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Abstract

Despite a lot of research efforts devoted in recent years,
how to efficiently learn long-term dependencies from se-
quences still remains a pretty challenging task. As one of
the key models for sequence learning, recurrent neural net-
work (RNN) and its variants such as long short term mem-
ory (LSTM) and gated recurrent unit (GRU) are still not
powerful enough in practice. One possible reason is that
they have only feedforward connections, which is differ-
ent from the biological neural system that is typically com-
posed of both feedforward and feedback connections. To
address this problem, this paper proposes a biologically-
inspired deep network, called shuttleNeﬂ Technologically,
the shuttleNet consists of several processors, each of which
is a GRU while associated with multiple groups of hid-
den states. Unlike traditional RNNs, all processors inside
shuttleNet are loop connected to mimic the brain’s feedfor-
ward and feedback connections, in which they are shared
across multiple pathways in the loop connection. Atten-
tion mechanism is then employed to select the best informa-
tion flow pathway. Extensive experiments conducted on two
benchmark datasets (i.e UCF101 and HMDB51) show that
we can beat state-of-the-art methods by simply embedding
shuttleNet into a CNN-RNN framework.

1. Introduction

Deep neural networks (DNNs) have achieved great suc-
cess in recent years as they are able to learn complex fea-
tures and patterns from data. A typical DNN has multiple
nonlinear layers which are connected with feedforward con-
nections. In order to gain better performance, very deep
structure must be considered to construct a DNN, which
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will then leads to massive amount of parameters and high
risk of over-fitting.

In biological neural system, the visual areas of the brain
are interconnected in a complex pattern of feedforward, lat-
eral, and feedback pathways [12, [25]. Feedback connec-
tions are ubiquitous throughout the cortex, and subcortical
regions in ascending hierarchical pathways also receive a
large amount of feedback from cortical areas [9} [29]]. This
fact motivates us that DNNs may benefit a lot from imitat-
ing the biological neural system by introducing lateral or
feedback connections.

Following the similar idea, recurrent neural networks
(RNNs) introduce lateral connections to the temporal do-
main to condition their present state on the entire history of
inputs. Because of the temporal lateral connection mech-
anism, RNNs are able to capture long-term dependencies
in sequential data over an extended period of time. More-
over, RNNs have been theoretically proved to be a Turing-
complete machine, indicating that they can be used to ap-
proximate any functions [32]. As one variant of RNNs,
long short term memory (LSTM) [17] is proposed to solve
the gradient vanishing and exploding problems. When un-
folded in time, LSTMs are equivalent to very deep neural
networks that share model parameters and receive the in-
put at each time step. The parameter-sharing mechanism
guarantees that there are not too many parameters and con-
sequently the network is trainable. Many works [[7, 30} 47]
have proved the effectiveness of LSTM on the action recog-
nition task from video sequences.

In this paper, we propose a new kind of biologically-
inspired deep neural network, called shuttleNet, which is
composed of both feedforward and feedback connections.
Technologically, the shuttleNet consists of N processors
and N x D groups of hidden states. In our model, each
processor is a simple Gated Recurrent Unit [S], typically
containing a group of weight matrices and associated with
D groups of hidden states. All the N processors are orga-
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nized as a ring, each of which clockwise connects to the
next processor with a stride of K. If an input z is fed into
the n*" processor, it will return to the original processor af-
ter % steps (typically D > %). This process forms a loop
connection which can be viewed as a combination of both
feedforward and feedback connections. In the network, x
will be fed into all the IV processors and be passed through
D steps, consequently leading to N pathways. Moreover,
these processors can be shared in different pathways while
having standalone states at each step. After that, the atten-
tion mechanism [3] is employed to select the best pathway,
suppose that each pathway corresponds to one potential pre-
diction. In short, the network works in a shuttle way, thus
the name shuttleNet.

We evaluate the proposed shuttleNet for action recogni-
tion task on two benchmark datasets, namely UCF101 and
HMDB51. Experimental results show that the shuttleNet
outperforms LSTMs and GRUs remarkably. By simply em-
bedding our shuttleNet into a CNN-RNN network, we can
beat most of the state-of-the-art action recognition methods
on both datasets.

The rest of the paper is organized as follows: In section
[2l we review the related work. We will briefly introduce
the biological background and our motivation in section [3]
The proposed shuttleNet is presented in section [d] Experi-
mental results are discussed in section[5] Finally, section [f]
concludes this paper.

2. Related work

Basically, action recognition aims at categorizing the ac-
tions or behaviors of one or more persons in a video se-
quence. Two-stream ConvNets [33]] is widely recognized
as the first successful deep learning framework for action
recognition. It extracts the spatial and temporal characteris-
tics in one framework, and trains the standalone CNNs for
two streams separately. Wang et al. [44] also successfully
trained very deep two-stream ConvNets on the UCF101
dataset. Similarly, trajectory-pooled deep-convolutional de-
scriptor (TDD) was proposed by Wang er al. [42], which
shares the merits of both hand-crafted features such as dense
trajectories [40, 41] and deeply-learnt features. However,
two-stream ConvNets did not capture and utlize the long-
term dependence in the network.

Hierarchical recurrent neural network [8|] is one of the
earliest works which attempted to improve the efficiency of
capturing long term dependency. Long short term mem-
ory (LSTM) [17], the most successful approach to deal
with vanishing gradients, was proposed by Hochreiter and
Schmidhuber. Basically, LSTM relies on a fantastic struc-
ture made of gates to control the flow of information to
the hidden neurons. Peephole LSTM [13] adds peepholes
to some gates so as to allow them look at the cell state.
Gated recurrent unit (GRU), introduced by Cho et al 3], is a

Figure 1. [llustration of the visual cortical pathways [20]]. Feed-
forward connections are represented by blue arrows and feedback
connections are represented by red arrows. A pathway is enlarged
for convenience. The feedforward and feedback connections to-
gether generate a loop connection.

slightly more dramatic variation on the LSTM, which com-
bines the forget and input gates into a single update gate
and merges the cell state and hidden state. Mikolov et al.
[26] proposed to add a hidden layer to RNNs and make the
weight matrix close to identity.

It should be noted that LSTMs were introduced to model
long-term actions for action recognition recently. Yue-Hei
et al. [47] and Donahue et al. [7] proposed their own
recurrent networks respectively by connecting LSTMs to
CNNs. Wu et al. [46] achieved the state-of-the-art per-
formance by connecting CNNs and LSTMs under the hy-
brid deep learning framework. Shi er al. [31} 30] also
introduced their DTD and sDTD to model the dependence
on the temporal domain. Nevertheless, LSTMs and GRUs
are still not powerful enough for action recogntion in prac-
tice. One possible reason is that they have only feedfor-
ward connections, which is different from biological neu-
ral network that is typically composed of both feedforward
and feedback connections. Therefore, this paper proposes
a biologically-inspired deep network, called shuttleNet, by
introducing loop connections in the network. We will show
the shuttleNet outperforms LSTMs and GRUs remarkably
for action recognition.

3. Background

Hierarchical processing is the key to understand vi-
sion system. It consists of hierarchically organized dis-
tinct anatomical areas functionally specialized for process-
ing different aspects of a visual object [12]. These visual ar-
eas are interconnected through ascending feedforward con-
nections, descending feedback connections and connections
from neural structures at the same hierarchical level [22].
The lateral geniculate nucleus (LGN) is a relay center in
the thalamus for the visual pathway. There is evidence that
only 10% of inputs to LGN come from the retina and 90%
are feedback modulatory inputs from cortex and the brain-
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Table 1. Some popular deep networks and their depths.

LeNet-5 | VGG-16 | GoogleNet | ResNet-152
5 16 22 152

Please refer to [24} 1341138} [15].

stem. As shown in Figure[I] the feedback connections play
an important role in visual cortical pathways.

On the contrary, DNN researchers concentrate on de-
signing deeper network with only feedforward connections,
as shown in Table[T} As the model becoming more and more
deeper, it will consume more time and computing resource
to train. However, LGN and VIE] have only 6 layers but still
are powerful enough for understanding vision information.
A reasonable way to re-design the networks is to imitate the
feedback connections of visual cortical pathways.

A feedback connection is a connection along which the
information can go back to the previous layer after a few
feedforward steps. Together with the feedforward connec-
tions, the feedback connections can always result in circular
paths. This means that it is not necessary to explicitly gener-
ate the feedback connections and we can introduce feedback
connections to neural network by generating loop connec-
tions.

4. shuttleNet

In this section, we will first present the overall frame-
work of the proposed shuttleNet. After that, we will de-
scribe the details about its key components one by one.

4.1. The overall framework

Basically, shuttleNet is a biologically-inspired deep
neural network, which introduce loop connection and
processor-sharing mechanism to the network. As shown
in Figure 2] the input z; at time ¢ is projected by a fully-
connected layer so that the inputs to processors have the
same length as the states. The main module of shuttleNet
consists of N processors. The projected input is fed into all
the IV processors and pass through D steps with a stride of
K, consequently resulting in [V pathways. At every step, all
processors work simultaneously and generate their outputs.
During these steps, all processors are shared while having
standalone hidden states. Finally, attention mechanism is
applied to select the best pathway based on outputs at the
last step and input.

A noticeable advantage of shuttleNet is that, even
though having complex connections, no extra parameters
are needed except for the attention module. Considering
that the number of parameters does not increase obviously,
we can effectively lower the risk of over-fitting.

2The primary visual area (V1) of the cerebral cortex is the first stage of
cortical processing of visual information.

Our model works like recurrent neural network, and con-
sists of three modules: an input projector, a group of loop-
connected processors and an output selector. The entire
model (all three components) is trained via backpropaga-
tion through time, receiving gradients from every time step,
which are then propagated through the unrolled network.

4.2. Input projector

The input projector is crucial when the inputs and hid-
den states have different lengths. It makes sure the inputs of
processors and hidden states have the same number of di-
mensions. However, when the input feature length is equal
to the length of hidden state, the input projector is not nec-
essary. Typically, the input at time ¢ is a fixed length fea-
ture, e.g. the output of CNNs or a bag-of-the-words (BoW)
representation. In this work, the inputs are outputs of the
last convolution or pooling layer of CNNs. We use a sim-
ple fully-connected layer with batch normalization [18] to
project the input. More precisely, let the input be z;. The
projected representation of this input is computed as fol-
lows:

Ty, = wpry (1)

o

xy = mam(w +5,0) )

Var|z}]

where w, and b are the learnable parameters, Efz] =
+ Zi\; z;, Varlz] = + Zf\;l(xz — E[x])%, N is batch
size and maz(zx, 0) is the ReLU [27] activation function.

4.3. Loop-connected processors

As discussed in section[3] the visual pathways have more
feedback connections than feedforward connections. Our
first intuition is to design a network with feedforward and
feedback connections like the visual pathways. However, to
make the model computable and stable, we choose to imple-
ment the connections as a simplified version, loop connec-
tions. We will then describe it with mathematical linguistic
forms.

For most known network structure, layers are stacked
one by one and the last layer produces the final output. The
layers of a network can be considered as some nonlinear
functions. For input z, a four-layer network generate the
output as follows:

y = fa(f3(f2(f1(2)))) (3)

where f1, fo, f3 and fy are the four layers and y is the
output. In this setting, the network projects input from its
original space, where it is hard to classify the samples, to
another space, where it is easier to classify the samples. Ba-
sically, a network can be decomposed into several nonlinear
functions. There are a lot of redundancy in network and it
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Figure 2. Diagram of the shuttleNet. The processors are represented by p,, and the hidden states are represented by ht"l,n

. The information

flow pathways are represented by the arrow lines. Every column is called one step. The input z; is first projected by w,. The projected
input is fed into all the IV processors and pass through D steps with a stride of K, consequently resulting in N pathways. At every step,
all processors work simultaneously and generate their outputs. During the steps, all processors are shared while keeping standalone hidden
states. Finally, attention mechanism is applied to select the best pathway based on outputs at the last step and input.
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Figure 3. Illustration of a 4-processor-2-step shuttleNet.

is possible that we share some functions while achieving
comparable or better performance as follows:

y = fa(fi(f2(f1(2)))) “4)

There is an obvious advantage in this kind of layer-sharing
mechanism that we can decrease number of parameters
while keeping the network depth consequently reducing
over-fitting.

In order to tap into the potentials of layer sharing, we
further develop this idea. A group of layers are organized
into a ring. The input z is first fed into all these layers.
Then the outputs of the layers are clockwise fed into the
next layer with a stride of K.

Formally, for N layers {fo, f1,..., fn—1} and a given
input z, we compute N outputs as follows:

Yi = f+pe)%n (- (frx)yan (fi(2))))  ©)

where j € {0,1,...,N — 1}, % is the modulus operator,
D is the user defined maximum computing steps and y; is
the output of the j** pathway. Therefore, there are totally
N outputs. Because that each layer can be reused multiple
times in each pathway consequently resulting in multiple in-
formation flow loops and layers are organized into a circle,
we call it loop connection.

For a specific application like action recognition, we
will implement the layers with recurrent neural networks

(RNNs), e.g. LSTMs or GRUs. For the convenience of ex-
pression, we will also use “processor* to denote the RNN
layer.

For a RNN layer, the hidden state / is used to remember
history information. The n‘® RNN processor p,, at d*" step
and time ¢ in the loop connection works as follows:

Pn (Ot n—K> hy n) (6)
= PO i hin) 7

d
Ot no ht,n

d+1
Ot n o ht,n

where o, is the output of the n'”* processor at d'" step and
time ¢ and A ,, is the hidden state of the nth processor. The
equation E] means that h; , is used by p,, at the dth step
while equation I /| means that h; ,, is also used by p,, at the
(d + 1)*" step. However in the loop connection, the two
equations are happening in two different information path-
ways. The chaotic dependencies will end up with unstable
training process.

Our solution of the chaotic dependencies is to keep an in-
dividual hidden state for each processor at every step while
sharing the processor itself between steps. Formally, the
processor p,, at d** step and time ¢ in the modified loop
connection works as follows:

of b = (0l e b ) (8)
ot R = pa(of, kRt L) ©9)

tn »tn

where hf_’n is hidden state of p,, at d*" step and time ¢. In
these equations, each group of hidden state is only used in
one pathway and transmits along time.

4.4. Output selector

According to section 4.2 and [4.3] given input z; at time
t, after going through the input projector and N pathways,
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there are N outputs {0/, 07}, ,0y_;}. We need to
choose the output which will produce the best prediction. In
this paper, attention mechanism [3]] is employed to help se-
lect the proper output. Specifically, the output is computed
using the following equations:

€tn = VTta’th(’wsz? + woot[,)n) (10)
ETP\E¢,n
o JH(—H (11)
Sto explery)
N-1
ye =y aof) (12
1=0

where vector v and the weight matrixes w,, and w, are the
learnable parameters and the y; is the output of shuttleNet.
The vector e; assigns a weight for each output OEn, which
means how much attention should be put on of’)n. These
attention weights are normalized by softmax to create the
attention mask «; over the outputs.

The 3D structure of a 4-processor-2-step shuttleNet with
K = 1 is shown in Figure The input is replicated so
that each processor has its own input. And processors are
formed as a circle and work at every step simultaneously.
The processors have standalone hidden state at every step.
The information flow is propagated in a wheel way. Finally,
attention mechanism is utilized to select the best pathway.

It should be noted that when N and D are 1, shuttleNet
is completely equivalent to a RNN layer. When N is larger
than 1 and D is 1, shuttleNet can be seen as a bank of RNN
layers. When N is 1 and D is larger than 1, shuttleNet is a
weight-shared stacked RNN.

5. Experiments

In this section, we will first introduce the detail of
datasets and their corresponding evaluation schemes. Then,
we describe the implementation details of our model. To
find out the effect of each parameter, we explore experi-
ments with multiple parameter settings and prove the ef-
fectiveness of shuttleNet. We finally report the experimen-
tal results and compare shuttleNet with the state-of-the-art
methods to demonstrate its superior performance.

5.1. Datasets

To verify the effectiveness of shuttleNet, we conduct ex-
periments on two benchmark datasets: HMDBS51 [21]] and
UCF101 [35].

The HMDBS51 dataset is a large collection of realistic
videos from various sources, including movies and web
videos. It is composed of 6,766 video clips from 51 action
categories, with each category containing at least 100 clips.
The action categories include simple facial actions, general
body movements and human interactions. Our experiments
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Figure 4. General action recognition network structure. The video
frames are fed into CNNss to learn representations. The CNN rep-
resentations are then fed into RNNs to learn temporal features.
Finally, the output of RNNss is used to predict action label.

follow the original evaluation scheme, and average accuracy
over the three train-test splits is reported.

The UCF101 dataset is one of the most popular action
recognition benchmarks. It contains 13,320 video clips (27
hours in total) from 101 action classes and there are at least
100 video clips for each class. The 101 classes are di-
vided into five groups: Body-Motion, Human-Human In-
teractions, Human-Object Interactions, Playing Musical In-
struments and Sports. Following [19], we conduct evalu-
ations using 3 train/test splits, which is currently the most
popular setting in using this dataset. Results are measured
by classification accuracy on each split and we report the
mean accuracy over the three splits.

Compared with very large datasets used for image clas-
sification, the datasets for action recognition is relatively
smaller. Therefore, we pre-train our model on the ImageNet
dataset [6]. Unlike pure CNN models [33} 45]], which are
fully pre-trained on ImageNet, our network has new layers
which can not be trained on image datasets. In order to ap-
ply shuttleNet to smaller dataset like HMDBS51, we transfer
the learnt model from UCF101 to HMDBSI1.

5.2. Implementation details

As shown in Figure @] we use a CNN-RNN network
structure as in [7, 30] and use two-stream framework [33]
to get our final prediction. In order to conduct as many ex-
ploration experiments as we can, we use a relative small
network, GoogLeNet [38], as our CNN implementation to
test these parameter combinations. After choosing the best
hyper-parameters, we switch to Inception-ResNet-v2 [37]]
to get the final performance. To highlight effectiveness of
shuttleNet and ensure fairness, the RNN part is tested with
several options: 2-layer LSTM [17], 2-layer GRU [3], 3-
layer GRU and 1-layer shuttleNet. The shuttleNet may have
1-3 processors and 1-3 steps.

We implement shuttleNet with TensorFlow [1] and use
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GRU as the processor because of less parameter number and
good performance compared with other RNNs.

To extract optical flow, we choose the TVL1 optical flow
algorithm [48]] and use the OpenCV GPU implementation.
We discretize the optical flow fields into interval of [0, 255]
by a linear transformation and save them as images. Unlike
the two-stream ConvNets in [33], whose temporal stream
input is volumes of stacking optical flow fields (224 x 224 x
2F, where F' is the number of stacking flows and is set to
10), our temporal stream input is single optical flow. An
optical flow field is computed from two consecutive frames
and composed of vertical and horizontal flows. To make use
of the optical flow, the flow-z, flow-y and their quadratic
mean is used to form a three channel image.

After initializing with the pre-trained ImageNet model,
the network is trained with mini-batch stochastic gradi-
ent descent with momentum (set to 0.9). We read 16
frames/optical flows with a stride of 5 from each video as
one sample for the RNN. We resize all input images to
256 x 256, and then use the fixed-crop strategy [44] to crop
a 224 x 224 region from images or their horizontal flip. Be-
cause the 16 consecutive samples are needed in the RNN,
we also force images from the same video to crop the same
region. In the test phase, we sample 4 corners and the cen-
ter from each image and its horizontal flip, and 5 samples
are extracted from each video. The batch size is 16 (videos)
and the learning rate starts from 0.01. For spatial stream,
the learning rate is divided by 10 at iteration 10/, 20/ and
30K, and training is stopped at 40K iteration. For temporal
stream, the learning rate is divided by 10 at 20K, 30K and
40K, and training is stopped at 45K iteration.

Unlike GoogLeNet, Inception-ResNet-v2’s default input
size is 299 x 299. However, such a big input size will re-
sult in massive GPU memory requirements. Therefore, we
random initialize the auxiliary tower and the classification
layer, and then force the Inception-ResNet-v2 to train with
224 x 224 images. And we use RMSProp to optimize the
model. Another issue of training Inception-ResNet-v2 with
RNNS is that the batch normalization is highly relied on the
mean and variance of each batch. When training Inception-
ResNet-v2 with RNNs, each GPU (with 12G memory e.g.
one core of Tesla K80) can only hold 32 images, which are
two videos. In order to get reasonable mean and variance,
we train the model with 8 GPUs, which is capable of 16
videos. Then we select 2 images from each video for each
GPU and get 32 images. The hand-selected batches, which
have 32 images, are respectively fed into 8 GPUs. After
getting features from the last layer of CNNs (or the input
projector), we rearrange the images to their original order
to train the RNNSs (or shuttleNet). Even though it is compli-
cated to train RNNs (or shuttleNet) with Inception-ResNet-
v2, the test stage is very easy and we are able to test with a
batch size of 160 images without any modification.

Table 2. Accuracy and parameter number of shuttleNet with dif-
ferent settings on UCF101 split 1.

# processors | # steps | Spatial stream | Params
1 82.37% 10.49M

2 2 83.03% 10.49M

3 80.89% 10.49M

1 82.9% 6.29M

2 2 83.03% 10.49M

3 83.19% 14.68M

3 3 82.13% 14.68M

In the remainder of the paper, we use spatial stream
and temporal stream to indicate the streams in two-stream
framework and use “two streams” to indicate the late fusion
of two models.

5.3. Exploration experiments

In this section, we will first test shuttleNet with differ-
ent setting by adjusting the number of processors and the
number of steps. Then, we compare our model with several
existing RNN models in section[5.3.2]to prove the effective-
ness of shuttleNet. We find that our shuttleNet can achieve
much better performance with similar number of parame-
ters. We also select base network by train shuttleNet with
GoogleNet and Inception-ResNet-v2 and compare their ac-
curacy.

5.3.1 Parameter study

There are three hyper parameters in shuttleNet: the stride
K, the number of processors N and the number of steps D.
We will fix K as 1 in all of our experiments and explore
the effect of other parameter by running experiments under
multiple settings.

The performance of shuttleNet under different settings
are shown in table 2 We find that as the number of steps
growing, the performance of spatial stream first increases
then decreases. As the number of processors growing,
the spatial stream accuracy keeps increasing and parameter
number grows quickly. Actually, the conclusions are easy to
understand. When increasing the number of steps, each pro-
cessor will have to take care of more situations. The more
steps used, the harder for processors to learn. However,
with 2 steps, it works like regularization approach prevent-
ing overfitting hence improving the performance. When in-
creasing the number of processors, all processors work like
model ensemble. The more processors used, the better the
ensemble will be. However, more processors will result in
more parameters hence increasing complexity.

Based on the above discussion, we will use 2 steps in
the following sections. Although our shuttleNet can be eas-
ily extended as a multi-layer model, we use only one layer

721



Table 3. The accuracies of shuttleNet on two datasets.

Dataset split | Spatial | Temporal | Two streams | Two streams + MIFS

1 87.9% 86.3% 94.1% 95.1%

2 87.1% 88.6% 94.6% 95.8%

Ucriol 3 86.8% 87.4% 94.3% 95.2%
Mean | 87.3% 87.4% 94.4% 95.4%

1 55.6% 61.9% 69.0% 74.2%

2 53.0% 58.9% 66.0% 71.2%

HMDB5I 3 53.9% 59.5% 64.8% 69.8%
Mean | 54.2% 60.1% 66.6% 71.7%

Table 4. Comparison of shuttleNet to several popular recurrent neu-
ral networks on UCF101 split 1. The second column is the number
of the processors. The shuttleNets use 2 steps.

Model # | Spatial | Temporal | Two Streams
GoogLeNett | - | 77.74% | 79.75% 85.91%
LSTM 2| 78.8% 80.15% 88.58%
GRU 2 | 8049% | 82.77% 90.27%
GRU 31 8242% | 81.21% 90.64%
shuttleNet 1] 82.9% 82.92% 91.65%
shuttleNetf | 2 | 83.03% | 82.18% 91.94%

T There is no RNN in GoogLeNet [38].

¥ We use 1 group of optical flow fields as one sample for GoogLeNet in-
stead of 10 as in [33145]), which result in relatively worse performance
than others’. But we can still get state-of-the-art result based on this
implementation.

Table 5. Number of parameters in 2-layer RNN models with state
size of 1024 and 1-layer shuttleNet without the input projector.
Model LSTM GRU | shuttleNet
Params | 16.78M | 8.39M 10.49M

Table 6. The mean accuracy of shuttleNet with GooglLeNet and
Inception-ResNet-v2 on the three splits of UCF101.

Spatial | Temporal | Merge

GoogleNet | 81.4% 84.9% 92.3%
Inception-

ResNet-v2 87.3% 87.4% 94.4%

shuttleNet with 2 processors to compare with other models,
for example, 2-layer LSTM or GRU, to emphasize the good
performance and ensure fairness.

5.3.2 Comparison with baselines

As shown in Table il we compare the shuttleNet with sev-
eral popular recurrent neural network models. The shut-
tleNet achieves a good performance of 91.94% on UCF101
split 1 while none of other models close to 91%. On the
spatial stream, shuttleNet outperforms other RNN models
remarkably. Even the three layer GRU network can not beat
our 2-processor shuttleNet.

Unlike most of existing methods, who use a stack of 10
optical flow fields as one sample, all of our experiments use
1 group of optical flow fields as one sample to reduce com-
plexity. Therefore we get relatively worse performance on
the temporal stream and two-stream model. But we can still
achieve the state-of-the-art performance after using shut-
tleNet. We believe we can boost the performance by us-
ing stack of 10 optical flow fields as input regardless of the
complexity.

To prove the effectiveness of output selector, we conduct
an experiment with a 2-processor-1-step shuttleNet. The
accuracy of spatial stream is 82.37% and temporal stream
accuracy is 82.76%. The two-stream shuttleNet achieves an
accuracy of 91.7%. This means that output selector is very
effective and can improve the performance significantly.

It’s amazing that our 1-processor-2-step shuttleNet also
achieve an accuracy of 91.65%, which is still much bet-
ter than all other RNN models. The great performance
of 1-processor shuttleNet proves the effectiveness of our
processor-sharing mechanism.

The processor-sharing mechanism also makes sure that
our model won’t have too many parameters. As shown in
Table 5] our model has slightly more parameters than GRU
while having much less parameters than LSTM. The addi-
tion parameters are used to compute the attention value for
each path. This means that no matter how many processors
we have, there won’t be any more parameters needed.

The overall potential of loop connection is fully demon-
strated by the 2-processor-2-step shuttleNet. It outper-
forms all of these baselines and achieves a high accuracy
of 91.94%. The good performance proves the advantage of
shuttleNet.

Parallel computing is another potential advantage of our
shuttleNet. Because that each processor in shuttleNet at
every step works independently, it’s easy to accelerate the
computing by parallel computing all processors.

5.3.3 Selection of base network

The shuttleNet gets inputs from previous CNNs. It is im-
portant to select a better network. We test shuttleNet with
GoogLeNet and Inception-ResNet-v2 and the results are
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shown in Table [f] The Inception-ResNet-v2 gets a 2%
higher accuracy than GoogleNet. The shuttleNet achieves
state-of-the-art performance even using a relatively simpler
network like GoogleNet. And it achieves much better per-
formance by using Inception-ResNet-v2. In the rest of the
paper, we will use Inception-ResNet-v2 as our base network
and report the accuracies.

5.4. Evaluation

In this section, we will first evaluate shuttleNet on more
datasets and report their accuracy. Then we compare shut-
tleNet with several state-of-the-art methods in section[3.4.2]

5.4.1 Evaluation of shuttleNet

From section[5.3.2] we prove the effectiveness of shuttleNet
on UCF101 split 1. We now report the performance of shut-
tleNet on more splits and dataset with Inception-ResNet-v2
in Table[3

For the HMDBS1 dataset, shuttleNet performs good
on the first split while relatively worse on the other two
splits. And the overall performance is not as good as in
UCF101. We believe this is because of the small training
set size (3570 videos). But shuttleNet is still outstanding on
HMDB51 when comparing to other methods. On UCF101
dataset, the shuttleNet performs good on all three splits.

In most cases, the temporal stream achieves better per-
formance than the spatial stream. This proves that the mo-
tion information plays an important role in action recogni-
tion.

Compared to pure CNN models, our method adds new
layers to the network, which can not be pre-trained on Im-
ageNet. Training the new layers on small dataset, e.g.
HMDBS51, is easy to be over-fitting. In order to apply shut-
tleNet to small dataset, we merge shuttleNet with MIFS
[23]], which is a hand-crafted feature, using late fusion. The
improvement proves the complementation between deep
features and traditional features.

5.4.2 Comparison with the state-of-the-art methods

Finally, we compare against the state-of-the-art over all
three splits of HMDBS51 and UCF101. The results are sum-
marized in Table [/} where we compare our method with
both traditional approaches such as iDT and deep learning
methods such as TSN [45]].

Compared to the two-stream ConvNets [33]], which is the
most famous baseline method, we get around 12.3% and
7.4% improvements on HMDBS51 and UCF101 datasets, re-
spectively. These results are much better than traditional
iDT [41] and MIFS [23]]. Compared to TSN [45]], the shut-
tleNet achieves better performance on both HMDB51 and
UCF101.

Table 7. Comparison of shuttleNet to the state-of-the-art methods.

Model HMDB51 | UCF101
STIP+BoF [21] 23.0% 43.9%
DT+MVSV [4] 55.9% 83.5%

iDT+FV [41] 57.2% 85.9%
iDT+HSV [28]] 61.1% 88.0%
MIFS [23] 65.1% 89.1%
Two-stream ConvNets [33]] 59.4% 88.0%
Fs7CN [36] 59.1% 88.1%
TDD+FV [42] 63.2% 90.3%
TDD+DT+FV [42] 65.9% 91.5%
MOoFAP [43] 61.7% 88.3%

LTC [39] 64.8% 91.7%

sDTD [30] 65.2% 92.2%

Conv Fusion [[11]] 65.4% 92.5%
Three-stream TSN [45]] 69.4% 94.2%
Ours 71.7 % 95.4%

Even though we use a very simple framework and only
replace RNNs with our shuttleNet, our model still outper-
forms these methods on UCF101 and HMDBS51. The supe-
rior performance of our method demonstrates the effective-
ness of shuttleNet. It’s possible that we can still improve
the performance by using 10 groups of optical flow fields
as input or pre-train the new layers of shuttleNet on large
dataset like YouTube-8M [2].

6. Conclusion

In this paper, we present a biologically-inspired deep
network, shuttleNet, for action recognition. As demon-
strated on two benchmark datasets, shuttleNet can outper-
form LSTMs and GRUs remarkably while having roughly
equal number of parameters. This is largely ascribed to the
loop connections as well as processor-sharing mechanism.
In the future, there are still a lot of research directions that
will be addressed, for example, to check the performance of
the stacked shuttleNet and whether CNNs will benefit from
loop connection. For more comprehensive evaluation of our
approach, we will conduct experiments on the THUMOS
challenge dataset [14] and ActivityNet dataset [[16} |[10].
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