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Abstract

We present a novel method called Contextual Pyramid

CNN (CP-CNN) for generating high-quality crowd density

and count estimation by explicitly incorporating global and

local contextual information of crowd images. The pro-

posed CP-CNN consists of four modules: Global Context

Estimator (GCE), Local Context Estimator (LCE), Density

Map Estimator (DME) and a Fusion-CNN (F-CNN). GCE

is a VGG-16 based CNN that encodes global context and

it is trained to classify input images into different density

classes, whereas LCE is another CNN that encodes local

context information and it is trained to perform patch-wise

classification of input images into different density classes.

DME is a multi-column architecture-based CNN that aims

to generate high-dimensional feature maps from the input

image which are fused with the contextual information es-

timated by GCE and LCE using F-CNN. To generate high

resolution and high-quality density maps, F-CNN uses a set

of convolutional and fractionally-strided convolutional lay-

ers and it is trained along with the DME in an end-to-end

fashion using a combination of adversarial loss and pixel-

level Euclidean loss. Extensive experiments on highly chal-

lenging datasets show that the proposed method achieves

significant improvements over the state-of-the-art methods.

1. Introduction

With ubiquitous usage of surveillance cameras and ad-

vances in computer vision, crowd scene analysis [18, 43]

has gained a lot of interest in the recent years. In this

paper, we focus on the task of estimating crowd count

and high-quality density maps which has wide applica-

tions in video surveillance [15, 41], traffic monitoring, pub-

lic safety, urban planning [43], scene understanding and

flow monitoring. Also, the methods developed for crowd

counting can be extended to counting tasks in other fields

such as cell microscopy [38, 36, 16, 6], vehicle counting

[23, 49, 48, 11, 34], environmental survey [8, 43], etc. The

task of crowd counting and density estimation has seen a

Figure 1: Density estimation results. Top Left: Input image

(from the ShanghaiTech dataset [50]). Top Right: Ground

truth. Bottom Left: Zhang et al. [50] (PSNR: 22.7 dB

SSIM: 0.68). Bottom Right: CP-CNN (PSNR: 26.8 dB

SSIM: 0.91).

significant progress in the recent years. However, due to the

presence of various complexities such as occlusions, high

clutter, non-uniform distribution of people, non-uniform il-

lumination, intra-scene and inter-scene variations in appear-

ance, scale and perspective, the resulting accuracies are far

from optimal.

Recent CNN-based methods using different multi-scale

architectures [50, 23, 29] have achieved significant suc-

cess in addressing some of the above issues, especially in

the high-density complex crowded scenes. However, these

methods tend to under-estimate or over-estimate count in

the presence of high-density and low-density crowd im-

ages, respectively (as shown in Fig. 2). A potential so-

lution is to use contextual information during the learn-

ing process. Several recent works for semantic segmenta-

tion [21], scene parsing [51] and visual saliency [52] have

demonstrated that incorporating contextual information can

provide significant improvements in the results. Motivated

by their success, we believe that availability of global con-

text shall aid the learning process and help us achieve better
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Figure 2: Average estimation errors across various den-

sity levels. Current state-of-the-art method [50] over-

estimates/underestimates count in the presence of low-

density/high-density crowd.

count estimation. In addition, existing approaches employ

max-pooling layers to achieve minor translation invariance

resulting in low-resolution and hence low-quality density

maps. Also, to the best of our knowledge, most existing

methods concentrate only on the quality of count rather than

that of density map. Considering these observations, we

propose to incorporate global context into the learning pro-

cess while improving the quality of density maps.

To incorporate global context, a CNN-based Global Con-

text Estimator (GCE) is trained to encode the context of

an input image that is eventually used to aid the density

map estimation process. GCE is a CNN-based on VGG-

16 architecture. A Density Map Estimator (DME), which

is a multi-column architecture-based CNN with appropri-

ate max-pooling layers, is used to transform the image into

high-dimensional feature maps. Furthermore, we believe

that use of local context in the image will guide the DME to

estimate better quality maps. To this effect, a Local Context

Estimator CNN (LCE) is trained on input image patches to

encode local context information. Finally, the contextual

information obtained by LCE and GCE is combined with

the output of DME using a Fusion-CNN (F-CNN). Noting

that the use of max-pooling layers in DME results in low-

resolution density maps, F-CNN is constructed using a set

of fractionally-strided convolutions [22] to increase the out-

put resolution, thereby generating high-quality maps. In a

further attempt to improve the quality of density maps, the

F-CNN is trained using a weighted combination of pixel-

wise Euclidean loss and adversarial loss [10]. The use of

adversarial loss helps us combat the widely acknowledge

issue of blurred results obtained by minimizing only the Eu-

clidean loss [13].

The proposed method uses CNN networks to estimate

context at various levels for achieving lower count error and

better quality density maps. It can be considered as a set of

CNNs to estimate pyramid of contexts, hence, the proposed

method is dubbed as Contextual Pyramid CNN (CP-CNN).

To summarize, the following are our main contributions:

• We propose a novel Contextual Pyramid CNN (CP-

CNN) for crowd count and density estimation that en-

codes local and global context into the density estima-

tion process.

• To the best of our knowledge, ours is the first attempt to

concentrate on generating high-quality density maps.

Also, in contrast to the existing methods, we evalu-

ate the quality of density maps generated by the pro-

posed method using different quality measures such as

PSNR/SSIM and report state-of-the-art results.

• We use adversarial loss in addition to Euclidean loss

for the purpose of crowd density estimation.

• Extensive experiments are conducted on three highly

challenging datasets ([50, 44, 12]) and comparisons

are performed against several recent state-of-the-art

approaches. Further, an ablation study is conducted to

demonstrate the improvements obtained by including

contextual information and adversarial loss.

2. Related work

Various approaches have been proposed to tackle the

problem of crowd counting in images [12, 5, 16, 44, 50]

and videos [2, 9, 26, 7]. Initial research focussed on de-

tection style [17] and segmentation framework [35]. These

methods were adversely affected by the presence of occlu-

sions and high clutter in the background. Recent approaches

can be broadly categorized into regression-based, density

estimation-based and CNN-based methods. We briefly re-

view various methods among these cateogries as follows:

Regression-based approaches. To overcome the issues

of occlusion and high background clutter, researchers at-

tempted to count by regression where they learn a mapping

between features extracted from local image patches to their

counts [3, 27, 6]. These methods have two major compo-

nents: low-level feature extraction and regression modeling.

Using a similar approach, Idrees et al. [12] fused count from

multiple sources such as head detections, texture elements

and frequency domain analysis.

Density estimation-based approaches. While regression-

based approaches were successful in addressing the issues

of occlusion and clutter, they ignored important spatial in-

formation as they were regressing on the global count. Lem-

pitsky et al. [16] introduced a new approach of learning

a linear mapping between local patch features and corre-

sponding object density maps using regression. Observing

that it is difficult to learn a linear mapping, Pham et al. in

[24] proposed to learn a non-linear mapping between lo-

cal patch features and density maps using a random forest

framework. Many recent approaches have proposed meth-

ods based on density map regression [38, 42, 40]. A more

comprehensive survey of different crowd counting methods
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Figure 3: Overview of the proposed CP-CNN architecture.

The network incorporates global and local context using

GCE and LCE respectively. The context maps are concate-

nated with the output of DME and further processed by F-

CNN to estimate high-quality density maps.

can be found in [33, 6, 18, 28].

CNN-based methods. Recent success of CNN-based meth-

ods in classification and recognition tasks has inspired re-

searchers to employ them for the purpose of crowd count-

ing and density estimation [37, 44, 36, 30]. Walach et al.

[36] used CNNs with layered training approach. In con-

trast to the existing patch-based estimation methods, Shang

et al. [30] proposed an end-to-end estimation method using

CNNs by simultaneously learning local and global count

on the whole sized input images. Zhang et al. [50] pro-

posed a multi-column architecture to extract features at dif-

ferent scales. Similarly, Onoro-Rubio and López-Sastre in

[23] addressed the scale issue by proposing a scale-aware

counting model called Hydra CNN to estimate the object

density maps. Boominathan et al. in [1] proposed to tackle

the issue of scale variation using a combination of shallow

and deep networks along with an extensive data augmen-

tation by sampling patches from multi-scale image repre-

sentations. Marsden et al. explored fully convolutional net-

works [19] and multi-task learning [20] for the purpose of

crowd counting.

Inspired by cascaded multi-task learning [25, 4], Sindagi

et al. [32] proposed to learn a high-level prior and per-

form density estimation in a cascaded setting. In contrast to

[32], the work in this paper is specifically aimed at reducing

overestimation/underestimation of count error by systemi-

cally leveraging context in the form of crowd density lev-

els at various levels using different networks. Additionally,

we incorporate several elements such as local context and

adversarial loss aimed at improving the quality of density

maps. Most recently, Sam et al. [29] proposed a Switching-

CNN network that intelligently chooses the most optimal

regressor among several independent regressors for a par-

ticular input patch. A comprehensive survey of recent cnn-

based methods for crowd counting can be found in [33].

Recent works using multi-scale and multi-column architec-

tures [50, 23, 36] have demonstrated considerable success in

achieving lower count errors. We make the following obser-

vations regarding these recent state-of-the-art approaches:

1. These methods do not explicitly incorporate contex-

tual information which is essential for achieving further im-

provements. 2. Though existing approaches regress on den-

sity maps, they are more focussed on improving count er-

rors rather than quality of the density maps, and 3. Exist-

ing CNN-based approaches are trained using a pixel-wise

Euclidean loss which results in blurred density maps. In

view of these observations, we propose a novel method to

learn global and local contextual information from images

for achieving better count estimates and high-quality den-

sity maps. Furthermore, we train the CNNs in a Generative

Adversarial Network (GAN) based framework [10] to ex-

ploit the recent success of adversarial loss to achieve high-

quality and sharper density maps.

3. Proposed method (CP-CNN)

The proposed CP-CNN method consists of a pyramid

of context estimators and a Fusion-CNN as illustrated in

Fig. 3. It consists of four modules: GCE, LCE, DME,

and F-CNN. GCE and LCE are CNN-based networks that

encode global and local context present in the input im-

age respectively. DME is a multi-column CNN that per-

forms the initial task of transforming the input image to

high-dimensional feature maps. Finally, F-CNN combines

contextual information from GCE and LCE with high-

dimensional feature maps from DME to produce high-

resolution and high-quality density maps. These modules

are discussed in detail as follows.

3.1. Global Context Estimator (GCE)

As discussed in Section 1, though recent state-of-the-art

multi-column or multi-scale methods [50, 23, 36] achieve

significant improvements in the task of crowd count esti-

mation, they either underestimate or overestimate counts in

high-density and low-density crowd images respectively (as

explained in Fig. 2). We believe it is important to explicilty

model context present in the image to reduce the estimation

error. To this end, we associate global context with the level

of density present in the image by considering the task of

learning global context as classifying the input image into

five different classes: extremely low-density (ex-lo), low-

density (lo), medium-density (med), high-density (hi) and

extremely high-density (ex-hi). Note that the number of

classes required is dependent on the crowd density varia-

tion in the dataset. A dataset containing large variations

may require higher number of classes. In our experiments,

we obtained significant improvements using five categories

of density levels.

In order to learn the classification task, a VGG-16 [31]

based network is fine-tuned with the crowd training data.

Network used for GCE is as shown in Fig. 4. The con-

volutional layers from the VGG-16 network are retained,

however, the last three fully connected layers are replaced
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with a different configuration of fully connected layers in

order to cater to our task of classification into five cate-

gories. Weights of the last two convolutional layers are fine-

tuned while keeping the weights fixed for the earlier layers.

The use of pre-trained VGG network results in faster con-

vergence as well as better performance in terms of context

estimation.

Figure 4: Global context estimator based on VGG-16 archi-

tecture. The network is trained to classify the input images

into various density levels thereby encoding the global con-

text present in the image.

3.2. Local Context Estimator (LCE)

Existing methods for crowd density estimation have pri-

marily focussed on achieving lower count errors rather than

estimating better quality density maps. As a result, these

methods produce low-quality density maps as shown in Fig.

1. After an analysis of these results, we believe that some

kind of local contextual information can aid us to achieve

better quality maps. To this effect, similar to GCE, we pro-

pose to learn an image’s local context by learning to clas-

sify it’s local patches into one of the five classes: {ex-lo, lo,

med, hi, ex-hi}. The local context is learned by the LCE

whose architecture shown in Fig. 5. It is composed of a

set of convolutional and max-pooling layers followed by 3

fully connected layers with appropriate drop-out layers af-

ter the first two fully connected layers. Every convolutional

and fully connected layer is followed by a ReLU layer ex-

cept for the last fully connected layer which is followed by

a sigmoid layer.

Figure 5: Local context estimator: The network is trained

to classify local input patches into various density levels

thereby encoding the local context present in the image.

3.3. Density Map Estimator (DME)

The aim of DME is to transform the input image into a

set of high-dimensional feature maps which will be concate-

nated with the contextual information provided by GCE and

LCE. Estimating density maps from high-density crowd im-

ages is especially challenging due to the presence of heads

with varying sizes in and across images. Previous works

on multi-scale [23] or multi-column [50] architectures have

demonstrated abilities to handle the presence of consider-

ably large variations in object sizes by achieving significant

improvements in such scenarios. Inspired by the success

of these methods, we use a multi-column architecture simi-

lar to [50]. However, notable differences compared to their

work are that our columns are much deeper and have differ-

ent number of filters and filter sizes that are optimized for

lower count estimation error. Also, in this work, the multi-

column architecture is used to transform the input into a

set of high-dimensional feature map rather than using them

directly to estimate the density map. Network details for

DME are illustrated in Fig. 6.

It may be argued that since the DME has a pyramid of

filter sizes, one may be able to increase the filter sizes and

number of columns to address larger variation in scales.

However, note that addition of more columns and the fil-

ter sizes will have to be decided based on the scale variation

present in the dataset, resulting in new network designs that

cater to different datasets containing different scale vari-

ations. Additionally, deciding the filter sizes will require

time consuming experiments. With our network, the design

remains consistent across all datasets, as the context estima-

tors can be considered to perform the task of coarse crowd

counting.

Figure 6: Density Map Estimator: Inspired by Zhang et al.

[50], DME is a multi-column architecture. In contrast to

[50], we use slightly deeper columns with different number

of filters and filter sizes.

3.4. Fusion­CNN (F­CNN)

The contextual information from GCE and LCE are com-

bined with the high-dimensional feature maps from DME

using F-CNN. The F-CNN automatically learns to incorpo-

rate the contextual information estimated by context estima-

tors. The presence of max-pooling layers in the DME net-

work (which are essential to achieve translation invariance)

results in down-sampled feature maps and loss of details.
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Since, the aim of this work is to estimate high-resolution

and high-quality density maps, F-CNN is constructed using

a set of convolutional and fractionally-strided convolutional

layers. The set of fractionally-strided convolutional layers

help us to restore details in the output density maps. The

following structure is used for F-CNN: CR(64,9)-CR(32,7)-

TR(32)-CR(16,5)-TR(16)-C(1,1), where, C is convolutional

layer, R is ReLU layer, T is fractionally-strided convolution

layer and the first number inside every brace indicates the

number of filters while the second number indicates filter

size. Every fractionally-strided convolution layer increases

the input resolution by a factor of 2, thereby ensuring that

the output resolution is the same as that of input.

Once the context estimators are trained, DME and F-

CNN are trained in an end-to-end fashion. Existing meth-

ods for crowd density estimation use Euclidean loss to train

their networks. It has been widely acknowledged that mini-

mization of L2 error results in blurred results especially for

image reconstruction tasks [13, 14, 45, 46, 47]. Motivated

by these observations and the recent success of GANs for

overcoming the issues of L2-minimization [13], we attempt

to further improve the quality of density maps by minimiz-

ing a weighted combination of pixel-wise Euclidean loss

and adversarial loss. The loss for training F-CNN and DME

is defined as follows:

LT = LE + λaLA, (1)

LE =
1

WH

W
∑

w=1

H
∑

h=1

‖φ(Xw,h)− (Y w,h)‖2, (2)

LA = − log(φD(φ(X)), (3)

where, LT is the overall loss, LE is the pixel-wise Eu-

clidean loss between estimated density map and it’s cor-

responding ground truth, λa is a weighting factor, LA

is the adversarial loss, X is the input image of dimen-

sions W × H , Y is the ground truth density map, φ
is the network consisting of DME and F-CNN and φD

is the discriminator sub-network for calculating the ad-

versarial loss. Following structure is used for the dis-

criminator sub-network: CP(64)-CP(128)-M-CP(256)-M-

CP(256)-CP(256)-M-C(1)-Sigmoid, where C represents

convolutional layer, P represents PReLU layer and M is

max-pooling layer.

4. Training and evaluation details

In this section, we discuss details of the training and eval-

uation procedures.

Training details: Let D be the original training dataset.

Patches 1/4th the size of original image are cropped from

100 random locations from every image in D. Other aug-

mentation techniques like horizontal flipping and noise ad-

dition are used to create another 200 patches. The random

cropping and augmentation resulted in a total of 300 patches

per image in the training dataset. Let this set of images be

called as Ddme. Another training set Dlc is formed by crop-

ping patches of size 64 × 64 from 100 random locations in

every training image in D.

GCE is trained using the dataset Ddme. The correspond-

ing ground truth categories for each image is determined

based on the number of people present in it. Note that the

images are resized to 224 × 224 before feeding them into

the VGG-based GCE network. The network is then trained

using the standard cross-entropy loss. LCE is trained using

the 64 × 64 patches in Dlc. The ground truth categories of

the training patches is determined based on the number of

people present in them. The network is then trained using

the standard cross-entropy loss.

Next, the DME and F-CNN networks are trained in

an end-to-end fashion using input training images from

Ddme and their corresponding global and local contexts1.

The global context (F i
gc) for an input training image Xi

is obtained in the following way. First, an empty global

context F i
gc of dimension 5 × Wi/4 × Hi/4 is created,

where Wi × Hi is the dimension of Xi. Next, a set of

classification scores yi,jgc (j = 1...5) is obtained by feeding

Xi to GCE. Each feature map in global context F i,j
gc is

then filled with the corresponding classification score

yi,jg . The local context (F i
lc) for Xi is obtained in the

following way. An empty local context F i
lc of dimension

5 × Wi × Hi is first created. A sliding window classifier

(LCE) of size 64 × 64 is run on Xi to obtain the classi-

fication score yi,j,wlc (j = 1...5) where w is the window

location. The classification scores yi,j,wlc are used to fill

the corresponding window location w in the respective

local context map F i,j
gc . F i,j

gc is then resized to a size of

Wi/4 × Hi/4. After the context maps are estimated, Xi

is fed to DME to obtain a high-dimensional feature map

F i
dme which is concatenated with F i

gc and F i
lc. These

concatenated feature maps are then fed into F-CNN. The

two CNNs (DME and F-CNN) are trained in an end-to-

end fashion by minimizing the weighted combination of

pixel-wise Euclidean loss and adversarial loss (given by

(1)) between the estimated and ground truth density maps.

Inference details: Here, we describe the process to esti-

mate the density map of a test image Xt
i . First, the global

context map F i
tgc for Xt

i is calculated in the following way.

The test image Xt
i is divided into non-overlapping blocks

of size W t
i /4 × Ht

i /4. All blocks are then fed into GCE

to obtain their respective classification scores. As in train-

ing, the classification scores are used to build the context

maps for each block to obtain the final global context fea-

ture map F i
tgc. Next, the local context map F i

tlc for Xt
i is

1Once GCE and LCE are trained, their weights are frozen.
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calculated in the following way: A sliding window classifier

(LCE) of size 64 × 64 is run across Xt
i and the classifica-

tion scores from every window are used to build the local

context F i
tlc. Once the context information is obtained, Xt

i

is fed into DME to obtain high-dimensional feature maps

F i
tdme. F i

tdme is concatenated with F i
tgc and F i

tlc and fed

into F-CNN to obtain the output density map. Note that due

to additional context processing, inference using the pro-

posed method is computationally expensive as compared to

earlier methods such as [50, 29].

5. Experimental results

In this section, we present the experimental details and

evaluation results on three publicly available datasets. First,

the results of an ablation study conducted to demonstrate

the effects of each module in the architecture is discussed.

Along with the ablation study, we also perform a detailed

comparison of the proposed method against a recent state-

of-the-art-method [50]. This detailed analysis contains

comparison of count metrics defined by (4), along with

qualitative and quantitative comparison of the estimated

density maps. The quality of density maps is measured us-

ing two standard metrics: PSNR (Peak Signal-to-Noise Ra-

tio) and SSIM (Structural Similarity in Image [39]). The

count error is measured using Mean Absolute Error (MAE)

and Mean Squared Error (MSE):

MAE =
1

N

N
∑

i=1

|yi − y′i|,MSE =

√

√

√

√

1

N

N
∑

i=1

|yi − y′i|
2,

(4)

where N is number of test samples, yi is the ground truth

count and y′i is the estimated count corresponding to the ith

sample. The ablation study is followed by a discussion and

comparison of proposed method’s results against several

recent state-of-the-art methods on three datasets: Shang-

haiTech [50], WorldExpo ’10 [44] and UCF CROWD 50

[12].

5.1. Ablation study using ShanghaiTech Part A

In this section, we perform an ablation study to demon-

strate the effects of different modules in the proposed

method. Each module is added sequentially to the network

and results for each configuration are compared. Follow-

ing four configurations are evaluated: (1) DME: The high-

dimensional feature maps of DME are combined using 1×1

conv layer whose output is used to estimate the density map.

LE loss is minimized to train the network. (2) DME with

only GCE and F-CNN: The output of DME is concatenated

with the global context. DME and F-CNN are trained to es-

timate the density maps by minimizing LE loss. (3) DME

with GCE, LCE and F-CNN. In addition to the third con-

figuration, local context is also used in this case and the

Count

estimation

error

Density map

quality

Method MAE MSE PSNR SSIM

Zhang et al.[50] 110.2 173.2 20.91 0.52

DME 104.3 154.2 20.92 0.54

DME+GCE+FCNN 89.9 127.9 20.97 0.61

DME + GCE +

LCE + FCNN
76.1 110.2 21.4 0.65

DME+GCE+LCE+

FCNN with LA+LE
73.6 106.4 21.72 0.72

Table 1: Estimation errors for different configurations of

the proposed network on ShanghaiTech Part A[50]. Ad-

dition of contextual information and the use of adversarial

loss progressively improves the count error and the quality

of density maps.

network is trained using LE loss. (4) DME with GCE, LCE

and F-CNN with LA + LE (entire network). These results

are compared with a fifth configuration: Zhang et al. [50]

(which is a recent state-of-the-art method) in order to gain a

perspective of the improvements achieved by the proposed

method and its various modules.

The evaluation is performed on Part A of ShanghaiTech

[50] dataset which contains 1198 annotated images with a

total of 330,165 people. This dataset consists of two parts:

Part A with 482 images and Part B with 716 images. Both

parts are further divided into training and test datasets with

training set of Part A containing 300 images and that of Part

B containing 400 images. Rest of the images are used as test

set. Due to the presence of large variations in density, scale

and appearance of people across images in the Part A of this

dataset, estimating the count with high degree of accuracy

is difficult. Hence, this dataset was chosen for the detailed

analysis of performance of the proposed architecture.

Count estimation errors and quality metrics of the es-

timated density images for the various configurations are

tabulated in Table 1. We make the following observations:

(1) The network architecture for DME used in this work is

different from Zhang et al. [50] in terms of column depths,

number of filters and filter sizes. These changes improve

the count estimation error as compared to [50]. However,

no significant improvements are observed in the quality of

density maps. (2) The use of global context in (DME + GCE

+ F-CNN) greatly reduces the count error from the previous

configurations. Also, the use of F-CNN (which is composed

of fractionally-strided convolutional layers), results in con-

siderable improvement in the quality of density maps. (3)

The addition of local context and the use of adversarial loss

progressively reduces the count error while achieving better

quality in terms of PSNR and SSIM.

Estimated density maps from various configurations on

sample input images are shown in Fig. 7. It can be observed

that the density maps generated using Zhang et al. [50] and

1866



Figure 7: Comparison of results from different configurations of the proposed network along with Zhang et al. [50]. Top

Row: Sample input images from the ShanghaiTech dataset. Second Row: Ground truth. Third Row: Zhang et al. [50]. (Loss

of details can be observed). Fourth Row: DME. Fifth Row: DME + GCE + F-CNN. Sixth Row:DME + GCE + LCE +

F-CNN. Bottom Row: DME + GCE + LCE + F-CNN with adversarial loss. Count estimates and the quality of density maps

improve after inclusion of contextual information and adversarial loss.

DME (which regress on low-resolution maps) suffer from

loss of details. The use of global context information and

fractionally-strided convolutional layers results in better es-

timation quality. Additionally, the use of local context and

minimization over a weighted combination of LA and LE

further improves the quality and reduces the estimation er-

ror.

5.2. Evaluations and comparisons

In this section, the results of the proposed method are

compared against recent state-of-the-art methods on three

challenging datasets.

ShanghaiTech. The proposed method is evaluated against

four recent approaches: Zhang et al. [44], MCNN [50],

Cascaded-MTL [32] and Switching-CNN [29] on Part A

and Part B of the ShanghaiTech dataset are shown in Table

2. The authors in [44] proposed a switchable learning func-

tion where they learned their network by alternatively train-

ing on two objective functions: crowd count and density es-

timation. They made use of perspective maps for appropri-

ate ground truth density maps. In another approach, Zhang

et al. [50] proposed a multi-column convolutional network

(MCNN) to address scale issues and a sophisticated ground

truth density map generation technique. Instead of using

the responses of all the columns, Sam et al. [29] proposed

a switching-CNN classifier that chooses the optimal regres-

sor. Sindagi et al. [32] incorporate high-level prior in the

form of crowd density levels and perform a cascaded multi-
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task learning of estimating prior and density map. It can be

observed from Table 2, that the proposed method is able to

achieve superior results as compared to the other methods,

which highlights the importance of contextual processing in

our framework.

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [44] 181.8 277.7 32.0 49.8

MCNN [50] 110.2 173.2 26.4 41.3

Cascaded-MTL [32] 101.3 152.4 20.0 31.1

Switching-CNN [29] 90.4 135.0 21.6 33.4

CP-CNN (ours) 73.6 106.4 20.1 30.1

Table 2: Estimation errors on the ShanghaiTech dataset.

WorldExpo’10. The WorldExpo’10 dataset was introduced

by Zhang et al. [44] and it contains 3,980 annotated frames

from 1,132 video sequences captured by 108 surveillance

cameras. The frames are divided into training and test sets.

The training set contains 3,380 frames and the test set con-

tains 600 frames from five different scenes with 120 frames

per scene. They also provided Region of Interest (ROI) map

for each of the five scenes. For a fair comparison, perspec-

tive maps were used to generate the ground truth maps sim-

ilar to the work of [44]. Also, similar to [44], ROI maps

are considered for post processing the output density map

generated by the network.

The proposed method is evaluated against five recent

state-of-the-art approaches: Chen et al. [5], Zhang et al.

[44], MCNN [50], Shang et al. [30] and Switching-CNN

[29] is presented in Table 3. The authors in [5] intro-

duced cumulative attributive concept for learning a regres-

sion model for crowd density and age estimation. Shang et

al. [30] proposed an end-to-end CNN architecture consist-

ing of three parts: pre-trained GoogLeNet model for feature

generation, long short term memory (LSTM) decoders for

local count and fully connected layers for the final count. It

can be observed from Table 3 that the proposed method out-

performs existing approaches on an average while achieving

comparable performance in individual scene estimations.

Method Scene1 Scene2 Scene3 Scene4 Scene5 Avgerage

Chen et al. [5] 2.1 55.9 9.6 11.3 3.4 16.5

Zhang et al. [44] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [50] 3.4 20.6 12.9 13.0 8.1 11.6

Shang et al. [30] 7.8 15.4 14.9 11.8 5.8 11.7

Switching-CNN [29] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN (ours) 2.9 14.7 10.5 10.4 5.8 8.86

Table 3: Average estimation errors on the WorldExpo’10

dataset.

UCF CC 50. The UCF CC 50 is an extremely challeng-

ing dataset introduced by Idrees et al. [12]. The dataset

contains 50 annotated images of different resolutions and

aspect ratios crawled from the internet. There is a large

variation in densities across images. Following the standard

protocol discussed in [12], a 5-fold cross-validation was

performed for evaluating the proposed method. Results are

compared with seven recent approaches: Idrees et al. [12],

Zhang et al. [44], MCNN [50], Onoro et al. [23], Walach

et al. [36], Cascaded-MTL [32] and Switching-CNN [29].

The authors in [12] proposed to combine information from

multiple sources such as head detections, Fourier analysis

and texture features (SIFT). Onoro et al. in [23] proposed

a scale-aware CNN to learn a multi-scale non-linear regres-

sion model using a pyramid of image patches extracted at

multiple scales. Walach et al. [36] proposed a layered ap-

proach of learning CNNs for crowd counting by iteratively

adding CNNs where every new CNN is trained on residual

error of the previous layer. It can be observed from Table 4

that our network achieves the lowest MAE and MSE count

errors. This experiment clearly shows the significance of

using context especially in images with widely varying den-

sities.

Method MAE MSE

Idrees et al. [12] 419.5 541.6

Zhang et al. [44] 467.0 498.5

MCNN [50] 377.6 509.1

Onoro et al. [23] Hydra-2s 333.7 425.2

Onoro et al. [23] Hydra-3s 465.7 371.8

Walach et al. [36] 364.4 341.4

Cascaded-MTL [32] 322.8.4 341.4

Switching-CNN [29] 318.1 439.2

CP-CNN (ours) 295.8 320.9

Table 4: Estimation errors on the UCF CC 50 dataset.

6. Conclusion

We presented contextual pyramid of CNNs for incor-

porating global and local contextual information in an im-

age to generate high-quality crowd density maps and lower

count estimation errors. The global and local contexts are

obtained by learning to classify the input images and its

patches into various density levels. This context informa-

tion is then fused with the output of a multi-column DME

by a Fusion-CNN. In contrast to the existing methods, this

work focuses on generating better quality density maps in

addition to achieving lower count errors. In this attempt, the

Fusion-CNN is constructed with fractionally-strided con-

volutional layers and it is trained along with the DME in

an end-to-end fashion by optimizing a weighted combina-

tion of adversarial loss and pixel-wise Euclidean loss. Ex-

tensive experiments performed on challenging datasets and

comparison with recent state-of-the-art approaches demon-

strated the significant improvements achieved by the pro-

posed method.
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