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Abstract

We propose to help weakly supervised object localization

for classes where location annotations are not available, by

transferring things and stuff knowledge from a source set

with available annotations. The source and target classes

might share similar appearance (e.g. bear fur is similar to

cat fur) or appear against similar background (e.g. horse

and sheep appear against grass). To exploit this, we acquire

three types of knowledge from the source set: a segmenta-

tion model trained on both thing and stuff classes; simi-

larity relations between target and source classes; and co-

occurrence relations between thing and stuff classes in the

source. The segmentation model is used to generate thing

and stuff segmentation maps on a target image, while the

class similarity and co-occurrence knowledge help refining

them. We then incorporate these maps as new cues into a

multiple instance learning framework (MIL), propagating

the transferred knowledge from the pixel level to the ob-

ject proposal level. In extensive experiments, we conduct

our transfer from the PASCAL Context dataset (source) to

the ILSVRC, COCO and PASCAL VOC 2007 datasets (tar-

gets). We evaluate our transfer across widely different thing

classes, including some that are not similar in appearance,

but appear against similar background. The results demon-

strate significant improvement over standard MIL, and we

outperform the state-of-the-art in the transfer setting.

1. Introduction

The goal of object class detection is to place a tight

bounding box on every instance of an object class. Given

an input image, recent object detectors [1, 2, 3, 4] first ex-

tract object proposals [5, 6, 7] and then score them with

a classifier to determine their probabilities of containing an

instance of the class. Manually annotated bounding boxes

are typically required for training (full supervision).

Annotating bounding boxes is tedious and time-

consuming. In order to reduce the annotation cost, many

previous works learn the detector in a weakly supervised

setting [8, 9, 4, 10, 11, 12, 13, 14, 15], i.e. given a set of

images known to contain instances of a certain object class,

but without their locations. This weakly supervised object

localization (WSOL) bypasses the need for bounding box

annotation and substantially reduces annotation time.

Despite the low annotation cost, the performance of

WSOL is considerably lower than that of full supervision.

To improve WSOL, various advanced cues can be added,

e.g. objectness [10, 16, 4, 12, 17, 15], which gives an es-

timation of how likely a proposal contains an object; co-

occurrence among multiple classes in the same training

images [18]; object size estimates based on an auxiliary

dataset with size annotations [15]; and appearance models

transferred from object classes with bounding box annota-

tions to new object classes [19, 20, 21].

There are two types of classes that can be transferred

from a source set with manually annotated locations: things

(objects) and stuff (materials and backgrounds). Things

have a specific spatial extent and shape (e.g. helicopter,

cow, car), while stuff does not (e.g. sky, grass, road). Cur-

rent transfer works mostly focus on transferring appearance

models among similar thing classes [19, 21, 20] (things-to-

things). In contrast, using stuff to find things [22, 23] is

largely unexplored, particularly in the WSOL setting (stuff-

to-things).

In this paper, we transfer a fully supervised segmenta-

tion model from the source set to help WSOL on the target

set. We introduce several schemes to conduct the transfer

of both things and stuff knowledge, guided by the similarity

between classes. Particularly, we transfer the co-occurrence

knowledge between thing and stuff classes in the source via

a second order scheme to thing classes in the target. We

propagate the transferred knowledge from the pixel level to

the object proposal level and inject it as a new cue into a

multiple instance learning framework (MIL).

In extensive experiments, we show that our method: (1)

improves over a standard MIL baseline on three datasets:

ILSVRC [24], COCO [25], PASCAL VOC 2007 [26];

(2) outperforms the things-to-things transfer method [21]

and the state-of-the-art WSOL methods [27, 4, 28] on

VOC 2007; (3) outperforms another things-to-things trans-

fer method (LSDA [20]) on ILSVRC.
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Figure 1: An overview of our things and stuff transfer (TST) method. We acquire the 1) segmentation model, 2) co-occurrence relation

and 3) similarity relation from the source A and transfer them to the target B. We use the segmentation model to generate two maps:

thing (T ) and stuff (S) maps; each of them contains one score (R) map and one label (L) map. The knowledge of class similarity and

co-occurrence is specifically transferred as weighting functions to the thing and stuff label maps. Based on the transferred knowledge,

we propose three scoring schemes (label weighting, contrast weighting, and area weighting) to propagate the information from pixels to

proposals. The rightmost image column illustrates some highly ranked proposals in the image by gradually adopting the three schemes.

2. Related Work

Weakly supervised object localization. In WSOL the

training images are known to contain instances of a certain

object class but their locations are unknown. The task is

both to localize the objects in the training images and to

learn a detector for the class.

Due to the use of strong CNN features [29, 30], recent

works on WSOL [9, 4, 13, 28, 27, 15] have shown re-

markable progress. Moreover, researchers also tried to in-

corporate various advanced cues into the WSOL process,

e.g. objectness [4, 10, 12, 17, 16], object size [15], co-

occurrence [18] among classes, and transferring appearance

models of the source thing classes to help localize similar

target thing classes [19, 21, 20]. This paper introduces a

new cue called things and stuff transfer (TST), which learns

a semantic segmentation model from the source on both

things and stuff annotations and transfers its knowledge to

help localize the target thing class.

Transfer learning. The goal of transfer learning is to im-

prove the learning of a target task by leveraging knowl-

edge from a source task [31]. It is intensively studied

in image classification, segmentation and object detec-

tion [32, 33, 34, 35, 36, 37, 38]. Many methods use the

parameters of the source classifiers as priors for the target

model [32, 33, 34]. Other works [35, 36] transfer knowl-

edge through an intermediate attribute layer, which cap-

tures visual qualities shared by many object classes (e.g.

“striped”, “yellow”). A third family of works transfer ob-

ject parts between classes [33, 37, 38], e.g. wheels between

cars and bicycles.

In this work we are interested in the task where we have

the location annotations in the source and transfer them to

help learn the classes in the target [18, 39, 21, 19, 23, 22].

We categorize the transfer into two types: 1) Things-to-

things. Guillaumin et al. [19] transferred spatial location,

appearance, and context information from the source thing

classes to localize the things in the target; Shi et al. [18] and

Rochan et al. [21] follow a similar spirit to [19]; while Kuet-

tel et al. [39] instead transferred segmentation masks. 2)

Stuff-to-things. Heitz et al. [22] proposed a context model

to utilize stuff regions to find things, in a fully supervised

setting for the target objects; Lee et al. [23] also made use

of stuff annotations in the source to discover things in the

target, in an unsupervised setting.

Our work offers several new elements over these: (1)

we encode the transfer as a combination of both things-to-

things and stuff-to-things; (2) we propose a model to prop-

agate the transferred knowledge from the pixel level to the

proposal level; (3) we introduce a second order transfer, i.e.

stuff-to-things-to-things.

3. Overview of our method

In this section we define the notations and introduce our

method on a high level, providing some details for each part.

Notations. We have a source set A and a target set B. We

have every image pixelwise annotated for both stuff and

things in A; whereas we have only image level labels for

images in B. We denote by AT the set of thing classes in

A, and at an individual thing class; analogue we have AS

and as for stuff classes in A and BT and bt for thing classes

in B. Note that there are no stuff classes in B, as datasets

labeled only by thing classes are more common in practice

(e.g. PASCAL VOC [40], ImageNet [24], COCO [25]).

Method overview. Our goal is to conduct WSOL on B,

where the training images are known to contain instances

of a certain object class but their locations are unknown. A

standard WSOL approach, e.g. MIL, treats images as bags
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of object proposals [5, 6, 7] (instances). The task is both

to localize the objects (select the best proposal) in the train-

ing images and to learn a detector for the target class. To

improve MIL, we transfer knowledge from A to B, incor-

porating new cues into it.

Fig. 1 illustrates our transfer. We first acquire three types

of knowledge in the source A (Sec. 4): 1) a semantic seg-

mentation model (Sec. 4.1), 2) the thing class similarities

between A and B (Sec. 4.2) and 3) the co-occurrence fre-

quencies between thing and stuff classes in A (Sec. 4.3).

Afterwards, we transfer the knowledge to B (Sec. 5). Given

an image in B, we first use the segmentation model to gener-

ate the thing (T ) and stuff (S) maps of it (Sec. 5.1). T con-

tains one score map (R) and one label (L) map, so does S.

The segmentation model transfers knowledge generically to

every image in B. Building upon its result, we propose three

proposal scoring schemes: label weighting (LW, Sec. 5.2),

contrast weighting (CW, Sec. 5.3), and area weighting (AW,

Sec. 5.4). These link the pixel level segmentation to the pro-

posal level score. In each scheme, two scoring functions are

proposed separately on thing and stuff maps. We combine

the three schemes to provide an even better proposal score

to help MIL (Sec 5.5).

Scoring schemes. LW transfers the similarity and co-

occurrence relations as weighting functions to the thing and

stuff label maps, respectively. Since we do not have stuff

annotations on B, we conduct the co-occurrence knowl-

edge transfer as a second-order transfer by finding the target

class’ most similar thing class in A. We believe that the tar-

get class should appear against a similar background with

its most similar class. For example, in Fig. 1 target class

bear’s most similar class in A is cat, LW up-weights the cat

score on T and its frequently co-occurring tree score on S.

LW favours small proposals with high weighted scores.

To counter this effect, we introduce the CW score. It mea-

sures the dissimilarity of a proposal to its surroundings,

measured on the thing/stuff score maps (Fig. 3). CW up-

weights proposals that are more likely to contain an entire

object in T or an entire stuff region in S.

Finally, the AW score encourages proposals to incorpo-

rate as much as possible of the connected components of

pixels on a target’s K most similar classes in A (e.g. Fig. 1:

the cat area in the T map). While CW favors objects in gen-

eral, AW focuses on objects of the target class in particular.

4. Acquiring knowledge from the source A

4.1. Segmentation model

We employ the popular fully convolutional network

(FCN-16s) [41] to train an end-to-end semantic segmenta-

tion model on both thing and stuff classes of A. Given a

new image, the FCN model is able to predict a likelihood

distribution over all classes at each pixel. Notice that the

FCN model is first pretrained for image classification on

ILSVRC 2012 [24], then fine-tuned for semantic segmen-

tation on A. While it is possible that some of the target

classes are seen during pretraining, only image-level labels

are used. Therefore the weakly supervised setting still holds

for the target classes.

4.2. Similarity relations

We compute the thing class similarities V (at, bt) be-

tween any thing class pair (at, bt). We propose two simi-

larity measures to compute V as follows:

Appearance similarity. Every image in A or B is repre-

sented by a 4096-dimensional CNN feature vector cover-

ing the whole image, using the output of the fc7 layer of

the AlexNet CNN architecture [30]. The similarity of two

images is the inner product of their feature vectors. The

similarity VAPP(a
t, bt) is therefore the average similarity

between images in at and images in bt.

Semantic similarity. We compute the commonly used

Lin [42] similarity VSEM(at, bt) between two nouns bt and

at in the WordNet hierarchy [43].

4.3. Co­occurrence relation

We denote by U(as, at) the co-occurrence frequency of

any stuff and thing class pair (as, at) in A. This frequency

is computed and normalized over all the images in A.

5. Transferring knowledge to the target B

This section transfers the source knowledge to the tar-

get set B. In this set, we have access only to image level

labels, but no location annotations. We call the classes that

are listed on the image level label list target classes. Given a

new image of class bt, we first use the FCN model trained on

A to generate the thing (T ) and stuff (S) segmentations sep-

arately (Sec. 5.1). Then we introduce three proposal scor-

ing schemes to propagate the information from pixel level to

proposal level (Sec. 5.2 - 5.4). Finally we combine the three

scoring schemes into a single window score (Sec. 5.5). The

scoring scheme parameters are learned in Sec. 5.6.

5.1. Generating thing and stuff segmentations

We apply the trained FCN model (Sec. 4.1) to a target

image in B. Usually, the output semantic segmentation is

obtained by maximizing over all the class scores at each

pixel [41, 44, 45, 46, 47, 48]. In this paper, we instead gen-

erate two output segmentations, one for things T and one

for stuff S. We denote i as the i-th pixel in the image. We

use RT = {rT
i
} and LT = {lT

i
} to denote the score (R)

and label (L) maps for T . They are generated by keeping

the maximum score and the corresponding label over all the

thing classes AT at each pixel i. Similar to RT and LT ,

RS = {rS
i
} and LS = {lS

i
} are generated by keeping the

maximum score over all the stuff classes AS at each pixel.
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Figure 2: Label weighting example. Top: thing label weighting

(class bear); bottom: stuff label weighting (class baby bed). RT

and RS denote the thing and stuff score heatmaps, respectively;

while V (lTi , b
t) and U(lSi ,NN(bt)) denote the thing and stuff la-

bel weighting heatmaps. We illustrate some proposals in each im-

age. We print the dominantly predicted labels in the proposals to

show how label weighting favours bt’s NN class in thing maps and

its frequently co-occurring stuff class in stuff maps.

Fig. 1 shows an example of a bear image (target). The

thing and stuff maps are produced by the semantic segmen-

tation model. The R heatmaps indicate the probability of

assigning a certain thing or stuff label to each pixel. Build-

ing upon these heatmaps, we propose three proposal scoring

schemes to link the pixel level result to the proposal level

score (Sec. 5.2 - 5.4). These try to give high scores to pro-

posals containing the target class.

5.2. Label weighting (LW)

Because bear is more similar to cat than to table, we want

to up-weight the proposal area in the thing map if it is pre-

dicted as cat. Meanwhile, because bear frequently appears

against tree, we also want to up-weight the proposal area in

the stuff map if it is predicted as tree. To do this, we transfer

the knowledge of similarity and co-occurrence relations ac-

quired in the source to the target class (bear), and use both

relations to modulate the segmentation scores in T and S.

Both relations and segmentation scores play a role in the

label weighting proposal scoring scheme.

Thing label weighting. We can generate a thing label

weighting map depending on how close the predicted class

lT
i

at pixel i in LT is to the target class bt. The thing label

(lT
i

) weight is given by the class similarity score V (lT
i
, bt)

(Sec. 4.2). In Fig. 1 the target class bear is more similar

to cat than to table. If a pixel is predicted as cat, then we

assign a high label weight, otherwise we assign a low one.

Stuff label weighting. We do not have stuff annotations

in B. To conduct the stuff label weighting, we first find bt’s

most similar thing class in AT according to a similarity rela-

tion V (we denote it by NN(bt)). We believe that bt should

appear against a similar background (stuff) as its most sim-

ilar thing class NN(bt). We employ the co-occurrence fre-

quency U(lS
i
,NN(bt)) of NN(bt) as the corresponding stuff

label weight for lS
i

at pixel i as stuff label weighting LS .

In Fig. 1, cat frequently co-occurs with trees, and so does

bear. So, if a certain pixel is predicted as tree, it gets as-

signed a high stuff label weight.

Proposal scoring. To score the proposals in an image,

we multiply the label weights V (lT
i
, bt) and U(lS

i
,NN(bt))

with the segmentation scores rT
i

and rS
i

at each pixel.

The weighting scheme is conducted separately on T and

S. Given a window proposal w, we average the weighted

scores inside w:

LWt(w,αt) = f( 1

|w|

∑
i∈w

rT
i
V (lT

i
, bt), αt)

LWs(w,αs) = f( 1

|w|

∑
i∈w

rS
i
U(lS

i
,NN(bt)), αs)

(1)

where |w| denotes the size of w (area in pixels). We apply

an exponential function f(x) = exp(α ·x) to both thing and

stuff LWs, αt and αs are the parameters.

Fig. 2 offers two examples (bear and baby bed) for our

thing and stuff label weighting schemes. The red proposal

in the top row is mostly classified as a cat and the green

proposal as a potted plant. Both proposals have high scores

in the thing score map RT , but the red proposal has a higher

thing label weight V (lT
i
, bt), because cat is more similar to

bear than to potted plant. In contrast, the green proposal in

the bottom row has low scores in RS but a high label weight

U(lT
i
,NN(bt)), as baby bed co-occurs more frequently with

wall.

Notice that the thing label weighting can be viewed as a

first-order transfer where the information goes directly from

the source thing classes to the target thing classes. Instead,

the stuff label weighting can be viewed as second-order

transfer where the information first goes from the source

stuff classes to the source thing classes, and then to the

target thing classes. To the best of our knowledge, such

second-order transfer has not been proposed before.

5.3. Contrast weighting (CW)

The LW scheme favours small proposals with high la-

bel weights, which typically cover only part of an object

(top right image in Fig. 1). To counter this effect, contrast

weighting (CW) measures the dissimilarity of a proposal

to its immediate surrounding area on the thing/stuff score

maps. It up-weights proposals that are more likely to con-

tain an entire object or an entire stuff region.

The surrounding Surr(w, θ) of a proposal w is a rectan-

gular ring obtained by enlarging it by a factor θ in all direc-

tions [5] (Fig. 3, the yellow ring). The CW between a win-

dow and its surrounding ring is computed as the Chi-square

distance between their score map (R) histograms h(·)

CW(w, θ) = χ2(h(w), h(Surr(w, θ))) (2)

We apply the CW scheme on both RT and RS and obtain

CWt(w, θt) and CWs(w, θs). In Fig. 3 the red proposal

has a higher CWt score compared to the green one.
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Figure 3: Contrast weighting example. An image of a tape player

and some of its window proposals (left). CWt is computed on the

thing score map Rt (right). The red proposal has a higher contrast

CWt (with its surrounding dashed ring) than the green one.

5.4. Area weighting (AW)

Thing area weighting. Fig. 4 gives an example of an

electric fan and its semantic segmentation map. Its 3-NN
classes in terms of appearance similarity (Sec. 4.2) are table,

chair and people. Between the white and yellow propos-

als, the CW scheme gives a bigger score to the white one,

because its contrast is high. Instead, the yellow proposal

incorporates most of the fan area, but is unfortunately pre-

dicted as table and chair. The thing area weighting scheme

helps here boosting the yellow proposal’s score. We find

the K-NN classes of bt in AT by using one of the similar-

ity measures in Sec. 4.2. Given a window w, we denote by

Area(w, bt) the segment areas of any K-NN(bt) inside w;

while Area(O(w), bt) is the area that expands the current

segments to their connected components inside and outside

w. We measure the area ratio between the segments and

their corresponding connected components:

Ratiot(w) =
Area(w, bt)

Area(O(w), bt)
(3)

If none of the K-NN classes occurs in w, we simply set

Ratiot to zero. Throughout this paper, K is set to 3.

Stuff area weighting. In Fig. 4 among the three proposals,

the green one is the best detection of the fan. However, its

score is not the highest according to LWt, CWt and AWt,

as it contains some stuff area (wall) surrounding the fan. A

bounding box usually has to incorporate some stuff area to

fit an object tightly, as objects are rarely perfectly rectangle-

shaped. We propose to up-weight a window w if stuff occu-

pies a small but non-zero fraction of the window. We denote

with Ratios(w) the percentage of stuff pixels in window w.

For thing and stuff area weighting we apply a cumulative

distribution function (CDF) of the normal distribution

AWt(w, µt, σt) = CDF(Ratiot(w)|µt, σt)
AWs(w, µs, σs) = CDF(Ratios(w)|µs, σs)

(4)

where µt and σt are the mean and standard deviation. We

choose µt = µs = 0 and σt, σs are free parameters

(Sec. 5.6).

Figure 4: Area weighting example. An image of an electric fan

(left) and its semantic segmentation (right). Thing area weighting

favours the yellow proposal compared to the white one, as it in-

corporates most of the the connected component area of table and

chair. Stuff area weighting further favours the green proposal as it

allows certain stuff area in a proposal as the surrounding area of

electric fan.

5.5. Combining the scoring schemes

For each proposal in an image, the above scoring

schemes can be independently computed, each on the thing

and stuff map. The scoring schemes tackle different prob-

lems, and are complementary to each other. This sections

combines them to give our final TST (things and stuff trans-

fer) window score W .

All the scoring functions on the thing map are multiplied

together as a thing score W t = LWt ∗ CWt ∗ AWt. This

gives a higher score if a proposal mostly contains a target

thing labeled as present in that image. Similarly, we have

the stuff score W s = LWs ∗ CWs ∗ AWs, which gives a

higher score if a proposal mostly contains stuff. To combine

the thing and stuff scores, we simply subtract W s from W t

W = W t −W s (5)

5.6. Parameter learning

In the WSOL setting, we do not have the ground truth

bounding box annotations in the target set B. Thus we learn

the score parameters αt, αs, θt, θs, σt and σs on the source

set A, where we have ground truth. We train the semantic

segmentation model on the train set of A, and then apply

it to the val set of A. For each image in the val set, we

rank all its proposals using (5). We jointly learn the score

parameters by maximizing the performance over the entire

validation set.

6. Overall system

In WSOL, given the target training set in B with image

level labels, the goal is to localize the object instances in

it and to train good object detectors for the target test set.

We explain here how we build a complete WSOL system by

building on a MIL framework and incorporating our transfer

cues into it.

Basic MIL. We build a Basic MIL pipeline as follows. We

represent each image in the target set B as a bag of ob-

ject proposals extracted using Edge Boxes [7]. They return
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Method APP SEM

Basic MIL 39.7

DT ≈ [21] (transfer only) 15.0 -

DT + MIL ≈ [21] (full) 39.5 -

TST 46.7 46.0

Basic MIL + Objectness [7] 47.6

DT ≈ [21] (transfer only) 34.5 -

DT + MIL ≈ [21] (full) 49.1 -

TST 52.7 52.5

Deep MIL + Objectness [7] 48.4

TST 54.0 53.8

TST + ILSVRC-dets - 55.1

Table 1: CorLoc on ILSVRC-20; DT: direct transfer; DT+MIL:

direct transfer plus MIL. TST is our method; ILSVRC-dets:

Sec. 7.2, last paragraph. The transfers are guided by either the

semantic (SEM) or the appearance (APP) class similarity.

about 5,000 proposals per image, likely to cover all objects.

Following [29, 8, 13, 14, 28], we describe the proposals by

the output of the fc7 layer of the AlexNet CNN architec-

ture [30]. The CNN model is pre-trained for whole-image

classification on ILSVRC [24], using the Caffe implemen-

tation [49]. This produces a 4,096-dimensional feature vec-

tor for each proposal. Based on this feature representation

for each target class, we iteratively build an SVM appear-

ance model (object detector) in two alternating steps: (1)

Re-localization: in each positive image, we select the high-

est scoring proposal by the SVM. This produces the posi-

tive set which contains the current selection of one instance

from each positive image. (2) Re-training: we train the

SVM using the current selection of positive samples, and

all proposals from the negative images as negative samples.

As in [10, 12, 4, 19, 17], we also linearly combine the SVM

score with a general measure of objectness [5, 7]. This leads

to a higher MIL baseline.

Incorporating things and stuff transfer (TST). We incor-

porate our things and stuff transfer (TST) into Basic MIL by

linearly combining the SVM score with our proposal scor-

ing function (5). Note how the behavior of (5) depends on

the class similarity measure used within it (either appear-

ance or semantic similarity, Sec. 4.2).

Deep MIL. Basic MIL uses an SVM on top of fixed deep

features as the appearance model. Now we change the

model to fine-tune all layers of the deep network during the

re-training step of MIL. We take the output of Basic MIL as

an initialization for two additional MIL iterations. During

these iterations, we use Fast R-CNN [1].

7. Experiments

7.1. Datasets and evaluation protocol

We use one source set A (PASCAL Context) and several

different target sets B in turn (ILSVRC-20, COCO-07 and

PASCAL VOC 2007). Each target set contains a training set

and a test set. We perform WSOL on the target training set

to localize objects within it. Then we train a Fast R-CNN [2]

detector from it and apply it on the target test set.

Evaluation protocol. We quantify localization perfor-

mance in the target training set with the CorLoc mea-

sure [9, 4, 10, 50, 28, 27]. We quantify object detec-

tion performance on the target test set using mean aver-

age precision (mAP). As in most previous WSOL meth-

ods [8, 9, 3, 4, 10, 11, 12, 13, 14, 28], our scheme returns

exactly one bounding-box per class per training image. At

test time the object detector is capable of localizing multi-

ple objects of the same class in the same image (and this is

captured in the mAP measure).

Source set: PASCAL Context. PASCAL Context [51]

augments PASCAL VOC 2010 [26] with class labels at ev-

ery pixel. As in [51], we select the 59 most frequent classes.

We categorize them into things and stuff. There are 40 thing

classes, including the original 20 PASCAL classes and new

classes such as book, cup and window. There are 19 stuff

classes, such as sky, water and grass. We train the semantic

segmentation model (Sec. 4.1) on the train set of A and set

the score parameters (Sec. 5.6) on the val set, using the 20

PASCAL classes from A as targets.

Target set: ILSVRC-20. The ILSVRC [24] dataset

originates from the ImageNet dataset [52], but is much

harder [24]. As the target training set we use the train60k

subset [29] of ILSVRC 2014. As the target test set we use

the 20k images of the validation set. To conduct WSOL on

train60k, we carefully select 20 target classes: ant, baby-

bed, basketball, bear, burrito, butterfly, cello, coffee-maker,

electric-fan, elephant, goldfish, golfcart, monkey, pizza,

rabbit, strainer, tape-player, turtle, waffle-iron and whale.

ILSVRC-20 contains 3,843 target training set images and

877 target test set images. This selection is good because:

(1) they are visually considerably different from any source

class; (2) they appear against similar background classes

as the source classes, so we can show the benefits of stuff

transfer; (3) they are diverse, covering a broad range of ob-

ject types.

Target set: COCO-07. The COCO 2014 [25] dataset has

fewer object classes (80) than ILSVRC (200), but more in-

stances. COCO is generally more difficult than ILSVRC

for detection, as objects are smaller [25]. There are also

more instances per image: 7.7 in COCO compared to 3.0

in ILSVRC [25]. We select 7 target classes to carry out

WSOL: apple, giraffe, kite, microwave, snowboard, tennis

racket and toilet. COCO-07 contains 11,489 target training

set images and 5,443 target test set images.

Target set: PASCAL VOC 2007. The PASCAL VOC

2007 [40] dataset is one of the most important object de-

tection datasets. It includes 5,011 training (trainval) images

and 4,952 test images, which we directly use as our target
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Class ant bbed bask bear burr butt cell cmak efan elep gfis gcar monk pizz rabb stra tpla turt wiro whal Avg. Avg.(8)

LSDA [20] - - - - - - - - - - - - 22.9 27.6 40.2 6.8 19.1 31.9 8.6 20.3 - 22.2

Deep MIL+Obj. 39.2 24.2 0.2 13.0 16.5 28.9 29.7 8.9 39.1 34.4 9.1 40.3 18.0 29.7 32.8 19.6 27.0 27.0 5.9 2.9 22.3 20.4

+TST (APP) 39.9 31.0 0.6 16.8 11.3 32.2 32.0 6.0 34.9 38.4 13.6 65.1 23.8 32.5 40.7 24.8 28.6 25.1 9.9 5.1 25.6 23.8

+TST (SEM) 34.1 26.8 0.6 19.7 16.8 31.7 32.6 8.6 31.2 37.2 11.5 57.8 22.9 31.2 45.2 18.7 30.3 28.2 8.1 6.2 25.0 23.9

+ ILSVRC-dets 34.1 24.7 3.3 21.5 18.6 35.1 32.6 9.1 32.9 38.8 11.1 58.5 24.5 33.9 44.5 18.4 28.4 32.1 9.9 5.7 25.9 24.7

Table 2: mAP Performance on the test set of ILSVRC-20. All our methods start from DeepMIL with objectness. For comparison we also

show the performance on the 8 classes common to our target set and that of LSDA [20].

training set and target test set, respectively. For our experi-

ments we use all 20 thing classes in VOC 2007. Since the

thing classes in our source set (PASCAL Context) overlap

with those of VOC 2007, when doing our TST transfer to

a target class we remove it from the sources. For example,

when we transfer to “dog” in VOC 2007, we remove “dog”

from the FCN model trained on PASCAL Context.

7.2. ILSVRC­20

Table 1 presents results for our method (TST) and several

alternative methods on ILSVRC-20.

Our transfer (TST). Our results (TST) vary depending

on the underlying class similarity measure used, either ap-

pearance (APP) or semantic (SEM) (Sec. 4.2). TST (APP)

leads to slightly better results than TST (SEM). We achieve

a +7% improvement in CorLoc (46.7) compared to Basic

MIL without objectness, and +5% improvement (52.7) over

Basic MIL with objectness. Hence, our transfer method is

effective, and is complementary to objectness. Fig. 5 shows

example localizations by Basic MIL with objectness and

TST (APP).

Comparison to direct transfer (DT). We compare here to

a simpler way to transfer knowledge. We train a fully su-

pervised object detector for each source thing class. Then,

for every target class we find the most similar source class

from the 40 PASCAL Context thing classes, and use it to

directly detect the target objects. For the appearance sim-

ilarity measure (APP) all NN classes of ILSVRC-20 are

part of PASCAL VOC and PASCAL Context. Therefore

we have bounding box annotations for these classes. How-

ever, for the semantic similarity measure (SEM) not all NN

classes of ILSVRC-20 are part of PASCAL VOC. Therefore

we do not have bounding box annotations for these classes

and cannot apply DT. DT is similar to the ‘transfer only’

method in [21] (see Sec. 4.2 and Table 2 in [21]).

As Table 1 shows, the results are quite poor as the source

and target classes are visually quite different, e.g. the most

similar class to ant according to APP is bird; while for

waffle-iron, it is table; for golfcart, it is person. This shows

that the transfer task we address (from PASCAL Context to

ILSVRC-20) is challenging and cannot be solved by simply

using object detectors pre-trained on the source classes.

Comparison to direct transfer with MIL (DT+MIL). We

improve the direct transfer method by using the DT detector

to score all proposals in a target image, and then combining

this score with the standard SVM score for the target class

during the MIL re-localization step. This is very similar to

the full method of [21] and is also close to [19]. The main

difference from [21] is that we train the target class’ SVM

model in an MIL framework (Sec. 6), whereas [21] simply

trains it by using proposals with high objectness as positive

samples.

As Table 1 shows, DT+MIL performs substantially bet-

ter than DT alone, but it only slightly exceeds MIL with-

out transfer, again due to the source and target classes be-

ing visually different (+1.5% over Basic MIL with object-

ness). Importantly, our method (TST) achieves higher re-

sults, demonstrating that it is a better way to transfer knowl-

edge (+5% over Basic MIL with objectness).

Deep MIL. As Table 1 shows, Deep MIL improves slightly

over Basic MIL (from 47.6 to 48.4, both with objectness).

When built on Deep MIL, our TST transfer raises CorLoc

to 54.0 (APP) and 53.8 (SEM), a +5% improvement over

Deep MIL (confirming what we observed when building on

Basic MIL). Table 2 shows the mAP of Deep MIL and our

method (TST) on the test set. The observed improvements

in CorLoc on the training set nicely translate to better mAP

on the test set (+3.3% over Deep MIL).

Comparison to LSDA [20]. We compare to LSDA [20],

which trains fully supervised detectors for 100 classes of the

ILSVRC 2013 dataset (sources) and transfers to the other

100 classes (targets). We report in Table 2 the mAP on

the 8 classes common to both their target set and ours. On

these 8 classes, we improve on [20] by +1.7% mAP while

using a substantially smaller source set (5K images in PAS-

CAL Context, compared to 105K images in their 100 source

classes from ILSVRC 2013).

Furthermore, we can also incorporate detectors for their

100 source classes in our method, in a similar manner as

for the DT+MIL method. For each target class we use

the detector of the 3 most similar source classes as a pro-

posal scoring function during MIL’s re-localization step.

We choose the SEM measure to guide the transfer as it

is fast to compute. This new scoring function is referred

to as ILSVRC-dets in Table 1 and 2. When using the

ILSVRC-dets score, our mAP improves further, to a final

value +2.5% better than LSDA [20].
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turtle               tape-player                    goldfish                      elephant                       monkey 

baby-bed basketball     bear              burrito                butterfly             cello         whale          rabbit

Figure 5: We show localizations on ILSVRC-20 of Basic MIL with objectness (blue) and our TST (APP) method (green).

Method training (CorLoc) test (mAP)

Deep MIL + Obj. 15.8 9.1

+TST (SEM) 18.0 11.0

+TST (APP) 18.8 11.3

Table 3: CorLoc and mAP on COCO-07. Objectness [7] is added

on top of the baseline. TST (SEM) and TST (APP) are separately

added to the baseline with objectness.

7.3. COCO­07

Table 3 presents results on COCO-07, which is a harder

dataset. Compared to Deep MIL with objectness, our

transfer method improves CorLoc by +3.0% and mAP by

+2.2% (APP).

7.4. PASCAL VOC 2007

Table 4 presents results on PASCAL VOC 2007. As

our baseline system, we use both objectness and multifold-

ing [4] in Deep MIL. This performs at 50.7 CorLoc and 28.1
mAP. Our transfer method TST strongly improves CorLoc

to 59.9 (+9.2%) and mAP to 33.8 (+5.7%).

Comparison to [21]. They present results on this dataset

in a transfer setting, by using detectors trained in a fully

supervised setting for all 200 classes of ILSVRC (exclud-

ing the target class). Adopting their protocol, we also

use those detectors in our method (analog to the LSDA

comparison above). This leads to our highest CorLoc of

60.8, which outperforms [21], as well as state-of-the-art

WSOL works [28, 27, 4] (which do not use such transfer).

For completeness, we also report the corresponding mAPs.

Our mAP 34.5 matches the result of [27] based on their

’S’ neural network, which corresponds to the AlexNet we

use. They propose an advanced WSOL technique that in-

tegrates both recognition and detection tasks to jointly train

a weakly supervised deep network, whilst we build on a

weaker MIL system. We believe our contributions are com-

plementary: we could incorporate our TST transfer cues

Method ILSVRC-dets CorLoc mAP

Wang et al. [28] 48.5 31.6

Bilen and Vedaldi [27] (S) 54.2 34.5

Cinbis et al. [4] 54.2 28.6

Rochan and Wang [21] X 58.8 -

Deep MIL + Obj. + MF 50.7 28.1

+TST (SEM) 59.9 33.8

+TST (SEM) X 60.8 34.5

Table 4: Performance on PASCAL VOC 2007. We start from

Deep MIL with objectness [7] and multifolding [4] as a baseline.

Then we add our method TST (SEM) to it. Rochan and Wang [21]

do not report mAP. (S) denotes the S model (roughly AlexNet)

in [27], which corresponds to the network architecture we use in

all experiments. ILSVRC-dets indicates using detectors trained

from ILSVRC during transfer.

into their WSOL technique and get even better results.

Finally, we note that our experimental protocol guaran-

tees no overlap in either images nor classes between source

and target sets (Sec. 7.1). However, in general VOC 2007

and PASCAL Context (VOC 2010) share similar attributes,

which makes this transfer task easier in our setting.

8. Conclusion

We present weakly supervised object localization using

things and stuff transfer. We transfer knowledge by training

a semantic segmentation model on the source set and using

it to generate thing and stuff maps on a target image. Class

similarity and co-occurrence relations are also transferred

and used as weighting functions. We devise three proposal

scoring schemes on both thing and stuff maps and combine

them to produce our final TST score. We plug the score

into an MIL pipeline and show significant improvements

on the ILSVRC-20, VOC 2007 and COCO-07 datasets. We

compare favourably to two previous transfer works [21, 20].
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