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Abstract

Although several powerful joint filters for cross-modal

image pairs have been proposed, the existing joint filters

generate severe artifacts when there are misalignments be-

tween a target and a guidance images. Our goal is to

generate an artifact-free output image even from the mis-

aligned target and guidance images. We propose a novel

misalignment-robust joint filter based on weight-volume-

based image composition and joint-filter cost volume. Our

proposed method first generates a set of translated guid-

ances. Next, the joint-filter cost volume and a set of filtered

images are computed from the target image and the set of

the translated guidances. Then, a weight volume is obtained

from the joint-filter cost volume while considering a spatial

smoothness and a label-sparseness. The final output image

is composed by fusing the set of the filtered images with the

weight volume for the filtered images. The key is to gener-

ate the final output image directly from the set of the filtered

images by weighted averaging using the weight volume that

is obtained from the joint-filter cost volume. The proposed

framework is widely applicable and can involve any kind

of joint filter. Experimental results show that the proposed

method is effective for various applications including image

denosing, image up-sampling, haze removal and depth map

interpolation.

1. Introduction

Recent developments of image sensors and hardware

technologies enable the simultaneous capturing of cross-

modal image pairs such as visible color and near-infrared

(NIR) [50, 69, 43], flash and no-flash [48], visible color and

far-infrared (FIR) [45], multi-spectral [7, 61], and visible

color and depth [19]. Inspired by these progresses, joint use

of the cross-modal image pairs becomes more common in

computer vision and pattern recognition applications such

as image denosing [62, 70], haze removal [52, 57, 6, 56],

image enhancement [33, 69, 59, 17, 18, 8, 58], image up-

sampling [42, 47, 40, 15, 21, 37], scene classification [4],

pedestrian detection [65, 28], and face recognition [38].

For these applications, joint image filters such as joint bi-

lateral filter (JBF) [48] and guided filter (GF) [22] are effec-

tive and commonly used. In general, these filters improve a

(a) Target (FIR) [67] (b) Guidance (visible color) [67]

(c) Target (d) GF [22] (e) DASC [31]

+GF [22]

(f) Proposed

(GF [22])

Figure 1. Up-sampling example of existing and the proposed meth-
ods. The misalignment between the cross-modal image pair gen-
erates artifacts for the existing methods as shown in (d) and (e).
Our method can generate an artifact-free result as shown in (f).

target image quality by utilizing structural information ex-

isting in a guidance image. The vital assumption of these

joint filters is that the input image pair is strictly aligned.

However, actual cross-modal image pairs usually contain

misalignments because these images are captured by differ-

ent sensors with different view points. The misalignment

often generates severe artifacts such as a ghost, a halo and

a discontinuity in the filter results. A straight forward ap-

proach for reducing these artifacts is to use an aligned guid-

ance obtained by local flow estimation. Many calibration

techniques [25, 28, 66] and registration methods [54, 31]

for the cross-modal image pairs have been proposed. Al-

though these methods can estimate the rough flow between

the cross-modal image pairs, accuracy is still insufficient for

these joint filters.

An example of the results on image up-sampling by the

existing joint filters is shown in Fig. 1. Here, the target far-

infrared (FIR) image and the guidance visible color image

are taken from slightly different view points, which causes

the misalignment. As shown in Fig. 1 (d), GF [22] gener-

ates the ghost artifacts due to the misalignment. Although

the ghost artifacts can be reduced using the aligned guid-
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ance obtained by applying dense adaptive self-correlation

descriptor (DASC) [31], which is one of the state-of-the-art

registration methods for the cross-modal image pairs, the

registration error still remains and severely degrades the re-

sult as shown in Fig. 1 (e).

We propose a novel misalignment-robust joint filter for

cross-modal image pair based on 1) weight-volume-based

image composition and 2) joint-filter cost volume. The

proposed method can generate an artifact-free filtered out-

put image by weighted averaging using the weight volume

without estimating local flow. This weight volume is ob-

tained from the joint-filter cost volume. The result by the

proposed method is shown in Fig. 1 (f). The artifact-free

output image can be generated by the proposed method.

The proposed framework is widely applicable and can in-

volve any kind of joint filter such as GF [22], mutual-

structure for joint filtering (MSJF) [55], and JBF [48]. The

applications of the proposed method includes image denos-

ing, image up-sampling, haze removal, and depth map in-

terpolation.

2. Related works

2.1. Joint filter for cross-modal image pair

Various joint filters for cross-modal image pairs and

their applications have been proposed. Petschnigg et al.

proposed the joint bilateral filter (JBF) [48] for flash/no-

flash photography. The JBF is also useful for image up-

sampling [34] and image fusion [16]. The guided filter

(GF) [22] and its extended version [68, 11] are applica-

ble for image denoising, image up-sampling and haze re-

moval [23]. The weighted least square filter (WLS) [14]

for image enhancement using an NIR image was also pre-

sented [70]. Shen et al. proposed the mutual-structure

for joint filtering (MSJF) [55] which addresses mutual-

structure consistency between cross-modal image pair. Re-

cently, the image restoration method via scale-map was also

presented by Yan et al. [63]. Other joint filters which are

applicable for cross-modal image pairs are the non-local

means [5] and the joint static and dynamic guidance fil-

ter [20].

These existing joint filters generate severe artifacts when

there is the misalignment between the cross-modal image

pair. The proposed framework potentially makes any exist-

ing joint filter robust against the misalignment.

2.2. Local-flow estimation for warped image gener-
ation

One of the most common local flow estimation meth-

ods for visible image pairs is Horn-Schunk method [26].

The Horn-Schunk method estimates local flow by optimiz-

ing an energy which consists of a data term based on sum

of square difference (SSD) and a spatial smoothness term.

This energy can be optimized by a gradient method because

the data term is derivative.

Although SSD is widely used similarity measure for

visible image pairs, it is not suitable for cross-modal im-

age pairs because the appearance difference between the

cross-modal image pair is more significant than that of the

visible ones. To measure the accurate similarity between

the cross-modal image pair, various similarity measures

have been proposed such as mutual information (MI) [49,

12], normalized cross-correlation (NCC) on the Laplacian

pyramid [29], the adaptive normalized cross-correlation

(ANCC) [24], and the robust selective normalized cross-

correlation (RSNCC) [54]. Recently, Kim et al. proposed

the dense adaptive self-correlation descriptor (DASC) [31]

and its improved version [32] inspired by the local self-

similarity descriptor (LSS) [53].

In general, these similarity measures for the cross-

modal image pair is non-derivative. Therefore, the gradi-

ent method cannot be used to minimize the energy based

on these similarity measures. To address this problem,

DASC [31] estimates discrete local flow by optimizing the

discrete energy originally designed for SIFT flow [41]. On

the other hand, many stereo vision algorithms evaluate the

cost volume [27, 51, 64, 3] constructed based on the non-

derivative similarity such as NCC. The winner-take-all is

usually used to determine the disparity.

3. Proposed method

In actual situation, cameras for the cross-modal image

pair are placed reasonably close to each other, and we can

easily obtain the roughly aligned images by performing

camera calibration and/or by applying global image reg-

istration. However, misalignment still exists and this re-

maining displacement cannot be modeled by a rigid mo-

tion. Our goal is to generate an artifact-free filtered im-

age from misaligned cross-modal image pairs. We propose

the misalignment-robust joint filter based on 1) weight-

volume-based image composition and 2) joint-filter cost

volume.

The naive approach for this goal is to use aligned

guidance obtained by local flow estimation (Fig. 2 (a)).

In general, however, the accuracy of the estimated local

flow is still insufficient for cross-modal joint filters. In

the proposed approach by the weight-volume-based im-

age composition, the aligned guidance is composed by fus-

ing a set of translated guidances using the weight volume

(Fig. 2 (b)). The weight-volume-based image composition

becomes more powerful scheme by calculating the weight

volume from the joint-filter cost volume. As shown in

Fig. 2 (c), the proposed misalignment-robust joint filter us-

ing the weight volume can compose the final output image

by fusing the set of the filtered images and the weight vol-

ume without the aligned guidance and the local flow. Our

method can remarkably improve the robustness of existing

joint filters against misalignment where the displacements

are supposed to be within a predefined range.
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(b) Joint filter with aligned guidance using weight volume (proposed).
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(c) Misalignment-robust joint filter using weight volume (proposed).

Figure 2. Image processing pipelines.

3.1. Joint filter with aligned guidance using weight
volume

We first propose the joint filter with aligned guidance by

the weight-volume-based image composition. The key is to

compose the aligned guidance by fusing the set of the trans-

lated guidances using the weight volume. In the proposed

approach, the unique local flow is not required to generate

the aligned guidance.

As shown in Fig. 2 (b), this approach first generates the

set of the translated guidances. Then, a cross-modal cost

volume is calculated by measuring the similarity between

the target image and the set of the translated guidances.

Next, we obtain the weight volume which represents the

confidence of each translated guidance. The aligned guid-

ance is composed by weighted averaging of the set of the

translated guidances using the weight volume. Finally, the

filtered image is generated by applying an existing cross-

modal joint filter to the target image with the aligned guid-

ance.

Translated guidance generation: First of all, the set of the

translated guidances are generated by translating the orig-

inal guidance image. Let t = (t1, · · · , ti, · · · , tN )T and

g = (g1, · · · , gi, · · · , gN )T be the vectorized target image

and the vectorized original guidance image, where i is the

pixel index. The set of the translated guidances are given

by {H1g, · · · ,Hkg, · · · ,HKg}, where Hk is the matrix

operator for k-th labeled translation vector which is corre-

sponding to k-th fixed flow. Here, the range of the transla-

tion is corresponding to the horizontal and vertical ranges

of the local flow. This range (e.g. 7 [pix] × 7 [pix]) is the

one of the setting parameters. The local translation range

k
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(b)

Figure 3. Local flow evaluation processes. (a) Evaluate all pos-
sible flows (k) for a fixed pixel. This is repeated with different
pixels. (b) Evaluate a fixed flow for all pixels. This is repeated
with different flows (k). (proposed method).

depends on the resolution of the input image pair.

Note that the proposed method can deal with the non-

uniform local flow like many existing local flow estimation,

e.g. Horn-Schunk [26], DASC [31] and SIFT flow [41]. As

shown in Fig. 3 (a), these existing methods evaluate all pos-

sible flows (k) for a fixed pixel. This is repeated with dif-

ferent pixels. On the other hand, as shown in Fig. 3 (b),

the proposed method evaluates a fixed flow for all pixels.

This is repeated with different flows (k). In other words, to

evaluate the local flow, the proposed method translates the

guidance images, whereas the existing algorithms translate

the one side patch with opposite direction. In this sense, the

proposed method can evaluate the local flow like the exist-

ing local flow estimation methods [26, 31, 41].

Cross-modal cost volume generation: Next, we evalu-

ate the cross-modal cost volume. Cost volume approach is

widely used for estimating disparity in stereo vision [27, 51]

because it can deal with various similarity measures with

simple and effective implementation. The proposed weight-
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volume-based image composition is inspired by the suc-

cesses of the cost-volume in stereo vision.

Let C = [c1, · · · , ck, · · · , cK ] be the cross-modal cost

volume, where ck represents k-th vectorized cross-modal

cost map. Each element of the cross-modal cost volume C

is given by ci,k, where i is the pixel index. The cross-modal

cost map is calculated from the similarity measure between

the target image t and the translated guidance Hkg as

ck = dist(t,Hkg), (1)

where k is the label corresponding to the translation vector,

and dist(·, ·) is the similarity measure such as DASC [31]

and NCC [29].

Weight volume optimization: Then, the weight volume

is calculated from the cross-modal cost volume C. The

variable range of the cross-modal cost volume C sig-

nificantly depends on the similarity measures. To cor-

rect this range, we introduce the weight volume W =
[w1, · · · ,wk, · · · ,wK ] by normalizing the cross-modal

cost volume C while considering the spatial-smoothness

constraint and the label-sparseness constraint. Here, each

element of the cross-modal cost volume W is given by wi,k.

The details of the weight volume is described in the next

section.

Aligned guidance composition: The aligned guidance y is

composed by averaging the set of the translated guidances

{H1g, · · · ,Hkg, · · · ,HKg} as

y =
∑

k

diag(wk)Hkg. (2)

Finally, the output image z is generated by applying an ex-

isting cross-modal joint filter [22, 55, 48] to the target im-

age t with the aligned guidance y. Note that the proposed

weight volume W = [w1, · · · ,wk, · · · ,wK ] can be con-

sidered as a probability for each translation vector labeled

by k. In this sense, the proposed weight-volume-based im-

age composition in Eq. (2) can be also considered as the ex-

pected value of the set of the translated guidances based on

the probability W. As described in Sec. 3.4, the probabilis-

tic approach can reduce the artifacts in the aligned guidance,

which directly generates the poor result in the final output.

3.2. Weight volume optimization

The weight volume W is obtained by optimizing the

energy which consists of three terms: 1) the fidelity term,

2) the spatial-smoothness constraint, and 3) the label-

sparseness constraint. The proposed energy for the weight-

volume optimization is given by

F (W) = Fd(W) + ηFss(W) + γFls(W),

s.t. ∀i,
∑

k

wi,k = 1, wi,k ≥ 0, (3)

where k is the label corresponding to each translation vec-

tor, i is the pixel index, wi,k is the element of the weight-

volume element for the k-th label and i-th pixel, Fd(W) is

the data term, Fss(W) is the spatial-smoothness constraint,

and Fls(W) is the label-sparseness constraint. Here, η (typ-

ically 10 to 100) and γ (typically 0 to 1) are the parameters

to control the strength of the spatial-smoothness constraint

and the label-sparseness constraint.

The data term penalizes the residual between the weight

volume W and the normalized cross-modal cost volume W̃

as

Fd(W) =
∑

k

∑

i

||W − W̃||2F , (4)

where w̃i,k is the element of the normalized cross-modal

cost volume W̃, and is obtained by applying soft-max func-

tion to the element of the cross-modal cost volume ci,k as

w̃i,k =
exp

[

−βci,k
]

∑

k exp
[

−βci,k
] , (5)

where β (typically 1 to 10) is the parameter depending on

the range of the cross-modal cost volume element ci,k.

To generate the spatially smooth output image, we intro-

duce the spatial-smoothness constraint for the weight vol-

ume as

Fss(W) = ||DhW||2F + ||DvW||2F , (6)

where Dh and Dv is horizontal and vertical derivative op-

erator matrix.

The output image is composed by averaging the set of

the translated guidances using the weight volume. In gen-

eral, artifacts such as discontinuity, blur, and ghost tend to

be generated by the noisy small weight volume element.

To reduce these artifacts, we introduce the label-sparseness

constraint for the weight-volume as

Fls(W)=
∑

i

∥wi,k∥p,k=
∑

i

(

∑

k

|wi,k|
p

)1/p

, (7)

where ∥·∥p,k denotes Lp norm w.r.t. label k, and p(> 0) is

the label-sparseness parameter. We set p as 0.51.

In the proposed method, the energy F (W) is optimized

based on a proximal approach [9, 46]. The weight-volume

optimization is the most computationally expensive pro-

cess, which is proportional to the number of the iteration

and the number of the translated guidances. It takes several

minutes with non-optimized implementation in MATLAB.

3.3. Misalignment-robust joint filter using weight
volume

The weight-volume-based image composition described

in Sec. 3.1 can generate the aligned guidance without es-

timating local flow. However, our goal is to generate an

1The label-sparseness constraint can be effectively solved by the prox-

imal mapping approach. Particularly, we can be easily obtained the proxi-

mal mapping for p = 0.5 by analytical approach [36].
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artifact-free filtered image from misaligned cross-modal

image pairs. In this sense, it is not necessarily required

to generate the aligned guidance for the joint filter. Fur-

thermore, the use of the cross-modal cost volume dose not

guarantee to generate the suitable filtered output, because

the similarity between the cross-modal image pair does not

correspond to the confidence of the filtered output. We in-

troduce the joint-filtered cost volume Cjf which is directly

corresponding to the confidence of the joint filtered image.

By using the weight-volume-based image composition and

the joint-filter cost volume, the misalignment-robust joint

filter can directly generate the final output from the set of the

translated guidances without generating the aligned guid-

ance and the unique local flow.

The processing pipeline is shown in Fig. 2 (c). First,

the set of the translated guidance is generated. Then, the

set of the filtered images and the joint-filter cost volume

are generated from the target and the set of the translated

guidances. Next, the weight volume is obtained from the

joint-filter cost volume. Finally, the final output is directly

composed by averaging the set of the filtered images using

the weight volume.

Cross-modal joint filter and joint-filter cost volume gen-

eration: In the misalignment-robust joint filter, we gener-

ate the set of filtered images and the joint-filtered cost vol-

ume Cjf instead of the cross-modal cost volume C. Let

jk = (jk1 , · · · , j
k
i , · · · j

k
N )T be the filtered image obtained

from the target image t and the translated guidance Hkg

by an existing cross-modal joint filters, where k and i are

label’s and pixel’s indexes.

The cross-modal joint filters such as GF [22] generate the

filtered image by minimizing the cost pixel-by-pixel, which

is designed so that features, e.g. structures and textures, of

both images are harmonized. For example, the cost function

at the i-th pixel for the original GF [22] is

E(ai, bi) =
∑

l∈Ni

(

(

(aigl + bi − tl)
)2

+ εa2i

)

, (8)

where ti and gi are the i-th pixel’s value of the target image

t and the guidance image g, ai and bi are the coefficients

for the linear transformation, Ni is the set of neighboring

pixels at the i’th pixel, and ε is the regularization parame-

ter. The first term describes the residual between the target

image and the linear-transformed guidance image, whereas

the second term represents the regularization.

The joint filter cost volume Cjf for GF [22] is designed

based on the residual term in Eq. (8) as

c
jf
i,k=

∑

l∈Ni

(

ak,i(Hkg)l+bk,i−tl)
)2

, (9)

where c
jf
i,k is the element of the joint-filter cost volume at

k-th label and i-th pixel, (Hkg)l is the k-th labeled trans-

lated guidance Hkg at the pixel l, ak,i and bk,i are the linear

transformation coefficients for (Hkg)l. Note that the pro-

posed method is the general framework for the cross-modal

joint filters. We can apply the proposed joint filter cost vol-

ume approach to existing joint filters including MSJF [55],

the scale map image restoration [63], the dark flash photog-

raphy [35], if the cost function of the joint filter is defined

pixel-by-pixel. Other examples of the joint-filter cost vol-

ume are described in our supplemental material.

The recent studies on image filtering [44, 13] also

showed that the classical joint filter such as JBF [48] can

be formulated as the cost function minimization by the ker-

nel function. Based on these studies, we can also define the

joint-filter cost volume of these classical joint filters.

Direct filtered image composition: After calculating the

joint-filtered cost volume Cjf , we calculate the weight vol-

ume W using Eqs. (3) to (7) in the same manner as de-

scribed in Sec. 3.2. Note that, instead of Eq. (7), the element

of the normalized joint-filter cost volume w̃i,k is given by

w̃i,k =
exp

[

−βc
jf
i,k

]

∑

k exp
[

−βc
jf
i,k

]
. (10)

The final output z is directly generated by fusing the set

of the joint-filtered images {j1, · · · , jk, · · · , jK} and the

weight volume W = [w1, · · · ,wk, · · · ,wK ] as

z =
∑

k

diag(wk)jk. (11)

As with Eq. (2), the proposed composition in Eq. (11) can

be also considered as expectation of the set of the filtered

images based on the weight volume as probability.

3.4. Comparisons

To discuss the effectiveness of the weigh-volume-based

image composition and the joint-filter cost volume, we com-

pared with the three approaches shown in Fig. 2.

a) Joint filter with aligned guidance by local flow

(Fig. 2 (a)): The local flow was estimated by DASC [31].

GF [22] was used as the cross-modal joint filter.

b) Joint filter with aligned guidance using weight vol-

ume (Fig. 2 (b)): DASC [31] and GF [22] were used for the

cross-modal cost volume and the cross-modal joint filter.

c) Misalignment-robust joint filter using weight volume

(Fig. 2 (c)): GF [22] and the corresponding joint-filtered

cost volume in Eq. (9) were used.

An example of the results is shown in Fig. 4. As shown

in Fig. 4 (a), although we can estimate the rough flow by

DASC [31], the aligned guidance contains the collapsed ar-

tifacts due to the subtle alignment error. This artifacts di-

rectly generates the poor results in the filtered image. In

joint filter with aligned guidance using weight volume, the

collapsed artifacts can be reduced as shown in Fig. 4 (b).

Although the result shows the effectiveness of the weight-

volume-based image composition, the aligned image and

the filtered image are still blurred. On the other hand,
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Target image and

guidance image

Local flow

(DASC[31]) Aligned image Filtered image Aligned image Filtered image Filtered image

(a) Joint filter with aligned guidance

by local flow (Fig. 2 (a))

(b) Joint filter with aligned guidance

using weight volume (Fig. 2 (b))

(c)Misalignment-robust

joint filter (Fig. 2 (c))
Figure 4. Comparison with existing and proposed approaches shown in Fig. 2.

Fig. 4 (c) show that the misalignment-robust joint filter us-

ing weight volume can generate the clear image without

blurred and collapsed artifacts. These results show that

the misalignment-robust joint filter using the weight volume

and the joint filter cost volume can generate clearer filtered

image than the joint filter with aligned guidance.

4. Experiments

The proposed method has various applications such as

image denosing, image up-sampling and depth interpola-

tion using misaligned cross-modal image pairs. In this sec-

tion, we demonstrate the examples of the performance of

the proposed method for each application2. Note that al-

most figures are close-up images due to the space limita-

tions. Whole images and additional results are presented in

our supplemental materials.

4.1. Image denosing

Robustness against misalignment: We first demonstrate

the robustness of the proposed method against the misalign-

ment by image denoising experiments using the simulated

images, where the misalignments are artificially synthe-

sized. To examine the robustness against the misalignment

accurately, we used the 12 image pairs of the R channel and

G channel image from the Kodak color image dataset [39],

which are well-aligned. Here, the R channel images were

used as the noisy target images obtained by adding Gussian

white noise (σ=25), whereas the shifted G channel images

were used as the guidance image. The misalignment were

synthesized by shifting the original guidance image in the

horizontal direction.

An example of the results by JBF [48], GF [22] and the

proposed method with these cross-modal joint filters are

shown in Fig. 5. As shown in Fig. 5 (c) and (f), the blurred

results are generated by naively applying and JBF [48] and

GF [22]. On the other hand, Fig. 5 (d) and (g) show that

the proposed method can remove the noise without the blur

artifacts.

To evaluate the performance of the proposed method

quantitatively, we measured peak signal-to-noise ratio

(PSNR) between the output results and the ground truth.

2The code will be available at http://www.ok.sc.e.titech.ac.jp/res/MMIP.

(a) Target (R channel) (b) Guidance (G channel)

(c) JBF [48] (d)Proposed(JBF[48]) (e) Mean of PSNR (JBF[48])

(f) GF [22] (g)Proposed(GF[22]) (h) Mean of PSNR (GF [22])

Figure 5. Robustness against misalignment between target and
guidance images. The guidance (b) and the results (c), (d), (f),
and (g) is generated by adding the 8-pixel horizontal shift (green
rectangle). (σ=25)

Here, we also evaluated the performance of BM3D [10] as

reference. As shown in Fig. 5 (e) and (h), PSNR are dramat-

ically decreased by naively applying JBF [48] and GF [22].

The proposed method can maintain the PSNR while the

misalignment exists between the target and the guidance im-

ages. The results with another image quality measure such

as the structural similarity (SSIM) [60] and the results for

other cross-modal joint filters, e.g. MSJF [55], are shown in

the supplemental material.

Comparison with the existing methods: Next, we evalu-

ated the performance of the proposed method using the nat-

ural cross-modal image pairs collected by Brown et al. [4].

In our experiment, we selected 40 image pairs of the visi-

ble and the NIR images which naturally contains the mis-

alignment. Here, the noisy visible color images obtained by
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(a)Target(VIS) (b)Guidance(NIR) (c) Ground truth (d) BM3D [10]

(e) GF [22] (f) DASC [31]+GF [22] (g) Proposed(GF [22])

Figure 6. Visible image denosing guided by NIR image. (σ = 50)

Table 1. Mean of PSNR and SSIM. The underlines show the best
performances among the results using the same joint filter. The
bolds shows the best performance among all results.

σ = 25 σ = 50 σ = 100
Method PSNR SSIM PSNR SSIM PSNR SSIM

target 20.47 0.483 14.96 0.255 10.35 0.116

BM3D[10] 31.88 0.883 27.71 0.795 21.81 0.677

JBF[48] 27.72 0.763 25.48 0.717 21.55 0.676

DASC[31]+JBF[48] 28.61 0.806 26.64 0.766 21.69 0.633

Proposed (JBF[48]) 31.40 0.880 27.03 0.771 21.82 0.685

MSJF[55] 25.84 0.715 24.91 0.704 21.31 0.671

DASC[31]+MSJF[55] 28.34 0.816 26.25 0.759 21.42 0.650

Proposed(MSJF[55]) 28.72 0.819 26.55 0.775 21.67 0.688

GF[22] 27.33 0.766 25.47 0.737 21.41 0.699

DASC[31]+GF[22] 29.56 0.848 26.78 0.788 21.57 0.686

Proposed(GF[22]) 31.44 0.895 28.00 0.857 22.27 0.783

adding Gaussian white noise (σ=25, 50 and 100) were used

as the target image, whereas the clear NIR images were used

as the guidance image.

Comparison of the proposed method with the existing

methods including BM3D [10] and GF [22] are shown in

Fig. 6. To evaluate the performance of the existing joint

filters with the cross-modal registration, we also used the

aligned guidance image by applying DASC [31], which is a

state-of-the-art registration method for cross-modal images

pairs. Since DASC [31] is sensitive to noise, the noisy target

images are denoised by using BM3D [10] before applying

the DASC [31].

Figure 6 (d) shows that BM3D [10] cannot recover the

texture on the statue. The result by GF [22] (Fig. 6 (e)) show

that the blur artifacts are generated due to the misalignment.

As shown in Fig. 6 (f), the existing joint filters [22] using

the aligned guidance image also generates artifacts due to

the alignment errors. On the other hand, Fig. 6 (g) show

that the proposed method with these joint filters can recover

the texture using the guidance image without artifacts. Note

that the results by JBF [48] and MSJF [55] are presented in

our supplemental materials due to the space limitations.

To evaluate the performance of the proposed method

(a)Target (FIR) (b)Guidance(VIS) (c)Ground truth (d)Bicubic

(e) GF [22] (f) DASC [31]+GF [22] (g) Proposed (GF [22])

Figure 7. FIR image up-sampling guided by visible image. (×4)

Table 2. Mean of RMSE and SSIM. The underlines show the best
performances among the results using the same joint filter. The
bolds show the best performance among all results.

×4 ×8
Method RMSE SSIM RMSE SSIM

bicubic 3.981 0.9376 6.474 0.8836

JBF[48] 4.037 0.9387 6.587 0.8837

DASC [31]+JBF[48] 4.030 0.9389 6.599 0.8830

Proposed (JBF[48]) 3.883 0.9396 6.273 0.8865

MSJF [55] 3.957 0.9397 6.600 0.8816

DASC [31]+MSJF [55] 3.990 0.9388 6.616 0.8820

Proposed (MSJF [55]) 3.875 0.9398 6.266 0.8869

GF [22] 3.964 0.9391 6.644 0.8832

DASC [31]+GF [22] 3.979 0.9391 6.671 0.8823

Proposed (GF [22] ) 3.874 0.9399 6.252 0.8873

with the existing methods quantitatively, we measured

PSNR and SSIM as shown in Table 1. These quantitative

results show that 1) the performances are improved from

the naive joint filters by applying the proposed method, and

2) the proposed method with GF [22] outperforms the com-

pared methods.

4.2. Image up-sampling

Our framework is also effective for image up-sampling.

We have already shown one result in Fig. 1. To evaluate the

performance for the image up-sampling throughly, we used

100 image pairs of the visible gray images and FIR images

collected by Aguileraet al. [1, 2]. We set the magnification

rate as four and eight. The residual interpolation [30] was

used as the post-processing.

An example of image up-sampling results is presented

in Fig. 7. The result by the bicubic interpolation (Fig. 7

(d)) shows the limited visibility of the characters, e.g. “E”,

“d” and “f”. The results by GF [22] without alignment

(Fig. 7 (e)) show that the visibilities of the characters are

degraded due to the misalignment. As shown in Fig. 7 (f),

although the visibilities of the characters are improved by

DASC [31], the discontinuity artifacts due to the subtle

alignment error are generated on the character pattens. On

the other hand, Fig. 7 (g) show that the proposed method can

improve the visibilities while reducing the artifacts. Note

that the results by JBF [48] and MSJF [55] are presented in

our supplemental materials due to the space limitations.
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To evaluate the performance of the proposed method and

the existing method, root-mean-square error (RMSE) and

SSIM were measured. As shown in Table 2, similar to the

results on the image denoising in Sec. 4.1, the proposed

method outperforms the existing methods, i.e. the joint fil-

ters [22, 55, 48] with/without DASC [31]. Note that, the

proposed method with GF [22] shows the best performance

among the all results.

4.3. Other applications

Finally, we demonstrate other applications of the cross-

modal joint filter, where the input image pairs usually con-

tain the misalignment.

Flash/no-flash photography: In the flash/no-flash pho-

tography, the misalignment often exists among flash and

no-flash images [48]. The proposed method can generate

the clear image from these misaligned flash/no-flash image

pairs. An example of the results is shown in Fig. 8, where

the flash/no-flash image pairs were captured by a mobile

phone camera (GALAXY-SIII). As shown in Fig. 8 (a) and

(b), the target no-flash image contains large noise, whereas

the flashed guidance image is clear by the flash. Figure 8 (c)

shows that the result by GF [22] is blurred due to the mis-

alignment. On the other hand, Fig. 8 (d) shows that the

proposed method can preserve the texture on the zebra doll

while reducing the noise in the target image using the mis-

aligned guidance image.

Haze removal: The proposed method is also applicable to

haze removal by transferring the NIR image textures into

the visible color image. We demonstrate the effectiveness

of the proposed method using visible and NIR image pairs

collected by Brown et al. [4]. The target visible color im-

age, the guidance NIR image, the results by GF [22] and

the proposed method with the GF [22] are shown in Fig. 9.

The GF [22] generates the ghost artifacts on the mountain

surface and at the boundary between the sky and the moun-

tain region due to the misalignment. On the other hand, the

proposed method can remove the haze effectively while re-

ducing the ghost artifacts as shown in Fig. 9 (d).

Depth map interpolation: The proposed method can in-

terpolate the depth map effectively without the accurate

calibration and the temporal synchronization. We demon-

strate the performance for the depth map interpolation us-

ing KITTI dataset which includes the visible color and the

depth map image pairs [19]. Here, the depth maps contain

the missing pixels. There are the misalignments between

the visible color and the depth map image pairs because the

captured time is slightly different. An example of the inter-

polated results by the proposed method is shown in Fig. 10.

Here, we interpolate the dense depth map from sparse depth

data [22]. Figure 10 (g) shows that GF [22] generates the

blurry result with the ghost artifacts due to the misalign-

ment on the fence region. Contrary to the naive use of the

GF [22], the proposed method can interpolate the depth map

without the artifacts as shown in Fig. 10 (h).

(a)Target(no-flash) (b)Guidance(flash) (c) GF [22] (d)Proposed(GF[22])

Figure 8. Flash/no-flash photography .

(a) Target (VIS) (b)Guidance(NIR) (c) GF [22] (d)Proposed(GF[22])

Figure 9. Results for haze removal using visible and NIR images.

(a) Target (depth)

(b) Guidance (visible color)

(c) GF [22]

(d) Proposed (GF [22])

(e) Target (f) Guidance (g) GF [22] (h)Proposed(GF[22])

Figure 10. Depth map interpolation guided by visible image.

5. Conclusion

We have proposed the novel misalignment-robust joint

filter. The proposed method can extend the existing cross-

modal joint filters because the cross-modal cost volume are

basically generated from the cost function of the existing

cross-modal joint filters. The output image is composed by

fusing the set of the filtered images with the weight volume.

Experimental results have shown that the proposed method

is effective for various applications such as image denosing,

up-sampling, haze removal and depth map interpolation.
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infrared guided color image dehazing. In Proc. of IEEE Int.

Conf. on Image Processing (ICIP), 2013. 1

[7] A. Chakrabarti and T. Zickler. Statistics of real-world hyper-

spectral images. In Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2011. 1

[8] Y. Choi, N. Kim, S. Hwang, and I. S. Kweon. Thermal image

enhancement using convolutional neural network. In Proc.

of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2016. 1

[9] P. L. Combettes and J. C. Pesquet. Proximal splitting meth-

ods in signal processing. Fixed-point algorithms for inverse

problems in science and engineering, 2011. 4

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color

image denoising via sparse 3D collaborative filtering with

grouping constraint in luminance-chrominance space. In

Proc. of Int. Conf. on Image Processing (ICIP), 2007. 6,

7

[11] L. Dai, M. Yuan, F. Zhang, and X. Zhang. Fully connected

guided image filtering. In Proc. of IEEE Int. Conf. on Com-

puter Vision (ICCV), 2015. 2

[12] R. H. C. De Souza, M. Shimizu, M. Okutomi, and

S. Yoshimura. Nonrigid registration based on projected joint

entropy combined with gradient similarity. Optical Engi-

neering, 49(12), 2010. 2

[13] M. Elad. On the origin of the bilateral filter and ways to

improve it. IEEE Trans. on Image Processing (TIP), 11(10),

2002. 5

[14] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-

preserving decompositions for multi-scale tone and detail

manipulation. ACM Trans. on Graphics (TOG), 27(3):67,

2008. 2

[15] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and

H. Bischof. Image guided depth upsampling using

anisotropic total generalized variation. In Proc. of IEEE Int.

Conf. on Computer Vision(ICCV), 2013. 1

[16] G. D. Finlayson and A. E. Hayes. Pop image fusion-

derivative domain image fusion without reintegration. In

Proc. of IEEE Int. Conf. on Computer Vision (ICCV), 2015.

2

[17] C. Fredembach, N. Barbuscia, and S. Süsstrunk. Combining
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camera calibration with distortion correction. IEEE Trans.

on Pattern Analysis and Machine Intelligence (TPAMI),

34(10), 2012. 1

[26] B. K. Horn and B. G. Schunck. Determining optical flow.

Artificial intelligence, 17(1-3), 1981. 2, 3

[27] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and

M. Gelautz. Fast cost-volume filtering for visual correspon-

dence and beyond. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(2), 2013. 2, 3

[28] S. Hwang, J. Park, N. Kim, Y. Choi, and I. So Kweon. Mul-

tispectral pedestrian detection: Benchmark dataset and base-

line. In Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2015. 1

[29] M. Irani and P. Anandan. Robust multi-sensor image align-

ment. In Proc. of IEEE Int. Conf. on Computer Vision

(ICCV), 1998. 2, 4

[30] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi. Residual

interpolation for color image demosaicking. In Proc. of IEEE

Int. Conf. on Image Processing (ICIP), 2013. 7

[31] S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn.

Dasc: Dense adaptive self-correlation descriptor for multi-

modal and multi-spectral correspondence. In Proc. of IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2015. 1, 2, 3, 4, 5, 6, 7, 8

[32] S. Kim, D. Min, S. Lin, and K. Sohn. Deep self-correlation

descriptor for dense cross-modal correspondence. In Proc.

of European Conf. on Computer Vision (ECCV), 2016. 2

[33] S. J. Kim, F. Deng, and M. S. Brown. Visual enhancement of

old documents with hyperspectral imaging. Pattern Recog-

nition, 44(7), 2011. 1

[34] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.

Joint bilateral upsampling. ACM Trans. on Graphics (TOG),

26(3):96, 2007. 2

3303



[35] D. Krishnan and R. Fergus. Dark flash photography. ACM

Trans. on Graphics (TOG), 28(3)(96), 2009. 5

[36] D. Krishnan and R. Fergus. Fast image deconvolution us-

ing hyper-laplacian priors. In Proc. of Advances in Neural

Information Processing Systems (NIPS), 2009. 4

[37] H. Kwon and Y.-W. Tai. Rgb-guided hyperspectral image

upsampling. In Proc. of IEEE Int. Conf. on Computer Vi-

sion(ICCV), 2015. 1

[38] S. Z. Li, R. F. Chu, S. C. Liao, and L. Zhang. Illumina-

tion invariant face recognition using near-infrared images.

IEEE Trans. on Pattern Analysis and Machine Intelligence

(TPAMI), 29(4), 2007. 1

[39] X. Li. Demosaicing by successive approximation. IEEE

Trans. on Image Processing (TIP), 14(3), 2005. 6

[40] Y. Li, D. Min, M. N. Do, and J. Lu. Fast guided global

interpolation for depth and motion. In Proc. of European

Conf. on Computer Vision (ECCV), 2016. 1

[41] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense corre-

spondence across scenes and its applications. IEEE Trans. on

Pattern Analysis and Machine Intelligence (TPAMI), 33(5),

2011. 2, 3

[42] S. Lu, X. Ren, and F. Liu. Depth enhancement via low-rank

matrix completion. In Proc. of IEEE Conf. on Computer Vi-

sion and Pattern Recognition (CVPR), 2014. 1

[43] Y. M. Lu, , C. Fredembach, M. Vetterli, and S. Süsstrunk.
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