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Abstract

While strong progress has been made in image caption-

ing recently, machine and human captions are still quite dis-

tinct. This is primarily due to the deficiencies in the gener-

ated word distribution, vocabulary size, and strong bias in

the generators towards frequent captions. Furthermore, hu-

mans – rightfully so – generate multiple, diverse captions,

due to the inherent ambiguity in the captioning task which

is not explicitly considered in today’s systems.

To address these challenges, we change the training ob-

jective of the caption generator from reproducing ground-

truth captions to generating a set of captions that is in-

distinguishable from human written captions. Instead of

handcrafting such a learning target, we employ adversar-

ial training in combination with an approximate Gumbel

sampler to implicitly match the generated distribution to the

human one. While our method achieves comparable perfor-

mance to the state-of-the-art in terms of the correctness of

the captions, we generate a set of diverse captions that are

significantly less biased and better match the global uni-,

bi- and tri-gram distributions of the human captions.

1. Introduction

Image captioning systems have a variety of applications

ranging from media retrieval and tagging to assistance for

the visually impaired. In particular, models which combine

state-of-the-art image representations based on deep convo-

lutional networks and deep recurrent language models have

led to ever increasing performance on evaluation metrics

such as CIDEr [39] and METEOR [8] as can be seen e.g.

on the COCO image Caption challenge leaderboard [6].

Despite these advances, it is often easy for humans to

differentiate between machine and human captions – partic-

ularly when observing multiple captions for a single image.

Ours: a person on skis jumping

over a ramp

Ours: a skier is making a turn

on a course

Ours: a cross country skier

makes his way through the snow

Ours: a skier is headed down a

steep slope

Baseline: a man riding skis down a snow covered slope

Figure 1: Four images from the test set related to skiing,

with captions from our model and a baseline. Baseline de-

scribes all four images with a generic caption, whereas our

model produces diverse and more image specific captions.

As we analyze in this paper, this is likely due to artifacts and

deficiencies in the statistics of the generated captions, which

is more apparent when observing multiple samples. Specif-

ically, we observe that state-of-the-art systems frequently

“reveal themselves” by generating a different word distribu-

tion and using smaller vocabulary. Further scrutiny reveals

that generalization from the training set is still challenging

and generation is biased to frequent fragments and captions.

Also, today’s systems are evaluated to produce a single

caption. Yet, multiple potentially distinct captions are typi-

cally correct for a single image – a property that is reflected

in human ground-truth. This diversity is not equally repro-

duced by state-of-the-art caption generators [40, 23].

Therefore, our goal is to make image captions less distin-

guishable from human ones – similar in the spirit to a Turing
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Test. We also embrace the ambiguity of the task and extend

our investigation to predicting sets of captions for a single

image and evaluating their quality, particularly in terms of

the diversity in the generated set. In contrast, popular ap-

proaches to image captioning are trained with an objective

to reproduce the captions as provided by the ground-truth.

Instead of relying on handcrafting loss-functions to

achieve our goal, we propose an adversarial training mecha-

nism for image captioning. For this we build on Generative

Adversarial Networks (GANs) [14], which have been suc-

cessfully used to generate mainly continuous data distribu-

tions such as images [9, 30], although exceptions exist [27].

In contrast to images, captions are discrete, which poses a

challenge when trying to backpropagate through the gen-

eration step. To overcome this obstacle, we use a Gumbel

sampler [20, 28] that allows for end-to-end training.

We address the problem of caption set generation for im-

ages and discuss metrics to measure the caption diversity

and compare it to human ground-truth. We contribute a

novel solution to this problem using an adversarial formu-

lation. The evaluation of our model shows that accuracy of

generated captions is on par to the state-of-the-art, but we

greatly increase the diversity of the caption sets and better

match the ground-truth statistics in several measures. Qual-

itatively, our model produces more diverse captions across

images containing similar content (Figure 1) and when sam-

pling multiple captions for an image (see supplementary)1.

2. Related Work

Image Description. Early captioning models rely on first

recognizing visual elements, such as objects, attributes, and

activities, and then generating a sentence using language

models such as a template model [13], n-gram model [22],

or statistical machine translation [34]. Advances in deep

learning have led to end-to-end trainable models that com-

bine deep convolutional networks to extract visual features

and recurrent networks to generate sentences [11, 41, 21].

Though modern description models are capable of pro-

ducing coherent sentences which accurately describe an

image, they tend to produce generic sentences which are

replicated from the train set [10]. Furthermore, an image

can correspond to many valid descriptions. However, at

test time, sentences generated with methods such as beam

search are generally very similar. [40, 23] focus on increas-

ing sentence diversity by integrating a diversity promoting

heuristic into beam search. [42] attempts to increase the

diversity in caption generation by training an ensemble of

caption generators each specializing in different portions of

the training set. In contrast, we focus on improving diver-

sity of generated captions using a single model. Our method

achieves this by learning a corresponding model using a dif-

1https://goo.gl/3yRVnq

ferent training loss as opposed to after training has com-

pleted. We note that generating diverse sentences is also

a challenge in visual question generation, see concurrent

work [19], and in language-only dialogue generation stud-

ied in the linguistic community, see e.g. [23, 24].

When training recurrent description models, the most

common method is to predict a word wt conditioned on an

image and all previous ground truth words. At test time,

each word is predicted conditioned on an image and previ-

ously predicted words. Consequently, at test time predicted

words may be conditioned on words that were incorrectly

predicted by the model. By only training on ground truth

words, the model suffers from exposure bias [31] and can-

not effectively learn to recover when it predicts an incorrect

word during training. To avoid this, [4] proposes a sched-

uled sampling training scheme which begins by training

with ground truth words, but then slowly conditions gen-

erated words on words previously produced by the model.

However, [17] shows that the scheduled sampling algorithm

is inconsistent and the optimal solution under this objec-

tive does not converge to the true data distribution. Tak-

ing a different direction, [31] proposes to address the expo-

sure bias by gradually mixing a sequence level loss (BLEU

score) using REINFORCE rule with the standard maximum

likelihood training. Several other works have followed this

up with using reinforcement learning based approaches to

directly optimize the evaluation metrics like BLEU, ME-

TEOR and CIDER [33, 25]. However, optimizing the eval-

uation metrics does not directly address the diversity of the

generated captions. Since all current evaluation metrics use

n-gram matching to score the captions, captions using more

frequent n-grams are likely to achieve better scores than

ones using rarer and more diverse n-grams.

In this work, we formulate our caption generator as a

generative adversarial network. We design a discriminator

that explicitly encourages generated captions to be diverse

and indistinguishable from human captions. The genera-

tor is trained with an adversarial loss with this discrimina-

tor. Consequently, our model generates captions that better

reflect the way humans describe images while maintaining

similar correctness as determined by a human evaluation.

Generative Adversarial Networks. The Generative Ad-

versarial Networks (GANs) [14] framework learns gener-

ative models without explicitly defining a loss from a tar-

get distribution. Instead, GANs learn a generator using a

loss from a discriminator which tries to differentiate real

and generated samples, where the generated samples come

from the generator. When training to generate real images,

GANs have shown encouraging results [9, 30]. In all these

works the target distribution is continuous. In contrast our

target, a sequence of words, is discrete. Applying GANs to

discrete sequences is challenging as it is unclear how to best

back-propagate the loss through the sampling mechanism.
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A few works have looked at generating discrete distribu-

tions using GANs. [27] aim to generate a semantic image

segmentation with discrete semantic labels at each pixel.

[46] uses REINFORCE trick to train an unconditional text

generator using the GAN framework but diversity of the

generated text is not considered.

Most similar to our work are concurrent works which use

GANs for dialogue generation [24] and image caption gen-

eration [7]. While [24, 46, 7] rely on the reinforcement rule

[43] to handle backpropagation through the discrete sam-

ples, we use the Gumbel Softmax [20]. See Section 3.1 for

further discussion. [24] aims to generate a diverse dialogue

of multiple sentences while we aim to produce diverse sen-

tences for a single image. Additionally, [24] uses both the

adversarial and the maximum likelihood loss in each step

of generator training. We however train the generator with

only adversarial loss after pre-training. Concurrent work [7]

also applies GANs to diversify generated image captions.

Apart from using the gumbel softmax as discussed above,

our work differs from [7] in the discriminator design and

quantitative evaluation of the generator diversity.

3. Adversarial Caption Generator

The image captioning task can be formulated as follows:

given an input image x the generator G produces a caption,

G(x) = [w0, . . . , wn−1], describing the contents of the im-

age. There is an inherent ambiguity in the task, with multi-

ple possible correct captions for an image, which is also re-

flected in diverse captions written by human annotators (we

quantify this in Table 4). However, most image captioning

architectures ignore this diversity during training. The stan-

dard approach to model G(x) is to use a recurrent language

model conditioned on the input image x [11, 41], and train

it using a maximum likelihood (ML) loss considering every

image–caption pair as an independent sample. This ignores

the diversity in the human captions and results in models

that tend to produce generic and commonly occurring cap-

tions from the training set, as we will show in Section 5.3.

We propose to address this by explicitly training the gen-

erator G to produce multiple diverse captions for an input

image using the adversarial framework [14]. In adversar-

ial frameworks, a generative model is trained by pairing it

with adversarial discriminator which tries to distinguish the

generated samples from true data samples. The generator is

trained with the objective to fool the discriminator, which is

optimal when G exactly matches the data distribution. This

is well-suited for our goal because, with an appropriate dis-

criminator network we could coax the generator to capture

the diversity in the human written captions, without having

to explicitly design a loss function for it.

To enable adversarial training, we introduce a second

network, D(x, s), which takes as input an image x and a

caption set Sp = {s1, . . . , sp} and classifies it as either real

Figure 2: Caption generator model. Deep visual features are

input to an LSTM to generate a sentence. A Gumbel sam-

pler is used to obtain soft samples from the softmax distri-

bution, allowing for backpropagation through the samples.

or fake. Providing a set of captions per image as input to the

discriminator allows it to factor in the diversity in the cap-

tion set during the classification. The discriminator can pe-

nalize the generator for producing very similar or repeated

captions and thus encourage the diversity in the generator.

Specifically, the discriminator is trained to classify the

captions drawn from the reference captions set, R(x) =
{r0, · · · , rk−1}, as real while classifying the captions pro-

duced by the generator, G(x), as fake. The generator G
can now be trained using an adversarial objective, i.e. G is

trained to fool the discriminator to classify G(x) as real.

3.1. Caption generator

We use a near state-of-the art caption generator model

based on [36]. It uses the standard encoder-decoder frame-

work with two stages: the encoder model which extracts

feature vectors from the input image and the decoder which

translates these features into a word sequence.

Image features. Images are encoded as activations from a

pre-trained convolutional neural network (CNN). Caption-

ing models also benefit from augmenting the CNN features

with explicit object detection features [36]. Accordingly,

we extract a feature vector containing the probability of oc-

currence of an object and provide it as input to the generator.

Language Model. Our decoder shown in Figure 2, is

adopted from a Long-Short Term Memory (LSTM) based

language model architecture presented in [36] for image

captioning. It consists of a three-layered LSTM network

with residual connections between the layers. The LSTM

network takes two features as input. First is the object de-

tection feature, xo, which is input to the LSTM at only 0th
time step and shares the input matrix with the word vectors.

Second is the global image CNN feature, xc, and is input to

the LSTM at all time-steps through its own input matrix.

The softmax layer at the output of the generator produces
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a probability distribution over the vocabulary at each step.

yt = LSTM(wt−1, xc, yt−1, ct−1) (1)

p(wt|wt−1, x) = softmax [βWd ∗ yt] , (2)

where ct is the LSTM cell state at time t and β is a scalar

parameter which controls the peakyness of the distribution.

Parameter β allows us to control how large a hypothesis

space the generator explores during adversarial training. An

additional uniform random noise vector z, is input to the

LSTM in adversarial training to allow the generator to use

the noise to produce diversity.

Discreteness Problem. To produce captions from the

generator we could simply sample from this distribution

p(wt|wt−1, x), recursively feeding back the previously

sampled word at each step, until we sample the END to-

ken. One can generate multiple sentences by sampling and

pick the sentence with the highest probability as done in

[12]. Alternatively we could also use greedy search ap-

proaches like beam-search. However, directly providing

these discrete samples as input to the discriminator does

not allow for backpropagation through them as they are dis-

continuous. Alternatives to overcome this are the reinforce

rule/trick [43], using the softmax distribution, or using the

Gumbel-Softmax approximation [20, 28].

Using policy gradient algorithms with the reinforce

rule/trick [43] allows estimation of gradients through dis-

crete samples [16, 2, 46, 24]. However, learning using re-

inforce trick can be unstable due to high variance [38] and

some mechanisms to make learning more stable, like es-

timating the action-value for intermediate states by gen-

erating multiple possible sentence completions (e.g used

in [46, 7]), can be computationally intensive.

Another option is to input the softmax distribution to the

discriminator instead of samples. We experimented with

this, but found that the discriminator easily distinguishes

between the softmax distribution produced by the generator

and the sharp reference samples, and the GAN training fails.

The last option, which we rely on in this work, it to

use a continuous relaxation of the samples encoded as one-

hot vectors using the Gumbel-Softmax approximation pro-

posed in [20] and [28]. This continuous relaxation com-

bined with the re-parametrization of the sampling process

allows backpropagation through samples from a categori-

cal distribution. The main benefit of this approach is that it

plugs into the model as a differentiable node and does not

need any additional steps to estimate the gradients. Whereas

most previous methods to applying GAN to discrete out-

put generators use policy gradient algorithms, we show that

Gumbel-Softmax approximation can also be used success-

fully in this setting. An empirical comparison between the

two approaches can be found in [20].

We use straight-through variation of the Gumbel-

Softmax approximation [20] at the output of our generator

Figure 3: Discriminator Network. Caption set sampled

from the generator is used to compute image to sentence

(distx(Sp, x)) and sentence-to-sentence (dists(Sp)) dis-

tances. They are used to score the set as real/fake.

to sample words during the adversarial training.

3.2. Discriminator model

The discriminator network, D takes an image x, repre-

sented using CNN feature xc, and a set of captions Sp =
{s1, . . . , sp} as input and classifies Sp as either real or fake.

Ideally, we want D to base this decision on two criteria: a)

do si ∈ Sp describe the image correctly ? b) is the set Sp is

diverse enough to match the diversity in human captions ?

To enable this, we use two separate distance measuring

kernels in our discriminator network as shown in Figure 3.

The first kernel computes the distances between the image

x and each sentence in Sp. The second kernel computes the

distances between the sentences in Sp. The architecture of

these distance measuring kernels is based on the minibatch

discriminator presented in [35]. However, unlike [35], we

only compute distances between captions corresponding to

the same image and not over the entire minibatch.

Input captions are encoded into a fixed size sentence em-

bedding vector using an LSTM encoder to obtain vectors

f(si) ∈ R
M . The image feature, xc, is also embedded into

a smaller image embedding vector f(xc) ∈ R
M . The dis-

tances between f(si), i ∈ {1, . . . , p} are computed as

Ki = Ts · f(si) (3)

cl(si, sj) = exp (−‖Ki,l −Kj,l‖L1
) (4)

dl(si) =

p
∑

j=1

cl(si, sj) (5)

dists(Sp) = [d1(s1), ..., dO(s1), ..., dO(sp)] ∈ R
p×O (6)

where Ts is a M ×N ×O dimensional tensor and O is the

number of different M ×N distance kernels to use.
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Distances between f(si), i ∈ 1, . . . , p and f(xc) are ob-

tained with similar procedure as above, but using a different

tensor Tx of dimensions M×N×O to yield distx(Sp, x) ∈
R

p×O. These two distance vectors capture the two aspects

we want our discriminator to focus on. distx(Sp, x) cap-

tures how well Sp matches the image x and dists(Sp) cap-

tures the diversity in Sp. The two distance vectors are

concatenated and multiplied with a output matrix followed

by softmax to yield the discriminator output probability,

D(Sp, x), for Sp to be drawn from reference captions.

3.3. Adversarial Training

In adversarial training both the generator and the dis-

criminator are trained alternatively for ng and nd steps re-

spectively. The discriminator tries to classify Sr
p ∈ R(x) as

real and Sg
p ∈ G(x) as fake. In addition to this, we found

it important to also train the discriminator to classify few

reference captions drawn from a random image as fake, i.e.

Sf
p ∈ R(y), y 6= x. This forces the discriminator to learn

to match images and captions, and not just rely on diversity

statistics of the caption set. The complete loss function of

the discriminator is defined by

L(D) = − log
(

D(Sr
p , x)

)

− log
(

1−D(Sg
p , x)

)

− log
(

1−D(Sf
p , x)

)

(7)

The training objective of the generator is to fool the dis-

criminator into classifying Sg
p ∈ G(x) as real. We found

helpful to additionally use the feature matching loss [35].

This loss trains the generator to match activations induced

by the generated and true data at some intermediate layer

of the discriminator. In our case we use an l2 loss to

match the expected value of distance vectors dists(Sp) and

distx(Sp, x) between real and generated data. The genera-

tor loss function is given by

L(G) = − log
(

D(Sg
p , x)

)

+‖E
[

dists(S
g
p)
]

− E
[

dists(S
r
p)
]

‖2

+‖E
[

distx(S
g
p , x)

]

− E
[

distx(S
r
p , x)

]

‖2,

(8)

where the expectation is over a training mini-batch.

4. Experimental Setup

We conduct all our experiments on the MS-COCO

dataset [5]. The training set consists of 83k images with

five human captions each. We use the publicly available

test split of 5000 images [21] for all our experiments. Sec-

tion 5.4 uses a validation split of 5000 images.

For image feature extraction, we use activations from

res5c layer of the 152-layered ResNet [15] convolutional

neural network (CNN) pre-trained on ImageNet. The input

images are scaled to 448× 448 dimensions for ResNet fea-

ture extraction. Additionally we use features from the VGG

network [37] in our ablation study in Section 5.4. Follow-

ing [36], we additionally extract 80-dimensional object de-

tection features using a Faster Region-Based Convolutional

Neural Network (RCNN) [32] trained on the 80 object cat-

egories in the COCO dataset. The CNN features are input

to both the generator (at xp) and the discriminator. Object

detection features are input only to the generator at the xi

input and is used in all the generator models reported here.

4.1. Insights in Training the GAN

As is well known [3], we found GAN training to be sen-

sitive to hyper-parameters. Here we discuss some settings

which helped stabilize the training of our models.

We found it necessary to pre-train the generator us-

ing standard maximum likelihood training. Without pre-

training, the generator gets stuck producing incoherent sen-

tences made of random word sequences. We also found

pre-training the discriminator on classifying correct image-

caption pairs against random image-caption pairs helpful to

achieve stable GAN training. We train the discriminator for

5 iterations for every generator update. We also periodically

monitor the classification accuracy of the discriminator and

train it further if it drops below 75%. This prevents the gen-

erator from updating using a bad discriminator.

Without the feature matching term in the generator loss,

the GAN training was found to be unstable and needed addi-

tional maximum likelihood update to stabilize it. This was

also reported in [24]. However with the feature matching

loss, training is stable and the ML update is not needed.

A good range of values for the Gumbel temperature was

found to be (0.1, 0.8). Beyond this range training was un-

stable, but within this range the results were not sensitive to

it. We use a fixed temperature setting of 0.5 in the experi-

ments reported here. The softmax scaling factor, β in (2),

is set to value 3.0 for training of all the adversarial models

reported here. The sampling results are also with β = 3.0.

5. Results

We conduct experiments to evaluate our adversarial cap-

tion generator w.r.t. two aspects: how human-like the gen-

erated captions are and how accurately they describe the

contents of the image. Using diversity statistics and word

usage statistics as a proxy for measuring how closely the

generated captions mirror the distribution of the human ref-

erence captions, we show that the adversarial model is more

human-like than the baseline. Using human evaluation and

automatic metrics we also show that the captions generated

by the adversarial model performs similar to the baseline

model in terms of correctness of the caption.

Henceforth, Base and Adv refer to the baseline and ad-

versarial models, respectively. Suffixes bs and samp indi-

cate decoding using beamsearch and sampling respectively.
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5.1. Measuring if captions are human­like

Diversity. We analyze n-gram usage statistics, compare vo-

cabulary sizes and other diversity metrics presented below

to understand and measure the gaps between human writ-

ten captions and the automatic methods and show that the

adversarial training helps bridge some of these gaps.

To measure the corpus level diversity of the generated

captions we use:

• Vocabulary Size - number of unique words used in all

generated captions

• % Novel Sentences - percentage of generated captions

not seen in the training set.

To measure diversity in a set of captions, Sp, corresponding

to a single image we use:

• Div-1 - ratio of number of unique unigrams in Sp to

number of words in Sp. Higher is more diverse.

• Div-2 - ratio of number of unique bigrams in Sp to

number of words in Sp. Higher is more diverse.

• mBleu - Bleu score is computed between each caption

in Sp against the rest. Mean of these p Bleu scores is

the mBleu score. Lower values indicate more diversity.

Correctness. Just generating diverse captions is not useful

if they do not correctly describe the content of an image. To

measure the correctness of the generated captions we use

two automatic evaluation metrics Meteor [8] and SPICE [1].

However since it is known that the automatic metrics do

not always correlate very well with human judgments of the

correctness, we also report results from human evaluations

comparing the baseline model to our adversarial model.

5.2. Comparing caption accuracy

Table 1 presents the comparison of our adversarial model

to the baseline model. Both the baseline and the adversar-

ial models use ResNet features. The beamsearch results are

with beam size 5 and sampling results are with taking the

best of 5 samples. Here the best caption is obtained by rank-

ing the captions as per probability assigned by the model.

Table 1 also shows the metrics from some recent meth-

ods from the image captioning literature. The purpose of

this comparison is to illustrate that we use a strong baseline

and that our baseline model is competitive to recent pub-

lished work, as seen from the Meteor and Spice metrics.

Comparing baseline and adversarial models in Table 1

the adversarial model does worse in-terms of Meteor scores

and overall spice metrics. When we look at Spice scores on

individual categories shown in Table 2 we see that adver-

sarial models excel at counting relative to the baseline and

describing the size of an object correctly.

However, it is well known that automatic metrics do not

always correlate with human judgments on correctness of a

caption. A primary reason the adversarial models do poorly

on automatic metrics is that they produce significantly more

Method Meteor Spice

ATT-FCN [45] 0.243 –

MSM [44] 0.251 –

KWL [26] 0.266 0.194

Ours Base-bs 0.272 0.187

Ours Base-samp 0.265 0.186

Ours Adv-bs 0.239 0.167

Ours Adv-samp 0.236 0.166

Table 1: Meteor and Spice metrics comparing performance

of baseline and adversarial models.

Method
Spice

Color Attribute Object Relation Count Size

Base-bs 0.101 0.085 0.345 0.049 0.025 0.034

Base-samp 0.059 0.069 0.352 0.052 0.032 0.033

Adv-bs 0.079 0.082 0.318 0.034 0.080 0.052

Adv-samp 0.078 0.082 0.316 0.033 0.076 0.053

Table 2: Comparing baseline and adversarial models in dif-

ferent categories of Spice metric.

Comparison Adversarial - Better Adversarial - Worse

Beamsearch 36.9 34.8

Sampling 35.7 33.2

Table 3: Human evaluation comparing adversarial model vs

the baseline model on 482 random samples. Correctness

of captions. With agreement of at least 3 out of 5 judges

in %. Humans agreed in 89.2% and 86.7% of images in

beamsearch and sampling cases respectively.

unique sentences using a much larger vocabulary and rarer

n-grams, as shown in Section 5.3. Thus, they are less likely

to do well on metrics relying on n-gram matches.

To verify this claim, we conduct human evaluations

comparing captions from the baseline and the adversarial

model. Human evaluators from Amazon Mechanical Turk

are shown an image and a caption each from the two mod-

els and are asked “Judge which of the two sentences is a

better description of the image (w.r.t. correctness and rele-

vance)!”. The choices were either of the two sentences or to

report that they are the same. Results from this evaluation

are presented in Table 3. We can see that both adversar-

ial and baseline models perform similarly, with adversarial

models doing slightly better. This shows that despite the

poor performance in automatic evaluation metrics, the ad-

versarial models produce captions that are similar, or even

slightly better, in accuracy to the baseline model.

5.3. Comparing vocabulary statistics

To characterize how well the captions produced by the

automatic methods match the statistics of the human written
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Figure 4: Comparison of n-gram count ratios in generated

test-set captions by different models. Left side shows the

mean n-gram count-ratios as a function of counts on train-

ing set. Right side shows the histogram of the count-ratios.

captions, we look at n-gram usage statistics in the generated

captions. Specifically, we compute the ratio of the actual

count of an n-gram in the caption set produced by a model

to the expected n-gram count based on the training data.

Given that an n-gram occurred m times in the training set

we can expect that it occurs m ∗ |test-set|/|train-set| times

in the test set. However actual counts may vary depending

on how different the test set is from the training set. We

compute these ratios for reference captions in the test set to

get an estimate of the expected variance of the count ratios.

The left side of Figure 4 shows the mean count ratios for

uni-, bi- and tri-grams in the captions generated on test-set

plotted against occurrence counts in the training set. His-

togram of these ratios are shown on the right side.

Count ratios for the reference captions from the test-set

are shown in green. We see that the n-gram counts match

well between the training and test set human captions and

the count ratios are spread around 1.0 with a small variance.

The baseline model shows a clear bias towards more fre-

quently occurring n-grams. It consistently overuses more

Vocab- % Novel

Method n Div-1 Div-2 mBleu-4 ulary Sentences

Base-bs
1 of 5 – – – 756 34.18

5 of 5 0.28 0.38 0.78 1085 44.27

Base-samp
1 of 5 – – – 839 52.04

5 of 5 0.31 0.44 0.68 1460 55.24

Adv-bs
1 of 5 – – – 1508 68.62

5 of 5 0.34 0.44 0.70 2176 72.53

Adv-samp
1 of 5 – – – 1616 73.92

5 of 5 0.41 0.55 0.51 2671 79.84

Human 1 of 5 – – – 3347 92.80

captions 5 of 5 0.53 0.74 0.20 7253 95.05

Table 4: Diversity Statistics described in Section 5.1.

Higher values correspond to more diversity in all except

mBleu-4, where lower is better.

Adv-

bs

a group of friends en-

joying a dinner at the

restauarant

several cows in their

pen at the farm

A dog is trying to get

something out of the

snow

Base-

bs

a group of people sitting

around a wooden table

a herd of cattle stand-

ing next to each other

a couple of dogs that

are in the snow

Figure 5: Some qualitative examples comparing comparing

captions generated by the our model to the baseline model.

frequent n-grams (ratio>1.0) from the training set and

under-uses less frequent ones (ratio<1.0). This trend is

seen in all the three plots, with more frequent tri-grams par-

ticularly prone to overuse. It can also be observed in the

histogram plots of the count ratios, that the baseline model

does a poor job of matching the statistics of the test set.

Our adversarial model does a much better job in match-

ing these statistics. The histogram of the uni-gram count

ratios are clearly closer to that of test reference captions.

It does not seem to be significantly overusing the popular

words, but there is still a trend of under utilizing some of

the rarer words. It is however clearly better than the baseline

model in this aspect. The improvement is less pronounced

with the bi- and tri-grams, but still present.

Another clear benefit from using the adversarial training

is observed in terms of diversity in the captions produced by

the model. The diversity in terms of both global statistics

and per image diversity statistics is much higher in captions

produced by the adversarial models compared to the base-

line models. This result is presented in Table 4. We can see

that the vocabulary size approximately doubles from 1085

in the baseline model to 2176 in the adversarial model us-
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Figure 6: Vocabulary size as a function of word counts.

ing beamsearch. A similar trend is also seen comparing the

sampling variants. As expected more diversity is achieved

when sampling from the adversarial model instead of us-

ing beamsearch with vocabulary size increasing to 2671 in

Adv-samp. The effect of this increased diversity can be in

the qualitative examples shown in Figure 5. More qualita-

tive samples are included in the supplementary material.

We can also see that the adversarial model learns to

construct significantly more novel sentences compared to

the baseline model with Adv-bs producing novel captions

72.53% of the time compared to just 44.27% by the beam-

bs. All three per-image diversity statistics also improve in

the adversarial models indicating that they can produce a

more diverse set of captions for any input image.

Table 4 also shows the diversity statistics on the refer-

ence captions on the test set. This shows that although ad-

versarial models do considerably better than the baseline,

there is still a gap in diversity statistics when compared to

the human written captions, especially in vocabulary size.

Finally, Figure 6 plots the vocabulary size as a function

of word count threshold, k. We see that the curve for the ad-

versarial model better matches the human written captions

compared to the baseline for all values of k. This illustrates

that the gains in vocabulary size in adversarial models does

not arise from using words with specific frequency, but is

instead distributed evenly across word frequencies.

5.4. Ablation Study

We conducted experiments to understand the importance

of different components of our architecture. The results are

presented in Table 5. The baseline model for this experi-

ment uses VGG [37] features as xp input and is trained us-

ing maximum likelihood loss and is shown in the first row

of Table 5. The other four models use adversarial training.

Comparing rows 1 and 2 of Table 5, we see that adversar-

ial training with a discriminator evaluating a single caption

does badly. Both the diversity and Meteor score drop com-

pared to the baseline. In this setting the generator can get

away with producing one good caption (mode collapse) for

Image

Feature

Evalset

size (p)

Feature

Matching

Meteor Div-2 Vocab.

Size

VGG baseline 0.247 0.44 1367

VGG 1 No 0.179 0.40 812

VGG 5 No 0.197 0.52 1810

VGG 5 yes 0.207 0.59 2547

ResNet 5 yes 0.236 0.55 2671

Table 5: Performance comparison of various configurations

of the adversarial caption generator on the validation set.

an image as the discriminator is unable to penalize the lack

of diversity in the generator.

However, comparing rows 1 and 3, we see that adver-

sarial training using a discriminator evaluating 5 captions

simultaneously does much better in terms of Div-2 and vo-

cabulary size. Adding feature matching loss further im-

proves the diversity and also slightly improves accuracy

in terms of Meteor score. Thus simultaneously evaluating

multiple captions and using feature matching loss allows us

to alleviate mode collapse generally observed in GANs.

Upgrading to the ResNet[15] increases the Meteor score

greatly and slightly increases the vocabulary size. ResNet

features provide richer visual information which is used by

the generator to produce diverse but still correct captions.

We also notice that the generator learns to ignore the in-

put noise. This is because there is sufficient stochasticity in

the generation process due to sequential sampling of words

and thus the generator doesn’t need the additional noise in-

put to increase output diversity. Similar observation was

reported in other conditional GAN architectures [18, 29]

6. Conclusions

We have presented an adversarial caption generator

model which is explicitly trained to generate diverse cap-

tions for images. We achieve this by utilizing a discrimina-

tor network designed to promote diversity and use the ad-

versarial learning framework to train our generator. Results

show that our adversarial model produces captions which

are diverse and match the statistics of human generated cap-

tions significantly better than the baseline model. The ad-

versarial model also uses larger vocabulary and is able to

produce significantly more novel captions. The increased

diversity is achieved while preserving accuracy of the gen-

erated captions, as shown through a human evaluation.
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