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Abstract

Most recent CNN architectures use average pooling as

a final feature encoding step. In the field of fine-grained

recognition, however, recent global representations like bi-

linear pooling offer improved performance. In this paper,

we generalize average and bilinear pooling to “α-pooling”,

allowing for learning the pooling strategy during training.

In addition, we present a novel way to visualize decisions

made by these approaches. We identify parts of training

images having the highest influence on the prediction of

a given test image. This allows for justifying decisions

to users and also for analyzing the influence of semantic

parts. For example, we can show that the higher capacity

VGG16 model focuses much more on the bird’s head than,

e.g., the lower-capacity VGG-M model when recognizing

fine-grained bird categories. Both contributions allow us to

analyze the difference when moving between average and

bilinear pooling. In addition, experiments show that our

generalized approach can outperform both across a variety

of standard datasets.

1. Introduction

Deep architectures are characterized by interleaved con-

volution layers to compute intermediate features and pool-

ing layers to aggregate information. Inspired by recent re-

sults in fine-grained recognition [19, 10] showing that cer-

tain pooling strategies offer equivalent performance as clas-

sic models involving explicit correspondence, we investi-

gate here a new pooling layer generalization for deep neu-

ral networks suitable for both fine-grained and more generic

recognition tasks.

Fine-grained recognition developed from a niche re-

search field into a popular topic with numerous applications,

ranging from automated monitoring of animal species [9]

to fine-grained recognition of cloth types [8]. The defin-

ing property of fine-grained recognition is that all possi-

ble object categories share a similar object structure and

hence similar object parts. Since the objects do not sig-

Figure 1. We present the novel pooling strategy α-pooling, which

replaces the final average pooling or bilinear pooling layer in

CNNs. It allows for a smooth combination of average and bilinear

pooling techniques. The optimal pooling strategy can be learned

during training to adapt to the properties of the task. In addition,

we present a novel way to visualize predictions of α-pooling-based

classification decisions. It allows in particular for analyzing incor-

rect classification decisions, which is an important addition to all

widely used orderless pooling strategies.

nificantly differ in the overall shape, subtle differences in

the appearance of an object part can likely make the differ-

ence between two classes. For example, one of the most

popular fine-grained tasks is bird species recognition. All

birds have the basic body structure with beak, head, throat,

belly, wings as well as tail parts, and two species might dif-
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fer only in the presence or absence of a yellow shade around

the eyes.

Most approaches in the past five years concentrated on

exploiting this extra knowledge about the shared general

object structure. Usually, the objects are described by the

appearance of different parts. This explicit modeling of the

appearance of object parts is intuitive and natural. While

explicit part modeling greatly outperformed off-the-shelf

CNNs, the recently presented second-order or bilinear pool-

ing [19] gives a similar performance boost at the expense of

an understandable model.

Our paper presents a novel approach which has both

state-of-the-art performance and allows for clear justifica-

tion of the classification decision using visualization of in-

fluential training image regions. Classification accuracy on

this task is reaching human level performance and hence we

additionally focus on making classification decisions more

understandable and explainable. We present an approach

which can show for each evaluated image why the decision

was made by referring to the most influential training image

regions. Average pooling is mainly used in generic recog-

nition. while bilinear pooling has its largest benefits in fine-

grained recognition: our approach allows for understanding

and generalizing the relationship between the two – a cru-

cial step for further research.

Our first contribution is a novel generalization and para-

metric representation of the commonly used average and

bilinear pooling. This representation allows for a smooth

combination of these first-order and second-order opera-

tors. The framework provides both a novel conceptual un-

derstanding of the relationship of the methods and offers a

new operating point with consistent improvement in terms

of accuracy.

The second contribution is an analysis of the learned op-

timal pooling strategy during training. Our parametrized

pooling scheme is differentiable and hence can be integrated

into an end-to-end-learnable pipeline. We show that the

learned pooling scheme is related to the classification task

it is trained on. In addition, a pooling scheme half-way

between average and bilinear pooling seems to achieve the

highest accuracy on several benchmark datasets.

Our third contribution is a novel way to visually justify

a classification decision of a specific image to a user. It is

complementary to our novel pooling scheme and hence also

applicable to the previous pooling schemes average and bi-

linear pooling. Both classifier parameters and local feature

matches are considered to identify training image regions of

highest influence.

Finally, our fourth contribution is an approach for quan-

tifying the influence of semantic parts in a classification

decision. In contrast to previous work, we consider both

the classifier parameters and the saliency. We show that

the CNN’s way of classifying objects increasingly diverges

from the human way, i.e. CNNs base most of their decisions

on one object part instead of using a broad set of object at-

tributes. In particular, we show that more complex CNN

models like VGG16 focus much more on the bird’s head

compared to less complex ones like VGG-M. We also show

that a similar shift can be seen when moving from average

pooled features to bilinear features encoding.

After reviewing related work in the following section,

Sect. 3 will present our novel α-pooling formulation, which

generalizes average and bilinear pooling into a single frame-

work. Sect. 4 will then investigate the relationship between

generalized orderless pooling and pairwise matching and

present an approach for visualizing a classification decision.

This is followed by the experiments and a discussion about

the trade-offs between implicit and explicit pose normaliza-

tion for fine-grained recognition in Sect. 5 and 6.

2. Related work

Our work is related to several topics in the area of com-

puter vision. This includes pooling techniques, match ker-

nels, bilinear encoding, and visualizations for CNNs.

Pooling techniques and match kernels The presented

α-pooling is related to other pooling techniques, which ag-

gregate a set of local features into a single feature vec-

tor. Besides the commonly used average pooling, fully-

connected layers, and maximum pooling, several new ap-

proaches have been developed in the last years. Zeiler et

al. [32] randomly pick in each channel an element accord-

ing to a multinomial distribution, which is defined by the ac-

tivations themselves. Motivated by their success with hand-

crafted features, Fisher vector [12, 19] and VLAD encod-

ing [11] applied on top of the last convolutional layer have

been evaluated as well. The idea of spatial pyramids was

used by He et al. [14] in order to improve recognition per-

formance. In contrast to these techniques, feature encoding

based on α-pooling shows a significantly higher accuracy

in fine-grained applications. Lin et al. [19, 18] presents

bilinear pooling, which is a special case of α-pooling. It

has its largest benefits in fine-grained tasks. As shown in

the experiments, learning the right mix of average and bi-

linear pooling improves results especially in tasks besides

fine-grained.

The relationship of average pooling and pairwise match-

ing of local features was presented by Bo et al. [2] as an

efficient encoding for matching a set of local features. This

formulation was also briefly discussed in [10] and used for

deriving an explicit feature transformation which approxi-

mates bilinear pooling. Bilinear encoding was first men-

tioned by Tenenbaum et al. [28] and used, for example, by

Carreira et al. [5] and Lin et al. [19] for image recognition

tasks. Furthermore, the recent work of Murray et al. [21]

also analyzes orderless pooling approaches and proposes a

technique to normalize the contribution of each local de-
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scriptor to resulting kernel values. In contrast, we show

how the individual contributions can be used either for vi-

sualizing the classification decisions and for understanding

the differences between generic and fine-grained tasks.

Justifying classifier predictions for an image Espe-

cially Sect. 4 is related to visualization techniques for infor-

mation processing in CNNs. Most of the previous works fo-

cused on the primal view of the feature representation. This

means they analyze the feature representations by looking

only at a single image. Zeiler et al. [33] identify image pat-

terns which cause high activations of selected channels of

a convolutional layer. Yosinksi et al. [31] try to generate

input patterns which lead to a maximal activation of certain

units. Bach et al. [1] visualize areas important to the classi-

fication decision with layer-wise relevance propagation. In

contrast to the majority of these works, we focus on the dual

(or kernel) view of image classification. While a visualiza-

tion for a single image looks interesting at the first sight, it

does not allow for understanding which parts of an image

are compared with which parts of the training images. In

other words, these visualizations look only at the image it-

self and are omitting the relationship to the training data.

For example, while the bird’s head might be an attentive

region in the visualization techniques mentioned above, a

system might still compare this head with some unrelated

areas in other images. Our approach allows for a clearer

understanding about which pairs of training and test image

regions contribute to a classification decision.

Zhang et al. [35] tackle a related idea for the case of

explicit part detectors. They use the prediction score of a

SVM classifier for each part to identify the most important

patches for a selected part detector. We extend this idea to

orderless-pooled features which do not originate from ex-

plicit part detections.

3. From generic to fine-grained classification:

generalized α-pooling

Fine-grained applications like bird recognition and more

generic image classification tasks like ImageNet have tra-

ditionally been two related but clearly separate fields with

their own specialized approaches. While the general CNN

architecture is shared, its usage differs. In this work, we

focus on two state-of-the-art feature encoding: global aver-

age and bilinear pooling. While bilinear pooling shows the

largest benefits in fine-grained applications, average pool-

ing is the most commonly chosen final pooling step in liter-

ally all state-of-the-art CNN architectures. In this section,

we show the connection between these two worlds. We

present the novel generalization α-pooling, which allows

for a continuous transition between average and bilinear

pooling. The right mixture is learned with back-propagation

from data in training, which allows for adapting to the spe-

cific tasks. In addition, the results will allow us to investi-

gate which mixture of pooling approaches is best suited for

which application, and what makes fine-grained recognition

different from generic image classification.

Generalized α-pooling We propose a novel generaliza-

tion of the common average and bilinear pooling as used in

deep networks, which we call α-pooling. Let (f, g, C) de-

note a classification model. f : (I, i) 7→ yi ∈ R
D denotes

a local feature descriptor mapping from input image I and

location i to a vector with length D, which describes this

region. g : {yi | i = 1, . . . , n} 7→ z ∈ R
M is a pooling

scheme which aggregates n local features to a single global

image description of length M . In our case, M = D2 and

is compressed using [10]. Finally, C is a classifier. In a

common CNN like VGG16, f corresponds to the first part

of a CNN up to the last convolutional layer, g are two fully

connected layers and C is the final classifier.

An α-pooling-model is then defined by (f, galpha, C),
where

galpha({yi}
n

i=1
) = v

(

1

n

n
∑

i=1

alpha-prod(yi, α)

)

(1)

and

alpha-prod(yi, α) = (sgn(yi) ◦ |yi|
α−1)yT

i , (2)

where v(·) is the vectorization function, and sgn(·), · ◦ ·,
| · |, and ·α denote the element-wise signum, product, ab-

solute value and exponentiation function, and α is a model

parameter. α has a significant influence on the pooling due

to its role as an exponent. The optimal value is learned with

back-propagation. For numerical stability, we add a small

constant ǫ > 0 to |yi| when calculating the power and when

calculating the logarithm. In our experiments, learning α

was stable.

Special cases Average pooling is a common final feature

encoding step in most state-of-the-art CNN architectures

like ResNet [15] or Inception [27]. The combination [19]

of CNN feature maps and bilinear pooling [28, 5] is one

of the current state-of-the-art approaches in the fine-grained

area. Both approaches are a special case of α-pooling.

For α = 1 and yi ≥ 0 we obtain alpha-prod(yi, 1) =
I ·yT

i . Hence galpha calculates a matrix in which each row is

the mean vector. This mean vector is identical to the one ob-

tained in common average pooling. The vectorization v(·)
turns the resulting matrix into a concatention of identical

mean vectors.

In case of α = 2 the mean outer product of yi

is calculated, which is equivalent to bilinear pooling:

alpha-prod(yi, 2) = yiy
T
i . Therefore, α-pooling allows for

estimating the type of pooling necessary for a particular task

by learning α directly from data.

α-pooling can continuously shift between average and

bilinear pooling, which opens a great variety of opportuni-

ties. It shows a connection between both that was to the best
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of our knowledge previously unknown. Furthermore, and

even more important, all following contributions are also

applicable to these two commonly used pooling techniques.

They allow for analyzing and understanding differences be-

tween both special cases.

4. Understanding decisions of α-pooling

In this section, we give a “deep” insight into the class

of α-pooled features, which includes average and bilinear

pooling as well as shown in the last section. We make use

of the formulation as pairwise matching of local features,

which allows for visualizing both the gist of the represen-

tation and resulting classification decisions. We use the

techniques presented in this section to analyze the effects

of α-pooled features as we move between generic and fine-

grained classification tasks. To simplify the notation, we

will focus in this section on the case that all local features

y are non-negative. This is the case for all features used in

the experiments. All observations apply to the generic case

in an analogous manner.

Interpreting decisions using most influential regions

While an impressive classification accuracy can be achieved

with orderless pooling, one of its main drawbacks is the

difficulty of interpreting classification decisions. This ap-

plies especially to fine-grained tasks, since the difference

between two categories might not be clear even for a human

expert. Furthermore, there is a need to analyze false au-

tomatic predictions, to understand error cases and advance

algorithms.

In this section, we use the formulation of α-pooling as

pairwise matching to visualize classification decisions. It is

based on finding locations with high influence on the deci-

sion. We show how to find the most relevant training im-

age regions and show that even implicit part modeling ap-

proaches are well suited for visualizing decisions.

To show this, we calculate the linear kernel between the

vectors zk and z̃ℓ, which induces a kernel between Yk =
{yi}

n
i=1

and Yℓ = {ỹj}
n
j=1

as follows:

〈zk, z̃ℓ〉 ∝ 〈v
(

n
∑

i=1

y
α−1

i y
T
i

)

, v
(

n
∑

j=1

ỹ
α−1

j ỹ
T
j

)

〉

= tr
((

n
∑

i=1

y
α−1

i y
T
i

)T(
n
∑

j=1

ỹ
α−1

j ỹ
T
j

))

=
∑

i,j

〈yi, ỹj〉 · 〈y
α−1

i , ỹα−1

j 〉, (3)

where we ignored normalizing with respect to n for brevity.

Please note, that this derivation also reveals that the dif-

ference between bilinear and average pooling is only the

quadratic transformation of the scalar product between two

feature vectors yi and ỹj .

If we use a single fully-connected layer after bilinear

pooling and a suitable loss, the resulting score for a single

class is given up to a constant as:
N
∑

k=1

βk〈zk, z̃〉 =
N
∑

k=1

∑

i,j

βk · 〈yi,k, ỹj〉〈y
α−1

i,k , ỹα−1

j 〉,

(4)

where βk are the weights of each training image given by

the dual representation of the last layer and N is the number

of training samples. zk is the α-pooled feature of the k-th

training image and calculated using the local features yi,k.

A match between a region j in the test example and

region i of a training example k is defined by the triplet

(k, i, j). The influence of the triplet on the final score is

given by the product

γk,i,j = βk · 〈yi,k, ỹj〉〈y
α−1

i,k , ỹα−1

j 〉 . (5)

Therefore, we can visualize the regions with the highest in-

fluence on the classification decisions by showing the ones

with the highest corresponding γk,i,j . This calculation can

be done efficiently also on large datasets with the main lim-

itation being the memory for storing the feature maps.

Figure 2 depicts a classification visualization for test im-

ages from four different datasets. In the bottom left of each

block, the test image is shown. The test image is surrounded

by the five most relevant training image regions. They are

picked by first selecting the training images with the highest

influence defined by the aggregated γk,i,j over all locations

i, j of the test and training image. In each training image,

the highest γk,i,j is shown using an arrow and a relative in-

fluence. The relative influence is defined by γk,i,j normal-

ized by the aggregated γk,i,j over the test and all positive

training image regions, i.e. images supporting the classifi-

cation decision. Please note, that γk,i,j >= 0 for positive

training samples as each element in y is greater or equal 0.

Since multiple similar triplets occur, we use non-maximum

suppression and group triplets with a small normalized dis-

tance of less than 0.15. As can be seen, this visualization of

the classification decision is intuitive and reveals the high

impact of a few small parts of the training images.

Measuring the contribution of semantic parts We are

also interested whether human-defined semantic parts con-

tribute significantly to decisions. Figure 3 shows the con-

tribution of individual bird body parts for classification on

CUB200-2011 [29]. For each test image, we obtain the ten

most related training image similar to before. We divide the

local feature into groups belonging to the bird’s head, belly,

and background and compute the sum of the squared inner

products between these regions. As can be seen, on aver-

age, 25% of the VGG16 [26] prediction is caused by the

comparison of the bird’s heads. In contrast for VGG-M [7],

the background plays the most significant role with a contri-

bution of 31%. This shows that the deeper network VGG16

focuses much more on the bird instead of the background.

Relationship to salient regions We show that orderless

pooling cannot just be rephrased as a correspondence ker-
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Figure 2. Visualization of the most influential image regions for

the classification decision as defined in Eq. 5: The large image in

the bottom left corner is the test image and the surrounding images

are crops of the training examples with highly relevant image re-

gions. Percentages show the relative impact on the final decision.

The lower four images show incorrect classifications.

nel [10] but also as implicitly performing salient matching.

Eq. 3 calculates the linear kernel between the pooled fea-

tures showing that it induces a kernel between each pair of

local features. We can now show a further direct relation to

a simple matching of local features in two images by rewrit-

Hea
d

Bel
ly BG

Train image location

Head

Belly

BGT
e
st

 i
m

a
g
e
 l
o
ca

ti
o
n 16% 4% 4%

4% 11% 7%

5% 8% 42%

VGG-M 

Hea
d

Bel
ly BG

Train image location

42% 9% 2%

9% 22% 3%

3% 4% 5%

VGG-16

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 3. Contribution of different bird parts to the classifica-

tion decision on CUB200-2011 comparing VGG-M and VGG16

without fine-tuning. For each semantic part in a given test image

(rows), we compute the sum of inner products to another seman-

tic part in a training image (columns). This statistic is normalized

and averaged over all test images. The plots show that for VGG-M,

42% of the classification decision can be attributed to the compar-

ison of background elements. In contrast, the comparison of the

bird’s head is most important for VGG16.

Figure 4. Visualization of the pairs of most similar local features

using L2-distance. The thicker and whiter the line, the more simi-

lar are the features. Blue thin lines denote low similarity. We only

show matchings larger than 50% of the maximum matching in this

case.

ing the scalar products as:

〈yi, ỹj〉 ∝
∑

i,j

(

‖yi‖
2 + ‖yj‖

2 − ‖yi − yj‖
2
)

, (6)

where the Euclidean distance between two features ap-

pears. The kernel output is therefore high if the feature vec-

tors are highly similar (small Euclidean distance) especially

for pairs (i, j) characterized by individual high Euclidean

norms. In Figure 4, we visualize the Euclidean norms of the

feature vectors in conv5 3 extracted with VGG16. The in-

put size was increased to 448× 448 similar to [19, 10] and

the output of conv5 3 after activation and before pooling

was used. Hence the local features have a spatial resolution

of 28 × 28. In the first column, feature similarity was de-

fined by the lowest L2-distance between local features. The

second column shows the magnitude of all local features

normalized to the highest norm in both feature maps. The

third and fourth column show the implicit matchings using
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the inner product and the squared inner product as similar-

ity measure, as it is used in average and bilinear pooling.

We only show matchings larger than 50% of the maximum

matching in this case. As can be observed when compar-

ing the plot for the norm and the matching, areas with a

high magnitude of the features also correspond to salient re-

gions. This is indeed reasonable since the “matching cost”

in Eq. (3) should focus on the relevant object itself and not

on background elements.

Focusing pairwise similarities by increasing α Similar

to [19], we apply pooling directly after the ReLU activa-

tion following the last convolutional layer. Therefore, all

scalar products between these features are positive. Hence,

summands with a high scalar product are emphasized dra-

matically for large values of α and in particular also for bi-

linear pooling. Increasing α therefore leads to kernel values

likely based on only a few relevant pairs (i, j). This fact is

illustrated in the last two rows of Figure 4, where we only

showed the pairs with an inner product larger 50% of the

highest one for both average and bilinear pooling.

5. Experimental Analysis

In our experiments, we focus on analyzing the difference

between average and bilinear pooling for image recognition.

We make use of our novel α-pooling presented in Sect. 3.

First, we show that it achieves state-of-the-art results in both

generic and fine-grained image recognition. α and hence

the pooling strategy is learned. Second, based on deep neu-

ral nets learned on both kinds of datasets, we analyze dis-

tinguishing properties using the visualization techniques of

Sect. 4. We discuss the relationship of α with dataset granu-

larity, classification decisions, and implicit pose normaliza-

tion. Hence we manually set α in this second part.

Accuracy of α-pooling We evaluate both training from

scratch and fine-tuning using a network pre-trained on the

ILSVRC 2012 dataset [23]. For training from scratch, we

use the VGG-M [7] architecture and replace the last pool-

ing and the two fully-connected layers before the classifier

with α-pooling. Batch normalization [16] is used after con-

volutions as well as after the α-pooling. In addition, we

use dropout with a probability of p = 0.5 to reduce overfit-

ting and improve generalization. Compact bilinear encod-

ing [10] is used to reduce the dimensionality of the outer

product to 8192. The learning rate starts at 0.025 and fol-

lows an exponential decay after every epoch. The batch size

is 256. The results on ILSVRC 2012 (1000 classes, 1.2 mil-

lion images) are shown in Figure 5. We plot both the valida-

tion accuracy during the first twenty epochs of the training

as well as the final top-1 single crop accuracy. The network

converges faster at only small additional computation cost

and reaches a higher final accuracy compared to the original

VGG-M with batch normalization.

For fine-tuning, we use VGG-M [7] and VGG16 [26]
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Our work:

VGG-M w/ α-pool 64.2%

Figure 5. Accuracy on ILSVRC 2012 for VGG-M. The left plot

shows validation accuracy over the first twenty trained epochs.

VGG-M denotes the original architecture and α-pooling the novel

generalized pooling technique. α is learned from data.

Table 1. Accuracy on several datasets with α-pooling using the

multi-scale variant. No ground-truth part or bounding box annota-

tions were used. α is learned from data.

Dataset CUB200-2011 Aircraft 40 actions

classes / images 200 / 12k 89 / 10k 40 / 9.5k

Previous 81.0% [24] 72.5% [6] 72.0% [36]

82.0% [17] 78.0% [22] 80.9% [4]

84.5% [34] 80.7% [13] 81.7% [22]

Special case: bilinear [19] 84.1% 84.1% -

Learned strategy (Ours) 85.3% 85.5% 86.0%

pre-trained on ILSVRC 2012. We replace the last pool-

ing and the two fully connected layers before the classi-

fier with the novel α-pooling encoding. We follow [19, 10]

and add a signed square root as well as L2-normalization

layer before the classifier. Pooling is done across two scales

with the smaller side of the image being 224 and 560 pixels

long. Two-step fine-tuning [3] is used, where the last linear

layer is trained first with 0.01 times the usual weight decay

and the whole network is trained afterwards with the usual

weight decay of 0.0005. The learning rate is fixed at 0.001
with a batch size of eight. α is learned from data.

The results for CUB200-2011 birds [29], FGVC-

Aircraft [20] and Stanford 40 actions [30] can be seen in

Table 1. We achieve higher top-1 accuracy for all datasets

compared to previous work. For fine-grained datasets

like birds and aircraft, we slightly improve the results of

[19, 10], which is due to α = 2 being close to the learned

α for this dataset. Our approach also shows a high accuracy

on datasets besides traditional fine-grained tasks as shown

by the actions dataset, where we achieve 86.0% accuracy

compared to 81.7% reported in [22].

Ranking dataset granularity wrt. α As mentioned be-

fore, the main purpose of the experiments is to analyze the

differences between average and bilinear pooling. In partic-

ular, we are interested in why average pooling lacks accu-

racy in fine-grained while bilinear reaches state-of-the-art.

The presented α-pooling allows for a smooth transition

between average and bilinear pooling. In this paragraph, we

analyze the relationship of the parameter α and the granu-

larity of the dataset. The results using VGG16 can be seen
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Figure 6. Influence of α using VGG16 without fine-tuning. α = 1

corresponds to average pooling and α = 2 to bilinear pooling. α

is manually set in this experiment.

in Figure 6. α has been manually set to values in [1.0, 4.0]
and the accuracy without fine-tuning is plotted. The input

resolution was increased to 448 × 448 as done in previous

work [19, 10]. The accuracy is normalized to 1 for easier

comparison of different datasets. It seems each dataset re-

quires a different type of pooling. If the datasets are ordered

by the value of α, which gives the highest validation accu-

racy, the order is as follows: MIT Scenes 67, 40 actions,

and CUB200-2011 with α = 1.3, 1.5, and 2.5, respec-

tively. This seems to suggest that the more we move from

generic to fine-grained classification, the higher is the value

of α. In addition, larger values of alpha are still good for

fine-grained while accuracy drops quickly for generic tasks.

Hence focusing the classification on few correspondences

seems a good strategy for fine-grained while it lowers accu-

racy on generic tasks. VGG-M shows a similar trend.

Classification visualization versus α Sect. 4 presents a

novel way to visualize classification decisions for feature

representations based on α-pooling. We are now interested

in the change of classification decision reasoning with re-

spect to α. Figure 7 shows the classification visualization

for two sample test images from CUB200-2011 and MIT

scenes 67. For each test image, we show the visualization

for α = 1 and α = 3. While α = 1 causes a fairly equal

contribution of multiple training image regions to the deci-

sion, α = 3 pushes the importance of the first images. For

example, the contribution of the most relevant training im-

age region grows from 11.2% to 23.2% in the bird image. A

statistical analysis is shown in the supplementary material.

Relevance of semantic parts versus α A second way to

analyze the pairwise matching induced by α-pooling is to

quantify the matchings between semantic parts. We evalu-

ated on CUB200-2011 using ground-truth part annotations.

A ground-truth segmentation of the bird’s head and belly

was generated based on these annotations and used to as-

sign feature locations in conv5 3 of VGG16 to bird head,

body, and background. Afterwards, for each test image, the

kernel between all features of the bird’s head in the test and

a training image is aggregated. This is done for all pairs of

regions and for the 10 most relevant training images. The

obtained statistics are averaged over all test images.
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Figure 7. Influence of α on the classification decisions. As in Fig-

ure 2, we visualize the most relevant image regions for the classi-

fication decision. A larger α increases the importance of the most

influencial regions in the training images. Hence the decision is

based on few important regions. α is manually set.
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Figure 8. Influence of α on the contribution of different bird body

parts to the classification decision on CUB200-2011. The higher

the value of α, the higher is the influence of the actual bird body

parts to the classification decision. α is manually set to {1, 1.5, 2}.

First, we analyze the influence of α on the contribution of

different body parts. Figure 8 shows the results for VGG16

without fine-tuning when α is manually set to {1, 1.5, 2}.

It seems that larger values of α focus the classification de-

cision on actual body parts. The contribution of the bird’s

head to the classification decision shifts from 9% (α = 1)

to 42% (α = 2). This observation matches our previous in-

terpretation that larger values for α focus the classification

decision on fewer discriminative pairs of local features.

Second, we are also interested in the effect of fine-tuning

on classification decisions. Figure 9 depicts the results for

VGG16 and α set to 2. Fine-tuning shifts the focus towards

the bird’s head, while especially the influence of back-

ground decreases. α-pooling is one of the few approaches

which allow quantifying the influence of semantic parts.
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Figure 9. Influence of fine-tuning on the contribution of different

bird body parts to the classification decision on CUB200-2011.

As can be seen, the bird’s head gains influence at the cost of back-

ground areas. α is set to 2.0.

6. Discussion

Fine-grained tasks are about focusing on a few relevant

areas Our in-depth analysis revealed that a high accu-

racy for fine-grained recognition can be achieved when only

a few relevant areas are compared with each other by im-

plicit salient matching. In terms of α-pooling, this corre-

sponds to a higher value of the parameter α. It also explains

why bilinear pooling showed a large performance gain for

fine-grained tasks [19]: the corresponding α = 2 increases

the influence of highly related features. On the other hand,

in generic image classification tasks like scene recognition,

the general appearance seems more important and hence a

lower value of α is better suited. Our experiments showed

that α = 1.5 is a good trade-off for a wide range of classi-

fication datasets and hence is a good starting point. If fine-

tuning is used, α is learned and adapts to the best value.

Implicit matching vs. explicit pose normalization

Most approaches for fine-grained recognition assumes ob-

jects consists of a few parts [24, 3, 25]. It is common belief

that part-based in contrast to global descriptors allow for

better representations of objects appearing in diverse poses.

In contrast, our analysis reveals that state-of-the-art

global representations perform an implicit matching of sev-

eral different image regions. Compared to explicit part-

based models, they are not limited by a fixed number of

parts learned from the data or utilized during classification.

Our α-pooling strategy can even learn how much a classi-

fication decision should rely on a few rather than a large

number of matchings. As argued in the last paragraph, the

intuition that fine-grained recognition tasks are about “de-

tecting a small set of image regions that matter” is right.

However, the consequence that explicit part-based models

are the solution is questionable. Rather than designing yet

another part-based model, representations should be devel-

oped that lead to an even better implicit matching.

Kernel view of classification decisions We argue that

the kernel view of classification decisions is a valuable tool

for understanding and analyzing different feature encoding.
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Figure 10. Illustration of different techniques to deal with multiple

scales and their resulting implicit matching. Directly pooling over

multiple scales allows for implicit matching across scales.

We used the kernel view in the previous sections to show

that a larger value of α focuses the classification decision on

the most relevant pairs of local features. This understand-

ing also allowed us to visualize classification decisions by

using matchings to the most relevant training images. How-

ever, there are even more possible ways to exploit this in

future work. For example, we can derive a feature matching

over multiple scales in a theoretically sound way. Previous

work often handled multiple scales by extracting crops at

different scales and averaging the decision values across all

crops [15, 27]. While this gives an improvement, a theo-

retical justification is missing. In contrast, if we perform

α-pooling across all local features extracted from all scales

of the input image, the kernel view reveals that this relates

to a matching of local features across all possible combina-

tions of locations and scales of two images, see Figure 10.

To summarize, while kernel functions are rarely explicitly

used in state-of-the-art approaches, they can be useful for

both understanding and designing new approaches.

7. Conclusions

In this paper, we propose a novel generalization of av-

erage and bilinear pooling called α-pooling. Our approach

has both state-of-the-art performance and a clear justifica-

tion of predictions. It allows for a smooth transition be-

tween average and bilinear pooling, and to higher-order

pooling, allowing for understanding the connection between

these operating points. We find that in practice our method

learns that an intermediate strategy between average and bi-

linear pooling offers the best performance on several fine-

grained classification tasks. In addition, a novel way for

visualizing classification decision is presented showing the

most influential training image regions for a decision. Fur-

thermore, we quantify the contributions of semantic parts in

a classification decision based on these influential regions.
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