07+12 7 DS/64-192-48-1 Dense 17.4 14.8M 300× 300 77.7

DSOD300 07+12+COCO 7 DS/64-192-48-1 Dense 17.4 14.8M 300× 300 81.7

Table 4: PASCAL VOC 2007 test detection results. SSD300* is updated version by the authors after the paper publication. SSD300S† indicates training

SSD300* from scratch with ResNet-101 or VGGNet, which serves as our baseline. Note that the speed of Faster R-CNN with ResNet-101 (2.4 fps) is tested

on K40, while others are tested on Titan X. The result of SSD300S with ResNet-101 (63.8% mAP, without the pre-trained model) is produced with the

default setting of SSD, which may not be optimal.

Dense Prediction Structure. We analyze the dense predic-

tion structure from three aspects: speed, accuracy and pa-

rameters. As shown in Table 4, DSOD with dense front-end

structure runs slightly lower than the plain structure (17.4

fps vs. 20.6 fps) on a Titan X GPU, due to the overhead

from additional down-sampling blocks. However, the dense

structure improves mAP from 77.3% to 77.7%, while re-

duces the parameters from 18.2M to 14.8M. Table 3 gives

more details (rows 9 and 10). We also tried to replace the

prediction layers in SSD with the proposed dense prediction

layers. The accuracy on VOC 2007 test set can be improved

from 75.8% (original SSD) to 76.1% (with pre-trained mod-

els), and 69.6% to 70.4% (w/o pre-trained models), when

using the VGG-16 models as backbone. This verifies the

effectiveness of the dense prediction layer.

What if pre-training on ImageNet? It is interesting to

see the performance of DSOD with backbone network pre-

trained on ImageNet. We trained one lite backbone net-

work DS/64-12-16-1 on ImageNet, which obtains 66.8%

top-1 accuracy and 87.8% top-5 accuracy on the validation-

set (slightly worse than VGG-16). After fine-tuning the

whole detection framework on “07+12” trainval set, we

achieve 70.3% mAP on the VOC 2007 test-set. The cor-

responding training-from-scratch solution achieves 70.7%

accuracy, which is even slightly better. Future work will

investigate this point more thoroughly.

4.1.3 Runtime Analysis

The inference speed is shown in the 6th column of Table 4.

With 300×300 input, our full DSOD can process an image

in 48.6ms (20.6 fps) on a single Titan X GPU with the plain

prediction structure, and 57.5ms (17.4 fps) with the dense

prediction structure. As a comparison, R-FCN runs at 90ms

(11 fps) for ResNet-50 and 110ms (9 fps) for ResNet-101.

The SSD300∗ runs at 82.6ms (12.1 fps) for ResNet-101 and

21.7ms (46 fps) for VGGNet. In addition, our model uses

about only 1/2 parameters to SSD300 with VGGNet, 1/4 to

SSD300 with ResNet-101, 1/4 to R-FCN with ResNet-101

and 1/10 to Faster R-CNN with VGGNet. A lite-version

of DSOD (10.4M parameters, w/o any speed optimization)

can run 25.8 fps with only 1% mAP drops.

4.2. Results on PASCAL VOC2007

Models are trained based on the union of VOC 2007

trainval and VOC 2012 trainval (“07+12”) follow-

ing [21]. We use a batch size of 128. Note that this batch-

size is beyond the capacity of GPU memories (even for an

8 GPU server, each with 12GB memory). We use a trick

1924

Method data backbone network pre-train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

ION [1] 07+12+S VGGNet 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5

Faster RCNN [27] 07++12 ResNet-101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

R-FCNmulti-sc [19] 07++12 ResNet-101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

YOLOv2 [26] 07++12 Darknet-19 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7

SSD300* [21] 07++12 VGGNet 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

DSOD300 07++12 DS/64-192-48-1 7 76.3 89.4 85.3 72.9 62.7 49.5 83.6 80.6 92.1 60.8 77.9 65.6 88.9 85.5 86.8 84.6 51.1 77.7 72.3 86.0 72.2

DSOD300 07++12+COCO DS/64-192-48-1 7 79.3 90.5 87.4 77.5 67.4 57.7 84.7 83.6 92.6 64.8 81.3 66.4 90.1 87.8 88.1 87.3 57.9 80.3 75.6 88.1 76.7

Table 5: PASCAL VOC 2012 test detection results. 07+12: 07 trainval + 12 trainval, 07+12+S: 07+12 plus segmentation labels, 07++12: 07

trainval + 07 test + 12 trainval. Result links are DSOD300 (07+12) : http://host.robots.ox.ac.uk:8080/anonymous/PIOBKI.

html; DSOD300 (07+12+COCO): http://host.robots.ox.ac.uk:8080/anonymous/I0UUHO.html.

Method data network pre-train
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

Faster RCNN [27] trainval VGGNet 21.9 42.7 - - - - - - - - - -

ION [1] train VGGNet 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6

R-FCN [19] trainval ResNet-101 29.2 51.5 - 10.3 32.4 43.3 - - - - - -

R-FCNmulti-sc [19] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45.0 - - - - - -

SSD300 (Huang et al.) [11] < trainval35k MobileNet 18.8 - - - - - - - - - - -

SSD300 (Huang et al.) [11] < trainval35k Inception-v2 21.6 - - - - - - - - - - -

YOLOv2 [26] trainval35k Darknet-19 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

SSD300* [21] trainval35k VGGNet 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

DSOD300 trainval DS/64-192-48-1 7 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0

Table 6: MS COCO test-dev 2015 detection results.

to overcome the GPU memory constraints by accumulat-

ing gradients over two training iterations, which has been

implemented on Caffe platform [14]. The initial learning

rate is set to 0.1, and then divided by 10 after every 20k

iterations. The training finished when reaching 100k itera-

tions. Following [21], we use a weight decay of 0.0005 and

a momentum of 0.9. All conv-layers are initialized with the

“xavier” method [6].

Table 4 shows our results on VOC2007 test set.

SSD300∗ is the updated SSD results which use the new data

augmentation technique. Our DSOD300 with plain connec-

tion achieves 77.3%, which is slightly better than SSD300∗

(77.2%). DSOD300 with dense prediction structure im-

proves the result to 77.7%. After adding COCO as training

data, the performance is further improved to 81.7%.

4.3. Results on PASCAL VOC2012

For the VOC 2012 dataset, we use VOC 2012

trainval and VOC 2007 trainval + test for train-

ing, and test on VOC 2012 test set. The initial learning

rate is set to 0.1 for the first 30k iterations, then divided

by 10 after every 20k iterations. The total training itera-

tions are 110k. Other settings are the same as those used in

our VOC 2007 experiments. Our results of DSOD300 are

shown in Table 5. DSOD300 achieves 76.3% mAP, which

is consistently better than SSD300∗ (75.8%).

4.4. Results on MS COCO

Finally we evaluate our DSOD on the MS COCO

dataset [20]. MS COCO contains 80k images for training,

40k for validation and 20k for testing (test-dev set). Fol-

lowing [27, 19], we use the trainval set (train set + val-

idation set) for training. The batch size is also set as 128.

The initial learning rate is set to 0.1 for the first 80k iter-

ations, then divided by 10 after every 60k iterations. The

total number of training iterations is 320k.

Results are summarized in Table 6. Our DSOD300

achieves 29.3%/47.3% on the test-dev set, which out-

performs the baseline SSD300∗ with a large margin. Our re-

sult is comparable to the single-scale R-FCN, and is close to

the R-FCNmulti-sc which uses ResNet-101 as the pre-trained

model. Interestingly, we observe that our result with 0.5

IoU is lower than R-FCN, but our [0.5:0.95] result is bet-

ter or comparable. This indicates that our predicted loca-

tions are more accurate than R-FCN under the larger over-

lap settings. It is reasonable that our small object detec-

tion precision is slightly lower than R-FCN since our input

image size (300×300) is much smaller than R-FCN’s (∼

600×1000). Even with this disadvantage, our large object

detection precision is still much better than R-FCN. This

further demonstrates the effectiveness of our approach. Fig-

ure 2 shows some qualitative detection examples on COCO

with our DSOD300 model.

5. Discussion

Better Model Structure vs. More Training Data. An

emerging idea in the computer vision community is that ob-

ject detection or other vision tasks might be solved with

deeper and larger neural networks backed with massive

training data like ImageNet [3]. Thus more and more large-

scale datasets have been collected and released recently,

such as the Open Images dataset [16], which is 7.5x larger in

the number of images and 6x larger of categories than that

of ImageNet. We definitely agree that, under modest as-

sumptions that given boundless training data and unlimited

computational power, deep neural networks should perform

extremely well. However, our proposed approach and ex-

perimental results imply an alternative view to handle this

problem: a better model structure might enable similar or

better performance compared with complex models trained

1925

http://host.robots.ox.ac.uk:8080/anonymous/PIOBKI.html
http://host.robots.ox.ac.uk:8080/anonymous/PIOBKI.html
http://host.robots.ox.ac.uk:8080/anonymous/I0UUHO.html

Figure 2: Examples of object detection results on the MS COCO test-dev set using DSOD300. The training data is COCO trainval without the ImageNet

pre-trained models (29.3% mAP@[0.5:0.95] on the test-dev set). Each output box is associated with a category label and a softmax score in [0, 1]. A score

threshold of 0.6 is used for displaying. For each image, one color corresponds to one object category in that image. The running time per image is 57.5ms

on one Titan X GPU or 590ms on Intel (R) Core (TM) i7-5960X CPU @ 3.00GHz.

from large data. Particularly, our DSOD is only trained with

16,551 images on VOC 2007, but achieves competitive or

even better performance than those models trained with 1.2

million + 16,551 images.

In this premise, it is worthwhile rehashing the intuition

that as datasets grow larger, training deep neural networks

becomes more and more expensive. Thus a simple yet effi-

cient approach becomes increasingly important. Despite its

conceptual simplicity, our approach shows great potential

under this setting.

Why Training from Scratch? There have been many

successful cases where model fine-tuning works greatly.

One may ask why should we train object detectors from

scratch. We argue that, as aforementioned briefly, train-

ing from scratch is of critical importance at least for two

cases. First, there may be big domain differences from pre-

trained model domain to the target one. For instance, most

pre-trained models are trained on large scale RGB image

dataset, ImageNet. It is very difficult to transfer ImageNet

model to the domains of depth images, multi-spectrum im-

ages, medical images, etc. Some advanced domain adapta-

tion techniques have been proposed. But what an amazing

thing if we have a technique which can train object detector

from scratch. Second, model fine-tuning restricts the struc-

ture design space for object detection networks. This is very

critical for the deployment of deep neural networks models

to resource-limited Internet-of-Things (IoT) scenario.

Model Compactness vs. Performance. It has often been

reported that there is a trade-off between model compact-

ness (in terms of the number of parameters) and perfor-

mance. Most CNN-based detection solutions require a huge

memory space to store the massive parameters. Therefore

the models are usually unsuitable for low-end devices like

mobile-phones and embedded electronics. Thanks to the

parameter-efficient dense block, our model is much smaller

than most competitive methods. For instance, our smallest

dense model (DS/64-64-16-1, with dense prediction layers)

achieves 73.6% mAP with only 5.9M parameters, which

shows great potential for applications on low-end devices.

6. Conclusion

We have presented Deeply Supervised Object Detector

(DSOD), a simple yet efficient framework for training ob-

ject detector from scratch. Without using pre-trained mod-

els on ImageNet, DSOD demonstrates competitive accuracy

to state-of-the-art detectors such as SSD, Faster R-CNN

and R-FCN on the popular PASCAL VOC 2007, 2012 and

MS COCO datasets, with only 1/2, 1/4 and 1/10 parame-

ters compared to SSD, R-FCN and Faster R-CNN, respec-

tively. DSOD has great potential on domain different sce-

nario like depth, medical, multi-spectral images, etc. Our

future work will consider these domains, as well as learning

ultra efficient DSOD models to support resource-bounded

devices. The code and models of this paper are available at:

https://github.com/szq0214/DSOD.

Acknowledgements

Yu-Gang Jiang and Xiangyang Xue are supported in

part by a NSFC project (#61622204), a project from

STCSM (#16JC1420401), and an European FP7 project

(PIRSESGA-2013-612652).

1926

https://github.com/szq0214/DSOD

References

[1] S. Bell, C. Lawrence Zitnick, et al. Inside-outside net: De-

tecting objects in context with skip pooling and recurrent

neural networks. In CVPR, 2016. 7

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, et al. Semantic

image segmentation with deep convolutional nets and fully

connected crfs. In ICLR, 2015. 1

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, et al. Imagenet: A

large-scale hierarchical image database. In CVPR, 2009. 1,

7

[4] R. Girshick. Fast r-cnn. In ICCV, 2015. 1, 2, 3

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1, 2, 3

[6] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

2010. 7

[7] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation

for supervision transfer. In CVPR, 2016. 2

[8] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, 2015. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 3, 4

[10] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In CVPR, 2017.

1, 2, 3, 4

[11] J. Huang, V. Rathod, C. Sun, et al. Speed/accuracy trade-offs

for modern convolutional object detectors. In CVPR, 2017.

3, 7

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 3

[13] S. Jégou, M. Drozdzal, D. Vazquez, et al. The one hundred

layers tiramisu: Fully convolutional densenets for semantic

segmentation. arXiv preprint arXiv:1611.09326, 2016. 3

[14] Y. Jia, E. Shelhamer, J. Donahue, et al. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, 2014.

5, 7

[15] K.-H. Kim, S. Hong, B. Roh, et al. Pvanet: Deep but

lightweight neural networks for real-time object detection.

arXiv preprint arXiv:1608.08021, 2016. 3

[16] I. Krasin, T. Duerig, N. Alldrin, A. Veit, et al. Openimages:

A public dataset for large-scale multi-label and multi-class

image classification. https://github.com/openimages, 2016.

7

[17] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 1, 3

[18] C.-Y. Lee, S. Xie, P. W. Gallagher, et al. Deeply-supervised

nets. In AISTATS, 2015. 2, 4

[19] Y. Li, K. He, J. Sun, et al. R-fcn: Object detection via region-

based fully convolutional networks. In NIPS, 2016. 1, 2, 6,

7

[20] T.-Y. Lin, M. Maire, S. Belongie, et al. Microsoft coco:

Common objects in context. In ECCV, 2014. 7

[21] W. Liu, D. Anguelov, D. Erhan, et al. Ssd: Single shot multi-

box detector. In ECCV, 2016. 1, 2, 3, 4, 6, 7

[22] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking

wider to see better. arXiv preprint arXiv:1506.04579, 2015.

5

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1

[24] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and

transferring mid-level image representations using convolu-

tional neural networks. In CVPR, 2014. 1

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016. 1, 2, 3

[26] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In CVPR, 2017. 3, 6, 7

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 1, 2, 3, 6, 7

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3

[29] N. Srivastava, G. E. Hinton, A. Krizhevsky, et al. Dropout:

a simple way to prevent neural networks from overfitting.

JMLR, 2014. 3

[30] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face

recognition with very deep neural networks. arXiv preprint

arXiv:1502.00873, 2015. 4

[31] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-

v4, inception-resnet and the impact of residual connections

on learning. In ICLR workshop, 2016. 3, 4

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, et al. Going deeper

with convolutions. In CVPR, 2015. 1, 3, 4

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, et al. Rethinking the

inception architecture for computer vision. In CVPR, 2016.

4

[34] J. R. Uijlings, K. E. Van De Sande, T. Gevers, et al. Selective

search for object recognition. IJCV, 2013. 2

[35] S. Xie and Z. Tu. Holistically-nested edge detection. In

ICCV, 2015. 2, 4

[36] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. In ICLR, 2016. 1

1927

