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Abstract

Despite a lot of research efforts devoted in recent years,

how to efficiently learn long-term dependencies from se-

quences still remains a pretty challenging task. As one of

the key models for sequence learning, recurrent neural net-

work (RNN) and its variants such as long short term mem-

ory (LSTM) and gated recurrent unit (GRU) are still not

powerful enough in practice. One possible reason is that

they have only feedforward connections, which is differ-

ent from the biological neural system that is typically com-

posed of both feedforward and feedback connections. To

address this problem, this paper proposes a biologically-

inspired deep network, called shuttleNet1. Technologically,

the shuttleNet consists of several processors, each of which

is a GRU while associated with multiple groups of hid-

den states. Unlike traditional RNNs, all processors inside

shuttleNet are loop connected to mimic the brain’s feedfor-

ward and feedback connections, in which they are shared

across multiple pathways in the loop connection. Atten-

tion mechanism is then employed to select the best informa-

tion flow pathway. Extensive experiments conducted on two

benchmark datasets (i.e UCF101 and HMDB51) show that

we can beat state-of-the-art methods by simply embedding

shuttleNet into a CNN-RNN framework.

1. Introduction

Deep neural networks (DNNs) have achieved great suc-

cess in recent years as they are able to learn complex fea-

tures and patterns from data. A typical DNN has multiple

nonlinear layers which are connected with feedforward con-

nections. In order to gain better performance, very deep

structure must be considered to construct a DNN, which

∗Corresponding author: Yonghong Tian (email: yhtian@pku.edu.cn).
1The code is available at https://github.com/shiyemin/

shuttleNet

will then leads to massive amount of parameters and high

risk of over-fitting.

In biological neural system, the visual areas of the brain

are interconnected in a complex pattern of feedforward, lat-

eral, and feedback pathways [12, 25]. Feedback connec-

tions are ubiquitous throughout the cortex, and subcortical

regions in ascending hierarchical pathways also receive a

large amount of feedback from cortical areas [9, 29]. This

fact motivates us that DNNs may benefit a lot from imitat-

ing the biological neural system by introducing lateral or

feedback connections.

Following the similar idea, recurrent neural networks

(RNNs) introduce lateral connections to the temporal do-

main to condition their present state on the entire history of

inputs. Because of the temporal lateral connection mech-

anism, RNNs are able to capture long-term dependencies

in sequential data over an extended period of time. More-

over, RNNs have been theoretically proved to be a Turing-

complete machine, indicating that they can be used to ap-

proximate any functions [32]. As one variant of RNNs,

long short term memory (LSTM) [17] is proposed to solve

the gradient vanishing and exploding problems. When un-

folded in time, LSTMs are equivalent to very deep neural

networks that share model parameters and receive the in-

put at each time step. The parameter-sharing mechanism

guarantees that there are not too many parameters and con-

sequently the network is trainable. Many works [7, 30, 47]

have proved the effectiveness of LSTM on the action recog-

nition task from video sequences.

In this paper, we propose a new kind of biologically-

inspired deep neural network, called shuttleNet, which is

composed of both feedforward and feedback connections.

Technologically, the shuttleNet consists of N processors

and N × D groups of hidden states. In our model, each

processor is a simple Gated Recurrent Unit [5], typically

containing a group of weight matrices and associated with

D groups of hidden states. All the N processors are orga-
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nized as a ring, each of which clockwise connects to the

next processor with a stride of K. If an input x is fed into

the nth processor, it will return to the original processor af-

ter N
K

steps (typically D ≥ N
K

). This process forms a loop

connection which can be viewed as a combination of both

feedforward and feedback connections. In the network, x

will be fed into all the N processors and be passed through

D steps, consequently leading to N pathways. Moreover,

these processors can be shared in different pathways while

having standalone states at each step. After that, the atten-

tion mechanism [3] is employed to select the best pathway,

suppose that each pathway corresponds to one potential pre-

diction. In short, the network works in a shuttle way, thus

the name shuttleNet.

We evaluate the proposed shuttleNet for action recogni-

tion task on two benchmark datasets, namely UCF101 and

HMDB51. Experimental results show that the shuttleNet

outperforms LSTMs and GRUs remarkably. By simply em-

bedding our shuttleNet into a CNN-RNN network, we can

beat most of the state-of-the-art action recognition methods

on both datasets.

The rest of the paper is organized as follows: In section

2, we review the related work. We will briefly introduce

the biological background and our motivation in section 3.

The proposed shuttleNet is presented in section 4. Experi-

mental results are discussed in section 5. Finally, section 6

concludes this paper.

2. Related work

Basically, action recognition aims at categorizing the ac-

tions or behaviors of one or more persons in a video se-

quence. Two-stream ConvNets [33] is widely recognized

as the first successful deep learning framework for action

recognition. It extracts the spatial and temporal characteris-

tics in one framework, and trains the standalone CNNs for

two streams separately. Wang et al. [44] also successfully

trained very deep two-stream ConvNets on the UCF101

dataset. Similarly, trajectory-pooled deep-convolutional de-

scriptor (TDD) was proposed by Wang et al. [42], which

shares the merits of both hand-crafted features such as dense

trajectories [40, 41] and deeply-learnt features. However,

two-stream ConvNets did not capture and utlize the long-

term dependence in the network.

Hierarchical recurrent neural network [8] is one of the

earliest works which attempted to improve the efficiency of

capturing long term dependency. Long short term mem-

ory (LSTM) [17], the most successful approach to deal

with vanishing gradients, was proposed by Hochreiter and

Schmidhuber. Basically, LSTM relies on a fantastic struc-

ture made of gates to control the flow of information to

the hidden neurons. Peephole LSTM [13] adds peepholes

to some gates so as to allow them look at the cell state.

Gated recurrent unit (GRU), introduced by Cho et al [5], is a

Figure 1. Illustration of the visual cortical pathways [20]. Feed-

forward connections are represented by blue arrows and feedback

connections are represented by red arrows. A pathway is enlarged

for convenience. The feedforward and feedback connections to-

gether generate a loop connection.

slightly more dramatic variation on the LSTM, which com-

bines the forget and input gates into a single update gate

and merges the cell state and hidden state. Mikolov et al.

[26] proposed to add a hidden layer to RNNs and make the

weight matrix close to identity.

It should be noted that LSTMs were introduced to model

long-term actions for action recognition recently. Yue-Hei

et al. [47] and Donahue et al. [7] proposed their own

recurrent networks respectively by connecting LSTMs to

CNNs. Wu et al. [46] achieved the state-of-the-art per-

formance by connecting CNNs and LSTMs under the hy-

brid deep learning framework. Shi et al. [31, 30] also

introduced their DTD and sDTD to model the dependence

on the temporal domain. Nevertheless, LSTMs and GRUs

are still not powerful enough for action recogntion in prac-

tice. One possible reason is that they have only feedfor-

ward connections, which is different from biological neu-

ral network that is typically composed of both feedforward

and feedback connections. Therefore, this paper proposes

a biologically-inspired deep network, called shuttleNet, by

introducing loop connections in the network. We will show

the shuttleNet outperforms LSTMs and GRUs remarkably

for action recognition.

3. Background

Hierarchical processing is the key to understand vi-

sion system. It consists of hierarchically organized dis-

tinct anatomical areas functionally specialized for process-

ing different aspects of a visual object [12]. These visual ar-

eas are interconnected through ascending feedforward con-

nections, descending feedback connections and connections

from neural structures at the same hierarchical level [22].

The lateral geniculate nucleus (LGN) is a relay center in

the thalamus for the visual pathway. There is evidence that

only 10% of inputs to LGN come from the retina and 90%

are feedback modulatory inputs from cortex and the brain-
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Table 1. Some popular deep networks and their depths.

LeNet-5 VGG-16 GoogLeNet ResNet-152

5 16 22 152

Please refer to [24, 34, 38, 15].

stem. As shown in Figure 1, the feedback connections play

an important role in visual cortical pathways.

On the contrary, DNN researchers concentrate on de-

signing deeper network with only feedforward connections,

as shown in Table 1. As the model becoming more and more

deeper, it will consume more time and computing resource

to train. However, LGN and V12 have only 6 layers but still

are powerful enough for understanding vision information.

A reasonable way to re-design the networks is to imitate the

feedback connections of visual cortical pathways.

A feedback connection is a connection along which the

information can go back to the previous layer after a few

feedforward steps. Together with the feedforward connec-

tions, the feedback connections can always result in circular

paths. This means that it is not necessary to explicitly gener-

ate the feedback connections and we can introduce feedback

connections to neural network by generating loop connec-

tions.

4. shuttleNet

In this section, we will first present the overall frame-

work of the proposed shuttleNet. After that, we will de-

scribe the details about its key components one by one.

4.1. The overall framework

Basically, shuttleNet is a biologically-inspired deep

neural network, which introduce loop connection and

processor-sharing mechanism to the network. As shown

in Figure 2, the input xt at time t is projected by a fully-

connected layer so that the inputs to processors have the

same length as the states. The main module of shuttleNet

consists of N processors. The projected input is fed into all

the N processors and pass through D steps with a stride of

K, consequently resulting in N pathways. At every step, all

processors work simultaneously and generate their outputs.

During these steps, all processors are shared while having

standalone hidden states. Finally, attention mechanism is

applied to select the best pathway based on outputs at the

last step and input.

A noticeable advantage of shuttleNet is that, even

though having complex connections, no extra parameters

are needed except for the attention module. Considering

that the number of parameters does not increase obviously,

we can effectively lower the risk of over-fitting.

2The primary visual area (V1) of the cerebral cortex is the first stage of

cortical processing of visual information.

Our model works like recurrent neural network, and con-

sists of three modules: an input projector, a group of loop-

connected processors and an output selector. The entire

model (all three components) is trained via backpropaga-

tion through time, receiving gradients from every time step,

which are then propagated through the unrolled network.

4.2. Input projector

The input projector is crucial when the inputs and hid-

den states have different lengths. It makes sure the inputs of

processors and hidden states have the same number of di-

mensions. However, when the input feature length is equal

to the length of hidden state, the input projector is not nec-

essary. Typically, the input at time t is a fixed length fea-

ture, e.g. the output of CNNs or a bag-of-the-words (BoW)

representation. In this work, the inputs are outputs of the

last convolution or pooling layer of CNNs. We use a sim-

ple fully-connected layer with batch normalization [18] to

project the input. More precisely, let the input be xt. The

projected representation of this input is computed as fol-

lows:

x′

t = wpxt (1)

xo
t = max(

x′

t − E[x′

t]
√

V ar[x′

t]
+ b, 0) (2)

where wp and b are the learnable parameters, E[x] =
1
N

∑N

i=1 xi, V ar[x] = 1
N

∑N

i=1(xi − E[x])2, N is batch

size and max(x, 0) is the ReLU [27] activation function.

4.3. Loop­connected processors

As discussed in section 3, the visual pathways have more

feedback connections than feedforward connections. Our

first intuition is to design a network with feedforward and

feedback connections like the visual pathways. However, to

make the model computable and stable, we choose to imple-

ment the connections as a simplified version, loop connec-

tions. We will then describe it with mathematical linguistic

forms.

For most known network structure, layers are stacked

one by one and the last layer produces the final output. The

layers of a network can be considered as some nonlinear

functions. For input x, a four-layer network generate the

output as follows:

y = f4(f3(f2(f1(x)))) (3)

where f1, f2, f3 and f4 are the four layers and y is the

output. In this setting, the network projects input from its

original space, where it is hard to classify the samples, to

another space, where it is easier to classify the samples. Ba-

sically, a network can be decomposed into several nonlinear

functions. There are a lot of redundancy in network and it
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Figure 2. Diagram of the shuttleNet. The processors are represented by pn and the hidden states are represented by hd
t,n. The information

flow pathways are represented by the arrow lines. Every column is called one step. The input xt is first projected by wp. The projected

input is fed into all the N processors and pass through D steps with a stride of K, consequently resulting in N pathways. At every step,

all processors work simultaneously and generate their outputs. During the steps, all processors are shared while keeping standalone hidden

states. Finally, attention mechanism is applied to select the best pathway based on outputs at the last step and input.

Figure 3. Illustration of a 4-processor-2-step shuttleNet.

is possible that we share some functions while achieving

comparable or better performance as follows:

y = f3(f1(f2(f1(x)))) (4)

There is an obvious advantage in this kind of layer-sharing

mechanism that we can decrease number of parameters

while keeping the network depth consequently reducing

over-fitting.

In order to tap into the potentials of layer sharing, we

further develop this idea. A group of layers are organized

into a ring. The input x is first fed into all these layers.

Then the outputs of the layers are clockwise fed into the

next layer with a stride of K.

Formally, for N layers {f0, f1, ..., fN−1} and a given

input x, we compute N outputs as follows:

yj = f(j+D∗K)%N (...(f(j+K)%N (fj(x)))) (5)

where j ∈ {0, 1, . . . , N − 1}, % is the modulus operator,

D is the user defined maximum computing steps and yj is

the output of the jth pathway. Therefore, there are totally

N outputs. Because that each layer can be reused multiple

times in each pathway consequently resulting in multiple in-

formation flow loops and layers are organized into a circle,

we call it loop connection.

For a specific application like action recognition, we

will implement the layers with recurrent neural networks

(RNNs), e.g. LSTMs or GRUs. For the convenience of ex-

pression, we will also use ”processor“ to denote the RNN

layer.

For a RNN layer, the hidden state h is used to remember

history information. The nth RNN processor pn at dth step

and time t in the loop connection works as follows:

odt,n, ht,n = pn(o
d−1
t,n−K , ht,n) (6)

od+1
t,n , ht,n = pn(o

d
t,n−K , ht,n) (7)

where odt,n is the output of the nth processor at dth step and

time t and ht,n is the hidden state of the nth processor. The

equation 6 means that ht,n is used by pn at the dth step

while equation 7 means that ht,n is also used by pn at the

(d + 1)th step. However in the loop connection, the two

equations are happening in two different information path-

ways. The chaotic dependencies will end up with unstable

training process.

Our solution of the chaotic dependencies is to keep an in-

dividual hidden state for each processor at every step while

sharing the processor itself between steps. Formally, the

processor pn at dth step and time t in the modified loop

connection works as follows:

odt,n, h
d
t,n = pn(o

d−1
t,n−K , hd

t−1,n) (8)

od+1
t,n , hd+1

t,n = pn(o
d
t,n−K , hd+1

t−1,n) (9)

where hd
t,n is hidden state of pn at dth step and time t. In

these equations, each group of hidden state is only used in

one pathway and transmits along time.

4.4. Output selector

According to section 4.2 and 4.3, given input xt at time

t, after going through the input projector and N pathways,
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there are N outputs {oDt,0, o
D
t,1, · · · , o

D
t,N−1}. We need to

choose the output which will produce the best prediction. In

this paper, attention mechanism [3] is employed to help se-

lect the proper output. Specifically, the output is computed

using the following equations:

et,n = νT tanh(wxx
o
t + woo

D
t,n) (10)

αt,n =
exp(et,n)

∑N−1
l=0 exp(et,l)

(11)

yt =

N−1
∑

l=0

αt,lo
D
t,l (12)

where vector ν and the weight matrixes wx and wo are the

learnable parameters and the yt is the output of shuttleNet.

The vector et assigns a weight for each output oDt,n, which

means how much attention should be put on oDt,n. These

attention weights are normalized by softmax to create the

attention mask αt over the outputs.

The 3D structure of a 4-processor-2-step shuttleNet with

K = 1 is shown in Figure 3. The input is replicated so

that each processor has its own input. And processors are

formed as a circle and work at every step simultaneously.

The processors have standalone hidden state at every step.

The information flow is propagated in a wheel way. Finally,

attention mechanism is utilized to select the best pathway.

It should be noted that when N and D are 1, shuttleNet

is completely equivalent to a RNN layer. When N is larger

than 1 and D is 1, shuttleNet can be seen as a bank of RNN

layers. When N is 1 and D is larger than 1, shuttleNet is a

weight-shared stacked RNN.

5. Experiments

In this section, we will first introduce the detail of

datasets and their corresponding evaluation schemes. Then,

we describe the implementation details of our model. To

find out the effect of each parameter, we explore experi-

ments with multiple parameter settings and prove the ef-

fectiveness of shuttleNet. We finally report the experimen-

tal results and compare shuttleNet with the state-of-the-art

methods to demonstrate its superior performance.

5.1. Datasets

To verify the effectiveness of shuttleNet, we conduct ex-

periments on two benchmark datasets: HMDB51 [21] and

UCF101 [35].

The HMDB51 dataset is a large collection of realistic

videos from various sources, including movies and web

videos. It is composed of 6,766 video clips from 51 action

categories, with each category containing at least 100 clips.

The action categories include simple facial actions, general

body movements and human interactions. Our experiments

Figure 4. General action recognition network structure. The video

frames are fed into CNNs to learn representations. The CNN rep-

resentations are then fed into RNNs to learn temporal features.

Finally, the output of RNNs is used to predict action label.

follow the original evaluation scheme, and average accuracy

over the three train-test splits is reported.

The UCF101 dataset is one of the most popular action

recognition benchmarks. It contains 13,320 video clips (27

hours in total) from 101 action classes and there are at least

100 video clips for each class. The 101 classes are di-

vided into five groups: Body-Motion, Human-Human In-

teractions, Human-Object Interactions, Playing Musical In-

struments and Sports. Following [19], we conduct evalu-

ations using 3 train/test splits, which is currently the most

popular setting in using this dataset. Results are measured

by classification accuracy on each split and we report the

mean accuracy over the three splits.

Compared with very large datasets used for image clas-

sification, the datasets for action recognition is relatively

smaller. Therefore, we pre-train our model on the ImageNet

dataset [6]. Unlike pure CNN models [33, 45], which are

fully pre-trained on ImageNet, our network has new layers

which can not be trained on image datasets. In order to ap-

ply shuttleNet to smaller dataset like HMDB51, we transfer

the learnt model from UCF101 to HMDB51.

5.2. Implementation details

As shown in Figure 4, we use a CNN-RNN network

structure as in [7, 30] and use two-stream framework [33]

to get our final prediction. In order to conduct as many ex-

ploration experiments as we can, we use a relative small

network, GoogLeNet [38], as our CNN implementation to

test these parameter combinations. After choosing the best

hyper-parameters, we switch to Inception-ResNet-v2 [37]

to get the final performance. To highlight effectiveness of

shuttleNet and ensure fairness, the RNN part is tested with

several options: 2-layer LSTM [17], 2-layer GRU [5], 3-

layer GRU and 1-layer shuttleNet. The shuttleNet may have

1–3 processors and 1–3 steps.

We implement shuttleNet with TensorFlow [1] and use
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GRU as the processor because of less parameter number and

good performance compared with other RNNs.

To extract optical flow, we choose the TVL1 optical flow

algorithm [48] and use the OpenCV GPU implementation.

We discretize the optical flow fields into interval of [0, 255]
by a linear transformation and save them as images. Unlike

the two-stream ConvNets in [33], whose temporal stream

input is volumes of stacking optical flow fields (224×224×
2F , where F is the number of stacking flows and is set to

10), our temporal stream input is single optical flow. An

optical flow field is computed from two consecutive frames

and composed of vertical and horizontal flows. To make use

of the optical flow, the flow-x, flow-y and their quadratic

mean is used to form a three channel image.

After initializing with the pre-trained ImageNet model,

the network is trained with mini-batch stochastic gradi-

ent descent with momentum (set to 0.9). We read 16

frames/optical flows with a stride of 5 from each video as

one sample for the RNN. We resize all input images to

256× 256, and then use the fixed-crop strategy [44] to crop

a 224×224 region from images or their horizontal flip. Be-

cause the 16 consecutive samples are needed in the RNN,

we also force images from the same video to crop the same

region. In the test phase, we sample 4 corners and the cen-

ter from each image and its horizontal flip, and 5 samples

are extracted from each video. The batch size is 16 (videos)

and the learning rate starts from 0.01. For spatial stream,

the learning rate is divided by 10 at iteration 10K, 20K and

30K, and training is stopped at 40K iteration. For temporal

stream, the learning rate is divided by 10 at 20K, 30K and

40K, and training is stopped at 45K iteration.

Unlike GoogLeNet, Inception-ResNet-v2’s default input

size is 299 × 299. However, such a big input size will re-

sult in massive GPU memory requirements. Therefore, we

random initialize the auxiliary tower and the classification

layer, and then force the Inception-ResNet-v2 to train with

224 × 224 images. And we use RMSProp to optimize the

model. Another issue of training Inception-ResNet-v2 with

RNNs is that the batch normalization is highly relied on the

mean and variance of each batch. When training Inception-

ResNet-v2 with RNNs, each GPU (with 12G memory e.g.

one core of Tesla K80) can only hold 32 images, which are

two videos. In order to get reasonable mean and variance,

we train the model with 8 GPUs, which is capable of 16

videos. Then we select 2 images from each video for each

GPU and get 32 images. The hand-selected batches, which

have 32 images, are respectively fed into 8 GPUs. After

getting features from the last layer of CNNs (or the input

projector), we rearrange the images to their original order

to train the RNNs (or shuttleNet). Even though it is compli-

cated to train RNNs (or shuttleNet) with Inception-ResNet-

v2, the test stage is very easy and we are able to test with a

batch size of 160 images without any modification.

Table 2. Accuracy and parameter number of shuttleNet with dif-

ferent settings on UCF101 split 1.

# processors # steps Spatial stream Params

2

1 82.37% 10.49M

2 83.03% 10.49M

3 80.89% 10.49M

1

2

82.9% 6.29M

2 83.03% 10.49M

3 83.19% 14.68M

3 3 82.13% 14.68M

In the remainder of the paper, we use spatial stream

and temporal stream to indicate the streams in two-stream

framework and use “two streams” to indicate the late fusion

of two models.

5.3. Exploration experiments

In this section, we will first test shuttleNet with differ-

ent setting by adjusting the number of processors and the

number of steps. Then, we compare our model with several

existing RNN models in section 5.3.2 to prove the effective-

ness of shuttleNet. We find that our shuttleNet can achieve

much better performance with similar number of parame-

ters. We also select base network by train shuttleNet with

GoogLeNet and Inception-ResNet-v2 and compare their ac-

curacy.

5.3.1 Parameter study

There are three hyper parameters in shuttleNet: the stride

K, the number of processors N and the number of steps D.

We will fix K as 1 in all of our experiments and explore

the effect of other parameter by running experiments under

multiple settings.

The performance of shuttleNet under different settings

are shown in table 2. We find that as the number of steps

growing, the performance of spatial stream first increases

then decreases. As the number of processors growing,

the spatial stream accuracy keeps increasing and parameter

number grows quickly. Actually, the conclusions are easy to

understand. When increasing the number of steps, each pro-

cessor will have to take care of more situations. The more

steps used, the harder for processors to learn. However,

with 2 steps, it works like regularization approach prevent-

ing overfitting hence improving the performance. When in-

creasing the number of processors, all processors work like

model ensemble. The more processors used, the better the

ensemble will be. However, more processors will result in

more parameters hence increasing complexity.

Based on the above discussion, we will use 2 steps in

the following sections. Although our shuttleNet can be eas-

ily extended as a multi-layer model, we use only one layer
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Table 3. The accuracies of shuttleNet on two datasets.

Dataset split Spatial Temporal Two streams Two streams + MIFS

UCF101

1 87.9% 86.3% 94.1% 95.1%

2 87.1% 88.6% 94.6% 95.8%

3 86.8% 87.4% 94.3% 95.2%

Mean 87.3% 87.4% 94.4% 95.4%

HMDB51

1 55.6% 61.9% 69.0% 74.2%

2 53.0% 58.9% 66.0% 71.2%

3 53.9% 59.5% 64.8% 69.8%

Mean 54.2% 60.1% 66.6% 71.7%

Table 4. Comparison of shuttleNet to several popular recurrent neu-

ral networks on UCF101 split 1. The second column is the number

of the processors. The shuttleNets use 2 steps.

Model # Spatial Temporal Two Streams

GoogLeNet† - 77.74% 79.75% 85.91%

LSTM 2 78.8% 80.15% 88.58%

GRU 2 80.49% 82.77% 90.27%

GRU 3 82.42% 81.21% 90.64%

shuttleNet 1 82.9% 82.92% 91.65%

shuttleNet‡ 2 83.03% 82.18% 91.94%

† There is no RNN in GoogLeNet [38].
‡ We use 1 group of optical flow fields as one sample for GoogLeNet in-

stead of 10 as in [33, 45], which result in relatively worse performance

than others’. But we can still get state-of-the-art result based on this

implementation.

Table 5. Number of parameters in 2-layer RNN models with state

size of 1024 and 1-layer shuttleNet without the input projector.

Model LSTM GRU shuttleNet

Params 16.78M 8.39M 10.49M

Table 6. The mean accuracy of shuttleNet with GoogLeNet and

Inception-ResNet-v2 on the three splits of UCF101.

Spatial Temporal Merge

GoogLeNet 81.4% 84.9% 92.3%

Inception-

ResNet-v2
87.3% 87.4% 94.4%

shuttleNet with 2 processors to compare with other models,

for example, 2-layer LSTM or GRU, to emphasize the good

performance and ensure fairness.

5.3.2 Comparison with baselines

As shown in Table 4, we compare the shuttleNet with sev-

eral popular recurrent neural network models. The shut-

tleNet achieves a good performance of 91.94% on UCF101

split 1 while none of other models close to 91%. On the

spatial stream, shuttleNet outperforms other RNN models

remarkably. Even the three layer GRU network can not beat

our 2-processor shuttleNet.

Unlike most of existing methods, who use a stack of 10

optical flow fields as one sample, all of our experiments use

1 group of optical flow fields as one sample to reduce com-

plexity. Therefore we get relatively worse performance on

the temporal stream and two-stream model. But we can still

achieve the state-of-the-art performance after using shut-

tleNet. We believe we can boost the performance by us-

ing stack of 10 optical flow fields as input regardless of the

complexity.

To prove the effectiveness of output selector, we conduct

an experiment with a 2-processor-1-step shuttleNet. The

accuracy of spatial stream is 82.37% and temporal stream

accuracy is 82.76%. The two-stream shuttleNet achieves an

accuracy of 91.7%. This means that output selector is very

effective and can improve the performance significantly.

It’s amazing that our 1-processor-2-step shuttleNet also

achieve an accuracy of 91.65%, which is still much bet-

ter than all other RNN models. The great performance

of 1-processor shuttleNet proves the effectiveness of our

processor-sharing mechanism.

The processor-sharing mechanism also makes sure that

our model won’t have too many parameters. As shown in

Table 5, our model has slightly more parameters than GRU

while having much less parameters than LSTM. The addi-

tion parameters are used to compute the attention value for

each path. This means that no matter how many processors

we have, there won’t be any more parameters needed.

The overall potential of loop connection is fully demon-

strated by the 2-processor-2-step shuttleNet. It outper-

forms all of these baselines and achieves a high accuracy

of 91.94%. The good performance proves the advantage of

shuttleNet.

Parallel computing is another potential advantage of our

shuttleNet. Because that each processor in shuttleNet at

every step works independently, it’s easy to accelerate the

computing by parallel computing all processors.

5.3.3 Selection of base network

The shuttleNet gets inputs from previous CNNs. It is im-

portant to select a better network. We test shuttleNet with

GoogLeNet and Inception-ResNet-v2 and the results are
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shown in Table 6. The Inception-ResNet-v2 gets a 2%

higher accuracy than GoogLeNet. The shuttleNet achieves

state-of-the-art performance even using a relatively simpler

network like GoogLeNet. And it achieves much better per-

formance by using Inception-ResNet-v2. In the rest of the

paper, we will use Inception-ResNet-v2 as our base network

and report the accuracies.

5.4. Evaluation

In this section, we will first evaluate shuttleNet on more

datasets and report their accuracy. Then we compare shut-

tleNet with several state-of-the-art methods in section 5.4.2.

5.4.1 Evaluation of shuttleNet

From section 5.3.2, we prove the effectiveness of shuttleNet

on UCF101 split 1. We now report the performance of shut-

tleNet on more splits and dataset with Inception-ResNet-v2

in Table 3.

For the HMDB51 dataset, shuttleNet performs good

on the first split while relatively worse on the other two

splits. And the overall performance is not as good as in

UCF101. We believe this is because of the small training

set size (3570 videos). But shuttleNet is still outstanding on

HMDB51 when comparing to other methods. On UCF101

dataset, the shuttleNet performs good on all three splits.

In most cases, the temporal stream achieves better per-

formance than the spatial stream. This proves that the mo-

tion information plays an important role in action recogni-

tion.

Compared to pure CNN models, our method adds new

layers to the network, which can not be pre-trained on Im-

ageNet. Training the new layers on small dataset, e.g.

HMDB51, is easy to be over-fitting. In order to apply shut-

tleNet to small dataset, we merge shuttleNet with MIFS

[23], which is a hand-crafted feature, using late fusion. The

improvement proves the complementation between deep

features and traditional features.

5.4.2 Comparison with the state-of-the-art methods

Finally, we compare against the state-of-the-art over all

three splits of HMDB51 and UCF101. The results are sum-

marized in Table 7, where we compare our method with

both traditional approaches such as iDT and deep learning

methods such as TSN [45].

Compared to the two-stream ConvNets [33], which is the

most famous baseline method, we get around 12.3% and

7.4% improvements on HMDB51 and UCF101 datasets, re-

spectively. These results are much better than traditional

iDT [41] and MIFS [23]. Compared to TSN [45], the shut-

tleNet achieves better performance on both HMDB51 and

UCF101.

Table 7. Comparison of shuttleNet to the state-of-the-art methods.

Model HMDB51 UCF101

STIP+BoF [21] 23.0% 43.9%
DT+MVSV [4] 55.9% 83.5%
iDT+FV [41] 57.2% 85.9%

iDT+HSV [28] 61.1% 88.0%
MIFS [23] 65.1% 89.1%

Two-stream ConvNets [33] 59.4% 88.0%
FST CN [36] 59.1% 88.1%

TDD+FV [42] 63.2% 90.3%
TDD+iDT+FV [42] 65.9% 91.5%

MoFAP [43] 61.7% 88.3%

LTC [39] 64.8% 91.7%

sDTD [30] 65.2% 92.2%

Conv Fusion [11] 65.4% 92.5%

Three-stream TSN [45] 69.4% 94.2%

Ours 71.7% 95.4%

Even though we use a very simple framework and only

replace RNNs with our shuttleNet, our model still outper-

forms these methods on UCF101 and HMDB51. The supe-

rior performance of our method demonstrates the effective-

ness of shuttleNet. It’s possible that we can still improve

the performance by using 10 groups of optical flow fields

as input or pre-train the new layers of shuttleNet on large

dataset like YouTube-8M [2].

6. Conclusion

In this paper, we present a biologically-inspired deep

network, shuttleNet, for action recognition. As demon-

strated on two benchmark datasets, shuttleNet can outper-

form LSTMs and GRUs remarkably while having roughly

equal number of parameters. This is largely ascribed to the

loop connections as well as processor-sharing mechanism.

In the future, there are still a lot of research directions that

will be addressed, for example, to check the performance of

the stacked shuttleNet and whether CNNs will benefit from

loop connection. For more comprehensive evaluation of our

approach, we will conduct experiments on the THUMOS

challenge dataset [14] and ActivityNet dataset [16, 10].
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