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Abstract

Estimating correspondence between two images and ex-

tracting the foreground object are two challenges in com-

puter vision. With dual-lens smart phones, such as iPhone

7+ and Huawei P9, coming into the market, two images of

slightly different views provide us new information to unify

the two topics. We propose a joint method to tackle them si-

multaneously via a joint fully connected conditional random

field (CRF) framework. The regional correspondence is

used to handle textureless regions in matching and make our

CRF system computationally efficient. Our method is eval-

uated over 2,000 new image pairs, and produces promising

results on challenging portrait images.

1. Introduction

It is convenient now to capture and share photos. It

is reported that over one billion new images [24, 36] are

shared every day over Internet and most of them are por-

traits [30, 18]. New dual-lens smart phones, on the other

hand, provide a special way to capture two images simul-

taneously, which actually contain more intriguing informa-

tion for photo-related applications.

It seems a well-studied problem in computer vision that

the two-camera output can be used to estimate depth with

pixel correspondence established by optical flow estima-

tion [19, 49] or stereo matching [41, 33]. Meanwhile it is

also known in this community that producing pixel-level-

accurate results is still difficult due primarily to diverse and

complex content, textureless regions, noise, blur, occlusion,

etc. An example is shown in Figure 1 where (a) and (e) are

the input from a dual-lens camera. (b) and (c) show optical

flow estimates of MDP [49] and LDOF [11] where errors

are clearly noticeable. These types of errors are actually

common when applying low-level image matching.

In this paper, we exploit extra information in dual-lens
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images to tackle this challenging problem on portraits. We

incorporate high-level human-body clues in pixel corre-

spondence estimation and propose a joint scheme to simul-

taneously refine pixel matching and object segmentation.

Analysis of Correspondence Estimation Dual-lens im-

ages could be unrectified and with different resolutions.

We thus resort to optical flow estimation instead of stereo

matching for correspondence estimation. As briefly dis-

cussed above, several issues influence these methods even

with robust outlier rejection schemes [10, 8, 44, 50]. Com-

plicated nonlinear systems or discrete methods [23, 14, 5]

have their respective optimization and accuracy limitations.

Difficulty of Semantic Segmentation About semantic

segmentation, state-of-the-art methods are based on fully

convolutional networks (FCN) [29], which generate an per-

pixel prediction score on all classes. Hierarchical convo-

lution, pooling, rectification and deconvolution layers are

adopted in the network. Even this advanced technique, se-

mantic segmentation is still a challenging problem in terms

of creating very accurate object boundaries. For the exam-

ple shown in Figure 1(f), the small background area near

the boy’s left arm is labeled as foreground. Although CRFs

are applied to incorporate original image structure [52, 13],

improvement is limited as shown in (g) [52]. The reason is

that the CNNs predicted score is already wrong in this case.

Our Approach and Contribution We propose a joint up-

date method for portrait photos, taking initialization of sim-

ple optical flow estimates and FCN [29] segments. Then

we form a joint fully connected conditional random fields

(CRF) model to incorporate mutual information between

correspondence and segmentation features. To make opti-

mization tractable, we propose regional correspondence to

greatly reduce CRF solution space. As a result, less then

40 labels are produced for effective inference. Our method

also handles textureless and outlier regions to improve esti-

mation. To evaluate our approach, we collect 2,000 image

pairs with labeled segmentation and correspondence. Our

experiment shows that this method notably improves the ac-
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(a) Reference (b) MDP Flow (c) LDOF Flow (d) Our Refined

(e) Input (f) FCN Segmentation (g) CRFasRNN Segmentation (h) Our Refined

Figure 1. Optical flow and semantic segmentation on dual-lens images. (a) and (e) are the input. (b) and (c) show MDP [49] and LDOF

[11] estimates respectively. (f) is the FCN [29] segmentation result and (g) is the CRFasRNN [52] result. (d) and (h) are our estimated

correspondence and segmentation respectively.

curacy compared with previous optical flow estimation and

semantic segmentation approaches respectively.

2. Related Work

We briefly review optical flow estimation and image seg-

mentation methods. Since both areas involve large sets of

prior work, we only select related methods for discussion.

Optical Flow Methods For image pairs captured in the

same scene with intensity or gradient constancy, their cor-

respondence can be computed with the variational model

[19]. The involved data terms are used to satisfy color or

gradient constancy [10, 12, 53]. Regularization terms can

achieve piece-wise smooth results. The terms are usually

formed by robust functions [10, 8, 44, 50].

Sparse descriptor matching is incorporated in the vari-

ational framework to handle large motion. Representative

methods include those of [11] and [45]. The method of [49]

fuses feature match in each coarse-to-fine pyramid scale.

The variational model is nonlinear, which might be stuck in

local minima when initialization is not appropriate.

Besides the variational model, nearest-neighbor field

(NNF) strategies, such as PatchMatch [6, 7], are also ap-

plied. Chen et al. [14] estimated a coarse flow by Patch-

Match and refined it by model fitting. To improve Patch-

Match quality, Bao et al. [5] developed the edge-preserving

patch similarity cost to search for the nearest neighbor. Re-

cently, multi-scale NNF methods were proposed in [4].

The motion information is also applied to object segmen-

tation as discussed in [47, 43, 40]. However, these methods

need many frames to produce a reasonable result.

Image Segmentation Approaches Interactive image seg-

mentation was developed around a decade ago. These meth-

ods take user specified segment seeds for further optimiza-

tion by graph cuts or CRF inference. Representative meth-

ods include graph-cut [9], Lazy Snapping [25], Grabcut

[34], and paint selection [26, 1].

Recently, deep convolutional neural networks (CNNs)

achieve great success in semantic segmentation. CNNs are
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(a) Input (b) Correspondence (c) Segmentation

(d) Close-ups

Figure 2. Discrepancy among input image, correspondence, and

segmentation. (a) is the input image. (b) and (c) show the cor-

respondence and segmentation maps respectively. (d) gives the

close-ups.

applied mainly in two ways. The first is to learn image fea-

tures and apply pixel classification [2, 31, 16]. The second

line is to adopt an end-to-end trainable CNN model from

input images to segmentation labels with the fully convolu-

tional networks (FCN) [29].

To improve performance, DeepLab [13] and CRFasRNN

[52] employed dense CRF to refine predicted score maps.

Liu et al. [28] extended the general CRFs to deep pars-

ing networks, which achieve state-of-the-art accuracy in the

VOC semantic segmentation task [15]. Most CNNs are con-

structed hierarchically by convolution, pooling and rectifi-

cation. They aim at challenging semantic segmentation with

class labels. In terms of segmentation quality, interactive

segmentation still perform better since users are involved.

Segmentation and Correspondence To further improve

correspondence estimation, methods of [38, 39, 40, 35, 20]

utilized image layers or segment information. These meth-

ods model the correspondence in each layer and then use the

correspondence to infer layer segmentation. A joint model

with correspondence and layer estimation is formed, which

is optimized by Expectation-Maximization (EM). Similar

strategies were also employed in stereo matching [48]. It

was found optimization of these models is time consum-

ing and the segments (or layers) are not that semantically

meaningful. Recently, Bai et al. [3] employed the semantic

segmentation to refine the flow field; but no segment refine-

ment by optical flow is considered.

3. Motivation of Our Approach

Joint update of correspondence and segmentation is dif-

ficult because of the domain-level discrepancy among input

image, estimated correspondence, and predicted segmenta-

tion. We show an example in Figure 2 where (a) is the input

image, (b) is the correspondence result of Horn-Schunck

flow method [19] and (c) shows the segmentation result by

FCN [29]. The difference is on the following folds.

• Small Structure Compared with interactive segmen-

tation, semantic segmentation do not perform accu-

rately as there exist many small structures in the im-

age. On the contrary, optical flow methods work better

on them. The blue rectangles in Figure 2(d) show the

difference.

• Human Belonging and Accessories Belonging and

accessories on human bodies are excluded when per-

forming classification, as people and other objects

are separate into different categories. An example is

shown in red rectangles in Figure 2(d) where the bag

is excluded. It is not ideal for portrait images where

accessories are part of human bodies.

• Textureless Regions Correspondence estimation

methods may fail in textureless regions. However, seg-

mentation is less sensitive to them (see green patches

in Figure 2(d)).

• Complex Background Complex image background

incurs extra difficulty for these methods, which will be

detailed later.

These discrepancies show that joint refinement is non-

trivial for fusion of different-domain information. Further,

the large solution space with continuous correspondence

makes refinement intractable. Our method splits the large

solution space into several regionally accurate parts. With

the new form, we achieve the goal via an efficient fully con-

nected CRF model with a small number of labels.

4. Our Approach

We estimate pixel correspondence w between images I1
and I2 captured from a dual-lens smart-phone. Denoting by

p the pixel coordinate, displacement wp is to let pixel p in

I1 correspond to p + wp in I2. Besides estimating the cor-

respondence w, we also aim for inferring portrait segmen-

tation mask m, where mp = 1 indicates the person (i.e.,

foreground) and mp = 0 means background.

We construct a joint CRF model. As illustrated in Figure

3, our method starts from fast Horn-Schunck flow [19] and

FCN segmentation [29] results. We first estimate regional

correspondence for initialization and then form the joint up-

dating scheme.

4.1. Regional Correspondence

Image correspondence is estimated regarding image con-

tent. To simplify computation, we adopt regional corre-

spondence as shown in Figure 3(e). Regional correspon-

dence is a set of correspondence maps denoted as {wi|i =
1, ...N} where N is number of estimated regional corre-

spondence. For each wi, there exist some regions whose
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(d) FCN Seg.

Joint CRF

(f) Refined Corr.(b) Input

(a) Reference (c) HS Flow

.
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Segmentation Propagation Refinement

(e)

(d) FCN Seg. (g) Refined Seg.

Figure 3. Illustration of our method. (a) and (b) are the reference and input images respectively. (c) and (d) are the Horn-Schunck flow [19]

and FCN [29] segmentation results. (e) shows our regional correspondence. (f) and (g) are the refined results by our joint CRF model.

correspondence is accurate. Thus, the final correspondence

map w can be computed by a labeling process considering

matching error and correspondence field smoothness. There

are mainly two advantages of the regional correspondence.

• Initialization can be set appropriately for each regional

correspondence to avoid the local minimum problem.

• Refinement can be achieved by regional correspon-

dence selection to save much computation time.

Determining Regional Correspondence We compute

regional correspondence by weighted-median-filter-refined

[51] Horn-Schunck flow as shown in Figure 3(c). The

flow field is partitioned into regions according to motion

boundary using the method of [46] according to color and

flow features. Regions with similar flow are merged while

those completely different from neighboring regions are

discarded as outliers. We apply the very fast convolutional

pyramid [17] to propagate flow to the whole image. The

propagated regional correspondence labels the final result

by fusion [49].

To improve sub-pixel accuracy, we refine each regional

correspondence by the variational framework [10]. It, in

general, can only improve accuracy near edges but not reli-

able correspondence for textureless regions, as the data term

constraint is not discriminative enough. We thus only up-

date the regional correspondence in the finest scale.

Analysis Correspondence propagation is important to han-

dle textureless regions. We show an example in Figure 4.

For the textureless region between the arms in (a), flow esti-

mation is erroneous as shown in (b). The PatchMatch-based

method [5] works better in this region but presents errors in

(a) Input (b) MDP (c) EPPM (d) Ours

Figure 4. Correspondence estimation in textureless regions. (a)

shows the input with textureless regions. (b-c) are MDP [49] and

EPPM [5] flow estimates respectively. (d) is our result.

other area as shown in (c). Our estimate in (d) is from the re-

gional correspondence by fusion [49], which achieves over-

all better quality. The reason is that background-propagated

regional correspondence gives extra information. In addi-

tion, the number of partitioned regions is small due to spar-

sity of image content. In our experiments, 10 correspon-

dence regions are enough to produce usable results.

4.2. Joint Refinement Model

With regional correspondencewi and FCN predicted ini-

tial segmentation as shown in Figure 3(e) and (d), we adopt

a fully connected CRF to improve them. Our model is for-

mulated as

E(z) =
∑

p∈V

ψd(zp) +
∑

p∈V

∑

q∈Ep

ψs(zp, zq), (1)

where z is the variable set zp = [cp,mp]. cp denotes se-

lection of the cpth regional correspondence for pixel p and

mp is the segmentation label. ψd and ψs are the unary and

pair-wise potentials. V is the set including all image pixels

and Ep denotes image pixels for the fully connected CRF.
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Joint Unary Potential ψd(zp) The new part in this poten-

tial is to model the correspondence and segmentation inter-

action prior. It is defined as

ψd(zp) = ψj
d(cp,mp) + α1ψ

c
d(cp) + α2ψ

m
d (mp), (2)

where ψj
d(cp,mp) models the joint potential between the cp

and mp in pixel p. ψc
d(cp) and ψm

d (mp) are the potentials

on the correspondence and segmentation likelihood respec-

tively. α1 and α2 weight the three terms. A larger α1 em-

phasizes correspondence more and α2 influences segmenta-

tion likelihood.

We define the joint potential ψj
d(cp,mp) according to the

joint distribution

ψj
d(cp,mp) = − log

(

h(w(cp),mp)
)

, (3)

where w(cp) is for the cpth dominant correspondence for

pixel p. h(w,m) is the joint distribution between corre-

spondence and segmentation. Since we have initialization

correspondence and segmentation, we estimate h(w,m) by

computing the joint histogram.

For the regional correspondence unary potential ψc
d(cp),

we define it based on the matching cost. Motivated by op-

tical flow intensity and gradient constancy, the potential is

defined as

ψc
d(cp) = 1− exp

(

−µ(I1, I2, w(cp))/σ
2
c

)

, (4)

with

µ(I1, I2, w(cp)) = ‖I1,p−I2,p+w(cp)‖+‖∇I1,p−∇I2,p+w(cp)‖,

where µ computes the matching cost and ∇ is the gradient

operator. ‖·‖ computes the L1 distance. σc is the parameter

controlling the matching cost. We set it to 0.2 in all our

experiments.

We model the segmentation unary potential ψm
d by the

FCN predicted probability, which is defined as

ψm
d (mp) = − log

(

S(mp) · C(mp)
)

, (5)

where S(mp) indicates the probability of pixel p taking la-

bel mp. We compute the probability using FCN predicted

score after soft-max normalization. Rather than directly us-

ing original FCN model, we fine-turn it with our labeled

portraits, which will be detailed later. C(mp) is estimated

from the foreground and background color model. With

the initial segmentation mask, we fit a Gaussian mixture

model (GMM) for color distributions of foreground and

background as hb(x) and hf (x), similar to those of [26].

With the color models, we setC(mp) = (1−mp)hb(I1,p)+
mphf (I1,p). In all our experiments, we apply four Gaussian

kernels for the background and six for foreground.

Joint Pair-Wise Term ψs(zp, zq) The pair-wise term en-

forces regional flow selection and segmentation labeling for

(a) Sep. Corr. (b) Sep. Seg. (c) Joint Corr. (d) Joint Seg.

Figure 5. Comparison of separate and joint refinement on corre-

spondence and segmentation using our CRF model. (a) and (b) are

separately refined correspondence and segmentation results. (c)

and (d) are the joint ones. The input is shown in Figure 4(a).

piece-wise smoothness. The correspondence and segmen-

tation should have similar smooth property with close dis-

continuity in both images. To achieve it, the pair-wise term

is formulated with the following three items.

ψs(zp, zq) = β1ψ
c
s(cp, cq)ψ

m
s (mp,mq) + β2ψ

c
s(cp, cq)

+ β3ψ
m
s (mp,mq). (6)

The first item is joint pair-wise smoothness between c and
m. The goal is to force consistency between segmentation
and correspondence. The last two items are the smoothness
penalty in regional correspondence and segmentation labels
respectively. β1, β2 and β3 are the parameters. Similar to
those of [25, 26, 21], we define them using the Potts model
with bilateral weights as

ψ
c

s(cp, cq) = δ(|cp−cq|) · g(‖p− q‖, ‖I1,p−I1,q‖, σs, σr),

ψ
m

s (mp,mq) = δ(|mp−mq|) · g(‖p− q‖, ‖I1,p−I1,q‖, σs, σr),
(7)

where δ(x) is zero when x is zero and is one otherwise.

g(x, y, σs, σr) is the bilateral weight function defined as

exp(−x2/σ2
s − y2/σ2

r). The weight enforces neighboring

pixels with similar color to select the same label in corre-

spondence and segmentation space. σs and σr are the spa-

tial and range parameters, which have the same influence as

those in bilateral filter [42].

4.3. Inference

The objective function defined in Eq. (1) is an NP -hard

problem on two sets of valuables c and m. To efficiently

infer them, we separate the system into two sub ones on c
and m and alternatively update estimation.

• Given correspondence ct, we optimize segment mt.

• With updated segmentation mt, we solve for ct+1.

t indexes iterations. The two sub-problems can be solved

efficiently by mean field approximation [22]. In our experi-

ments, 3-4 iterations are enough to get satisfying results.

4.4. Analysis

Why Joint Form? The proposed joint model for corre-

spondence and segmentation refinement makes use of corre-

spondence labeling and segmentation. We compare it with
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separately processing correspondence and segmentation. In

Eq. (1), the joint model degenerates to independent refine-

ment when omitting all terms with respect to cp and mp

respectively. We evaluate these models, and show results

in Figure 5. It is noticeable that separately refining labels

performs less well than our current system. Estimation of

correspondence and segmentation can benefit each other via

utilizing their mutual information.

Fully Connected CRF Compared with general MRF,

which uses only 4- or 8-neighbor smoothness terms, the

fully connected CRF has the ability to label a very small

region if it is globally distinct. To illustrate it, we show

a comparison in Figure 6. For the results in (a) and (b),

our model with the MRF term cannot correctly obtain the

arm area because the region is very small. In contrast, our

method is based on fully connected CRF and can handle

such cases, as shown in (c) and (d).

Difference from Previous Approaches Our method au-

tomatically refines semantic segmentation and correspon-

dence estimation. Methods of [38, 39, 40] applied the layer

information to higher quality correspondence inference.

But no semantic object information is applied. Method of

[3] exploited segmentation to help correspondence estima-

tion. However, segmentation results are not refined in fol-

lowing processing. In addition, approach of [35] aims to

model motion patterns for objects while ours is to simul-

taneously and effectively refine human segmentation and

dual-lens correspondence.

5. Evaluation and Experiments

We collected dual-lens portrait images with a Huawei

P9 smart phone. We also search the data from Flickr with

key words “stereo” and “3D image”. A few examples are

shown in Figure 7. We select persons with a large variety

in terms of age, gender, clothing, accessory, hair style and

head position. Image background is with diverse structure

regarding locations of indoor and outdoor scenes, weather,

shadow, etc. All our captured images are with resolution

3968 × 2976. Between the two captured images, one is

with color and the other is grayscale because of the special

camera setting. We denote the color image as reference and

the grayscale one as input. Portrait areas are cropped and

resized to 1200 × 800. 2, 000 portrait image pairs are col-

lected, which include 1,850 captured ones and 150 down-

loaded from Flickr.

With the selected dual-lens portrait images, we first la-

bel the human body segments in the color reference image

using Photoshop quick selection tool [1] and take them as

portrait segment ground truth.

Since it is very difficult to achieve accurate image cor-

respondence, we fuse different-algorithm results with user

(a) MRF Corr. (b) MRF Seg.

(c) CRF Corr. (d) CRF Seg.

Figure 6. Comparison of MRF and fully connected CRF. (a) and

(b) are the results with the MRF pair-wise term. (c) and (d) are

the results with our fully connected CRF term. The input image is

shown in Figure 1.

Figure 7. Our dual-lens image examples. The images in the top

row are from the left camera and the bottom ones are from the

right camera of Huawei P9.

interaction. First, we obtain correspondence results using

state-of-the-art optical flow methods MDP [49], DeepFlow

[45], EPPM [5], and LDOF [11]. For each method, we

choose eight groups of parameter values and finally get 32

correspondence maps for each image pair. Second, we se-

lect the best correspondence from the 32 candidates using

the method of [23]. Third, we label unmatched area with

user interaction and apply flow completion [27]. Finally,

we take edited correspondence maps as ground truth for all

portrait image pairs. We split the 2,000 pairs into 1,800

pairs for training and 200 for evaluation.
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Methods Mean IoU(%)

FCN [29] 79.51

DeepLab [13] 80.09

CRFasRNN [52] 80.23

FCN-portrait 83.90

DeepLab-portrait 84.01

CRFasRNN-portrait 84.19

Ours-separate 84.32

Ours 88.33

Table 1. Comparison of segmentation results on our data. “FCN-

portrait”, “DeepLab-portrait” and “CRFasRNN-portrait” denote

fine-tuned models using our labeled image data. “Ours-separate”

is the model only updating segmentation.

5.1. Comparison and Evaluation

In terms of the system structure, we compute initial

Horn-Schunck optical flow using the code of [37] with de-

fault parameters. Fast weighted median filter [51] is then

applied to smooth it. For semantic segmentation initializa-

tion, we changed the original FCN-8s model to 2 outputs,

which are the background and foreground similar to that of

[36]. Then the model is fine- tuned using our training data

based on the original FCN-8s model. The fine-tuning pro-

cess can improve segmentation accuracy, to be shown be-

low. For the joint update model, we set α1 and α2 both to

1.5. β1, β2 and β2 are all set to3 by default. σs ranges from

10 to 20 and σr is set around 0.2. The running time of our

method for a 600 × 800 image pair is 16.63 seconds on an

Intel Core-i7 CPU PC without any GPU acceleration. In all

our experiments, the results are generated in 3 iterations.

Evaluation on Our Data With our data, we evaluate the

methods quantitatively in terms of segmentation and corre-

spondence accuracy. We compare the person segmentation

with state-of-the-art methods FCN [29], DeepLab [13] and

CRFasRNN [52] using the author published model. Besides

directly applying the original 20-class object model, we

change each model to 2-class output with portrait and back-

ground. These methods are all fine-tuned with our portrait

data. We define these fine-tuned models as “FCN-portrait”,

“DeepLab-portrait” and “CRFasRNN-portrait”.

The results are reported in Table 1 where we apply the

intersection-over-union (IoU) to measure the segmentation

accuracy with respect to ground truth. The table shows

that the three 20-class object segmentation models achieve

around 80% IoU accuracy. By updating the models to 2-

class output and further fine-tuning them by our portrait

data, their accuracy is improved by about 4%. We also test

our model only updating the segmentation, which achieved

very limited improvement. Our joint model presents the

best performance, bearing out the effectiveness of jointly

refining correspondence and segmentation.

We compare our methods with other dense corre-

spondence estimation approaches, including Horn-Schunck

Methods AEPE AAE

HS Flow [37] 13.66 10.48

TV-L1 Flow [10] 10.01 8.52

LDOF Flow [11] 8.32 7.81

MDP Flow [49] 8.23 7.96

EPPM Flow [5] 11.74 9.05

DeepFlow [45] 7.87 6.81

EpicFlow [32] 8.11 7.49

Ours-separate 8.03 7.45

Ours 5.29 5.91

Table 2. Comparison of correspondence results on our data. We

calculate the average end point error (AEPE) and average angular

error (AAE).

Methods Accuracy (AEPE) Running Time (Seconds)

without RC 6.45 186.3

with RC 5.29 16.63

Table 3. Performance of our regional correspondence estimation.

“RC” denotes the regional correspondence.

[37], TV-L1 [10], MDP [49], DeepFlow [45], LDOF [11],

EpicFlow [32], and EPPM [5]. Evaluation results are given

in Table 2. Compared with the variational model without

feature matching constraints, such as HS and TV-L1 model,

the methods LDOF, MDP, DeepFlow, and EpicFlow achieve

better performance. We also evaluate our model by only

refining the correspondence. The result is much improved

over the initial HS flow. Our final joint model yields the

best performance among all matching methods.

Visual Comparison As shown in Figure 8, we compare

our method with previous matching methods MDP [49],

LDOF [11], DeepFlow [45] and semantic segmentation ap-

proaches FCN [29], FCN-portrait, and CRFasRNN [52].

Our method also notably improves the matching accuracy

in human body boundaries and textureless regions. By uti-

lizing the reliable correspondence information, decent per-

formance is accomplished for portrait segmentation.

Regional Correspondence Effectiveness Our regional

correspondence estimation greatly speeds up the labeling

process and increases accuracy by resolving the textureless

issue. To verify it, we compare our method with the non-

regional estimation scheme, which is to set wi into discrete

constant maps covering all possible displacements. We use

500 uniformly sampled values from [−50, 50] × [50, 50] to

get all wis. As reported in Table 3, with our regional cor-

respondence, the method is 10 times faster and is also more

accurate in terms of the AEPE measure.

6. Conclusion

We have proposed an effective method for joint corre-

spondence and segmentation estimation for portrait photos.

Our method still has the following limitations. First, our

approach may fail when the image contains many persons –
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(a) Input (b) MDP Flow (c) LDOF Flow (d) DeepFlow (e) Our Corr.

(f) Reference (g) FCN (h) FCN-portrait (i) CRFasRNN (j) Our Seg.

(a) Input (b) MDP Flow (c) LDOF Flow (d) DeepFlow (e) Our Corr.

(f) Reference (g) FCN (h) FCN-portrait (i) CRFasRNN (j) Our Seg.

Figure 8. Visual comparisons of different segmentation and correspondence estimation methods. (a) and (f) are the input and reference

images respectively. (b-e) are the correspondence estimated by MDP [49], LDOF [11] and DeepFlow [45] respectively. (g-i) are the FCN,

FCN-portrait and CRFasCNN segmentation results respectively. (e) is our correspondence result and (f) is our segmentation result.

our training data does not include such cases. Second, the

extra low-level imaging problems such as highlight, heavy

noise, and burry could degrade our method for reliable cor-

respondence and segmentation estimation. Our future work

will be to deal with these issues with more training data and

enhanced models.
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