
Embedding 3D Geometric Features for Rigid Object Part Segmentation

Yafei Song1, Xiaowu Chen1∗, Jia Li1,2∗, Qinping Zhao1

1State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University
2International Research Institute for Multidisciplinary Science, Beihang University

Abstract

Object part segmentation is a challenging and funda-

mental problem in computer vision. Its difficulties may be

caused by the varying viewpoints, poses, and topological

structures, which can be attributed to an essential reason,

i.e., a specific object is a 3D model rather than a 2D fig-

ure. Therefore, we conjecture that not only 2D appearance

features but also 3D geometric features could be helpful.

With this in mind, we propose a 2-stream FCN. One stream,

named AppNet, is to extract 2D appearance features from

the input image. The other stream, named GeoNet, is to ex-

tract 3D geometric features. However, the problem is that

the input is just an image. To this end, we design a 2D-

convolution based CNN structure to extract 3D geometric

features from 3D volume, which is named VolNet. Then

a teacher-student strategy is adopted and VolNet teaches

GeoNet how to extract 3D geometric features from an im-

age. To perform this teaching process, we synthesize train-

ing data using 3D models. Each training sample consists

of an image and its corresponding volume. A perspective

voxelization algorithm is further proposed to align them.

Experimental results verify our conjecture and the effective-

ness of both the proposed 2-stream CNN and VolNet.

1. Introduction

Object part segmentation(OPSeg), which aims to label

the right semantic part for each pixel of the objects in an

image, is an important problem in computer vision. OPSeg

can be regarded as a special case of semantic segmentation

that focuses on part information. Specially, part informa-

tion is useful for some fine-grained tasks, e.g., image clas-

sification [29, 15], fine-grained action detection [23]. It is

also necessary for some specific tasks of robots, e.g., when

a robot wants to open the hood to fix a car, the hood should

be correctly segmented.

Object images are usually captured under different light-

ings, viewpoints and poses. Moreover, a class of ob-
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Figure 1. Our basic idea is to exploit 3D geometric features during

object part segmentation. While 2D appearance features have been

widely used, 3D geometric features are rarely employed as the

corresponding 3D shape is usually unavailable.

jects usually have various materials, textures, and topolog-

ical structures. These diversities lead to the difficulties in

OPSeg. Taken together, the difficulties can be attributed

to an essential reason, i.e., the objects are 3D models rather

than 2D figures in real world. Therefore, besides 2D appear-

ance features, 3D geometric features should also be useful.

However, 3D information is usually unavailable. To this

end, as shown in Fig. 1, our basic idea is to exploit 3D

geometric features during OPSeg only with a single image.

In the existing literature, there are many semantic seg-

mentation methods, but a few methods for OPSeg. Before

the popularity of deep learning, previous methods [26, 19]

usually 1) extract hand-crafted features for every pixel, 2)

get the initial semantic probability distribution via classifier

or other models, 3) construct MRF/CRF to optimize the fi-

nal segmentation result. Entering deep learning era, step 1)

and 2) are combined together. A milestone work based on

deep learning may be FCN [20], which firstly performs se-

mantic segmentation end-to-end. Chen et al. [3] further use

atrous convolution to avoid the up-sampling layers in FCN

and achieve better results. Moreover, DeepLab [3] also ob-

tains good results on person-part segmentation. And several

recent works of OPSeg [33, 31] are based on DeepLab. Be-

sides FCN based methods, LSTM is also applied to exploit

the context information for OPSeg [17, 18].
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Most methods, e.g., [20], [3], and [33], adapt and fine-

tune models which have been pre-trained on large-scale

dataset, e.g. ImageNet [5]. Since a pre-trained model can be

regarded as a feature extractor, all these methods may use

2D image appearance features. On the other hand, as shown

in [25, 10], depth or 3D geometric features are also essen-

tial for OPSeg. However, 3D information is usually un-

available, which makes it difficult to exploit 3D geometric

features. Inspired by recent large-scale 3D model datasets

[32, 2] and several works [27, 9] of recovering the 3D infor-

mation from a single image, we believe that 3D information

can be extracted from a 2D image to facilitate OPSeg.

With the basic idea in mind, we propose a 2-stream CNN

to segment an object image based on FCN framework. One

stream, named AppNet, is initialized by pre-trained ResNet-

101 [11] model, which can extract 2D image appearance

features. The other stream, named GeoNet, is to exploit 3D

information. The GeoNet is trained via adopting a teacher-

student strategy [1]. Intuitively, it is easier to extract 3D

geometric features from an image than directly recover its

3D structure. Therefore, we train a 2D-convolution based

CNN model to perform OPSeg on volume, which is named

as VolNet. The VolNet serves as a teacher model. GeoNet

is an approximation of VolNet and extracts 3D geometric

features from an image, which can be regarded as a student

model. Though the input of VolNet is 3D volume, it only

consists of 2D convolution layers. Theoretically, 3D con-

volution is a special case of 2D convolution. Experiments

also show its effectiveness on 3D volume. To pre-train the

student model GeoNet, we synthesise training data using

ShapeNet [2]. Moreover, to align a rendered image and

its corresponding volume, we further propose a perspective

voxelization algorithm along with DCT pre-processing.

Our contributions mainly include three aspects: 1) We

design a 2-stream FCN for object part segmentation. One

stream, named AppNet, can extract 2D appearance features

from an image. The other stream, named GeoNet, can ex-

tract 3D geometric features from an image. 2) A 2D con-

volution based CNN model, named VolNet, is proposed to

extract 3D geometric features from 3D volume effectively,

which also serves as a teacher model to teach GeoNet how

to extract 3D geometric features. 3) To generate training

data for VolNet and GeoNet, we synthesise an RGB image

and its corresponding volume from a 3D model. And we

further propose a perspective voxelization algorithm along

with DCT pre-processing to align the image and volume.

2. Related Work

This section reviews some important works on semantic

segmentation as well as object part segmentation. As the

basic idea of this paper is mainly to exploit 3D information,

3D geometric features learning methods and applications

also are reviewed briefly.

Semantic segmentation. Before the popularity of deep

learning, previous methods [26, 19] usually 1) extract hand-

crafted features for every pixel, 2) get the initial seman-

tic probability distribution via classifier or other models, 3)

construct MRF/CRF to optimize the final segmentation re-

sult. Specifically, Shotton et al. [26] propose texton features

along with bag-of-visual-word. These features are fed to a

random-forest model, which can output the initial probabil-

ity distribution of each semantic label. Besides the learn-

ing based methods, Liu et al. [19] propose the idea of la-

bel transfer, which extracts dense SIFT features for each

pixel and directly transfers label information from labelled

training image to an input image via feature matching. En-

tering deep learning era, step 1) and 2) are combined to-

gether. A milestone work based on deep learning may be

FCN [20], which can perform semantic segmentation end-

to-end. Chen et al. [3] further use atrous convolution to

replace the up-sampling in FCN and achieve better results.

Another group of important works is R-CNN based [8, 10],

which first extract plenty of segment proposals and then

classify each proposal. These methods mainly exploit 2D

appearance features, but also imply that 3D geometric fea-

tures are useful, e.g. the depth [10].

Object part segmentation. Compared with semantic

segmentation, there are fewer works on OPSeg. Some ear-

lier methods usually has drawbacks, e.g., the method of Es-

lami and Williams [6] seems to be sensitive to viewpoint,

and the method of Lu et al. [21] needs user to point land-

marks. Besides semantic segmentation, DeepLab [3] also

obtains good results on person-part segmentation. Several

recent works of OPSeg [33, 31] enhance DeepLab from dif-

ferent aspects. Xia et al. [33] pay attention to the scale.

And Wang et al. [31] combine object-level and part-level

potentials. Recently, LSTM is also successfully applied to

encode image context and perform OPSeg [17, 18]. There

is also a series of works focusing on human/clothes parsing,

e.g. [16, 36, 25]. Some methods also exploit 2D geometric

features or 3D geometric information, e.g., 2D shape [30],

the depth [25]. However, our work focus on exploiting 3D

geometric features without inputting 3D information.

3D geometric features learning and application.

Along with the construction of large-scale 3D shape dataset,

e.g., ModelNet [32] and ShapeNet [2], there are more and

more works on 3D geometric features learning and appli-

cations. Some methods [27, 9] recover the 3D information

from a single image, which inspired this work. And sev-

eral other methods [32, 22, 34, 24] have been proposed for

model classification. These methods mainly are based on

3D CNN with 3D volume as input, while our VolNet adopts

2D CNN. When using the same number of feature maps,

2D CNN takes less computation and storage than 3D CNN.

The method of Qi et al. [24] also has similar idea, but our

VolNet is more effective.
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Figure 2. Overview of our method. We design a 2-stream CNN under FCN framework. The stream AppNet exploits appearance features

and is initialized by ResNet-101 model. The stream GeoNet aims to exploit 3D geometric features, which is pre-trained on synthetic data.

3. The Approach

3.1. Overview

In order to simultaneously exploit the appearance and

3D geometric features, we design a 2-stream CNN un-

der FCN framework. As illustrated in Fig. 2, one stream,

named AppNet, is initialized by ResNet-101 [11] model.

As ResNet-101 is trained on ImageNet to perform image

classification task, it can be regarded as an extractor of 2D

image appearance features. Moreover, to balance the stor-

age and precision, each spatial dimension of the output is an

eighth of the input. Following the DeepLab system [3], the

pool5 layer is removed, the last two down-sampling strides

are set as 1, and the convolution kernels of all res4 and res5

layers are transformed to atrous kernels to fit the input and

output size. More details can be found in [3] and [11].

The other stream, named GeoNet, aims to exploit 3D ge-

ometric features. However, as the 3D information is usu-

ally unavailable, we adopt a teacher-student strategy. The

teacher model extracts 3D geometric features from volume,

while the student model learns to extract these features from

an image. Following this strategy, we design a 2D convo-

lution based model as the teacher model, named VolNet.

Compared with 3D convolution based model, VolNet takes

less computation and storage. The details of VolNet are pre-

sented in Sec. 3.3.

In order to teach GeoNet extracting 3D geometric fea-

tures from an image, the outputs of GeoNet are regressed to

the outputs of VolNet, and the details are in Sec. 3.4. As

there is few data consisting of images and the correspond-

ing 3D information, we synthesise training data using 3D

models. For each model, an RGB image is rendered under

random settings, including viewpoint, translation, and light-

ing. The corresponding volume is then generated according

to the same viewpoint and translation. To align the image

and volume, we further propose a perspective voxelization

algorithm in Sec. 3.2.

3.2. Perspective Voxelization Algorithm

To generate training data for GeoNet and VolNet, the

RGB images are generated via perspective rendering algo-

rithm. As a result, if the volume is generated via traditional

orthogonal voxelization algorithm, its correspondence with

the rendered image cannot be accurately established. To

align the image I and volume V , we propose a perspec-

tive voxelization algorithm (PVA). Before applying this al-

gorithm, the 3D model is firstly rotated and translated to the

same setting as rendering the RGB image. The basic rules

of PVA are: 1) a voxel is set as 0 unless it is in the 3D model

or interacts with the surface of the 3D model. 2) a volume

vector Vi is associated with an image pixel Ii, and all vox-

els in Vi are in the line determined by the original point O
and the pixel Ii. 3) If two voxels have the same distance

from the original point O, they should be in the same vol-

ume plane.

Following these three rules, for an input 3D model, PVA

outputs the volume V . A 3D model consists of a vertex set

V and a triangular face set F. Each triangular face has three

vertexes 〈u0, u1, u2〉. The camera settings include the focal

length f , the height resolution H and the width resolution

W of the rendered image. And the depth resolution nd also

should be set up. The details are illustrated in Alg. 1.

PVA first initializes each voxel in the volume V as 0.

The size of the volume V is 〈H, W, nd〉. Then for each vertex

u ∈ V, PVA calculates its depth du from the original point

O and its coordinates 〈xu, yu〉 at image plane. By the way,

582



Algorithm 1 Perspective voxelization algorithm.

Input: V,F, f, H, W, nd

Output: V
1: Initialize: V ← 0, dmin ←∞, dmax ← 0
2: for all u ∈ V do

3: du ←
√

x2
u + y2u + z2u

4: xu ← −f ×
xu

zu
, yu ← −f ×

yu

zu
5: dmin ← min(dmin, du)
6: dmax ← max(dmax, du)
7: end for

8: while F 6= ∅ do

9: 〈u0, u1, u2〉 ← pop(F)
10: for j ← 0 to 2 do

11: i← round〈−yuj
+ H

2 , xuj
+ W

2 〉

12: k ← round(
duj

−dmin

dmax−dmin
× nd)

13: Vk
i ← 1

14: end for

15: for j ← 0 to 2 do

16: k ← mod(j + 1, 3), l← mod(j + 2, 3)
17: if (abs(xuj

−xuk
) > 1 or abs(yuj

− yuk
) > 1

18: or abs(nd ×
duj

−duk

dmax−dmin
) > 1) then

19: xv ←
xuj

+xuk

2 , yv ←
yuj

+yuk

2

20: zv ←
zuj

+zuk

2 , dv ←
duj

+duk

2
21: push(V, v)
22: push(F, 〈uj , v, ul〉)
23: push(F, 〈uk, ul, v〉)
24: break

25: end if

26: end for

27: end while

28: fill(V)

the minimum and maximum depth dmin, dmax are recorded

respectively. After that, a triangular face 〈u0, u1, u2〉 is

popped out from the face set F. For each vertex uj of the

face, a voxel is set as 1, if it interacts with this vertex uj .

However, if a triangular face is large and can occupy non-

adjacent voxels, there would be holes in the volume. To this

end, such a triangular face will be divided into two small

triangular faces via adding a vertex, i.e. the mid-point of the

line, into the line which occupies two nonadjacent voxels.

These two new triangular faces are subsequently added into

the face set F. The loop will stop until the face set F is

empty. At last, PVA fills the holes which are inside the vol-

ume to obtain a solid volume. Moreover, the function pop()
is to pop an element from a set and delete it from the set, the

function push() is to add an element into a set, the function

round() is to get the nearest integer, the function abs() is

to get the absolute value, the function mod() is to get the

remainder after division.

3.3. 2D Convolution based VolNet to Extract 3D
Geometric Features

To process a 3D shape using deep learning, previous

methods, e.g., [32], [22], and [34] usually transform the 3D

shape to volume and apply 3D convolution neural network.

However, 3D convolution is actually a special case of 2D

convolution. To concisely illustrate this, we assume that the

input is a 3D volume V and its dimension along with the

depth direction is nd. The output feature is denoted as F ,

which has the same size with V . The convolution kernel is

denoted as K. Each spatial dimension of K is set as 3 with-

out loss of generality. For 2D convolution layer, the size of

K is 3× 3× nd, and we have

Fj
i =

nd
∑

k=1

∑

l∈Ω(i)

Kk
l−i × V

k
l , (1)

where the superscript indicates the index along the depth di-

rection and the subscript indicates the spatial location, and

Ω(i) is the adjacent domain of the location i. For 3D con-

volution, the size of K is 3× 3× 3, and we have

Fj
i =

j+1
∑

k=j−1

∑

l∈Ω(i)

Kk−j
l−i × V

k
l . (2)

From (1) and (2), the difference between 2D-CNN and 3D-

CNN is that, a 3D convolution layer limits its receptive field

and shares its weights in the third dimension, which is the

depth direction in our case. While a 2D convolution layer

does these only in the two dimensions of the spatial plane.

Receptive field and weights sharing can reduce the pa-

rameters and make the training easier. At the same time,

we need to increase the amount of output features. For 2D-

CNN, this is not a serious problem. However, for 3D-CNN,

a lot of storage is needed. To balance these issues, we advise

to process volume by applying 2D-CNN, which is named

as VolNet. Moreover, to further reduce the storage of the

data, we compress the volume by exploiting discrete cosine

transformation (DCT). Specially, DCT is applied on each

volume vector Vi as

Fi = DCT(Vi). (3)

This pre-processing also can be regarded as a convolution

layer with constant parameters. As shown in Fig. 3, there is

a sample output of DCT. Each DCT component can encode

the global information across the depth from frequency as-

pect. For efficiency, we only reserve the lowest 16 fre-

quency components.

Exploiting recently progresses in deep learning, VolNet

is constructed based on residual network [12] and atrous

convolution [3]. Note that, high resolution volume is com-

putationally expensive but only provide marginally infor-

mation empirically. Therefore, each dimension of a volume
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Figure 3. A sample of DCT components. From left-top to right-

down, low frequency components to high frequency components.

plane is a quarter of the image. As illustrated in Fig. 4 a),

VolNet has eight full pre-activation units. The details of full

pre-activation unit can be found in [12]. All convolution

kernel size is 3 × 3. In Res1a, the stride is set as 2 to fit

the input and output size. In Res2a, Res2b, Res3a, Res3b,

we use atrous convolution to obtain a large receptive field

and maintain the output size as well. Res0a and Res0b both

have 128 feature maps, while others have 256. Moreover,

to fit the size of the feature maps, 1× 1 convolution is also

applied in the short path of Res0a and Res1a. The loss func-

tion used to train VolNet is cross-entropy.

3.4. Embedding 3D Geometric Features in a Layer
Wise Fashion

As soon as VolNet is trained, the parameters of it main-

tain unchanged. The outputs of GeoNet are then regressed

to the outputs of VolNet. As illustrated in Fig. 4 b), GeoNet

has a convolution layer along with batch normalization [13]

and ReLU activation, a max pooling layer, and six residual

building blocks. The convolution layer outputs 128 feature

maps. And its kernel size is 7×7, pad size is 3, stride size is

2. The kernel and stride sizes of max pooling are 3× 3 and

2 respectively. The settings of each residual building block

are the same as the corresponding block in VolNet.

As it is easier to train a shallow network than to train

a deep network, the GeoNet is pre-trained in a layer-wise

fashion. As shown in Fig. 4, at Step1, we train GeoNets

Conv0 layer along with its following batch norm layer via

minimizing the Loss1. At Step2, GeoNets Conv0 layer

along with its following batch norm layer, Res1a block, and

Res1b block are simultaneously trained via minimizing the

Loss2. At this step, the Conv0 layer along with its following

batch norm layer has been pre-trained at previous step. In

the similar way, at Step3 and Step4, the Loss3 and Loss4 are

minimized in turn. Benefitting from the layer-wise fashion,

we avoid training the deep network GeoNet from scratch.

Specially, we use mean square error as the loss function

L =
∑

i

∑

j

1

2N
(F̂j

i −F
j
i )

2, (4)

where F̂j
i is the output feature of GeoNet, andFj

i is the out-

Figure 4. The structures of VolNet and GeoNet, which use full

pre-activation unit [12] as building block. F: the number of feature

maps, S: stride, A: atrous rate, K: kernel size, P: pad. Moreover,

GeoNet regresses to VolNet in a layer-wise fashion.

Table 1. Dataset statistic. We use three classes of data from

PASCAL-Part to evaluate our method. For each class, training

data for VolNet and GeoNet are synthesised using ShapeNet.

Training Training Testing Testing Part

model sample model sample number

PASCAL-Car - 910 - 890 5

PASCAL-Aeroplane - 368 - 373 5

PASCAL-Motorbike - 305 - 305 5

ShapeNet-Car 1460 10220 364 2548 4

ShapeNet-Aeroplne 2152 8608 532 2152 4

ShapeNet-Motorbike 162 10368 40 2560 6

put feature of VolNet. And then, GeoNet is used to initialize

one stream of our 2-stream model, which can be regarded

as a 3D geometric features extractor.

4. Experiments

We use three classes of real-world image data from

PASCAL-Part [7, 4] to evaluate our method. The three

classes are Car, Aeroplane and Motorbike, respectively. For

each class, we use ShapeNet [2] along with the part in-

formation [37] to synthesise training data for VolNet and

GeoNet. The dataset statistic is summarized in Tab. 1.

About the resolution, each input object image is cropped

and resized to 224×224, each volume plane is cropped and
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Table 2. Results on PASCAL-Car, PASCAL-Aeroplane and PASCAL-Motorbike, including IoU of each part, mean IoU and mean pixel

accuracy. The proportion of each part is also presented.

PASCAL-Car

Method Bkg Body Plate Light Wheel Window Mean Pixel acc.

FCN [20] 75.11 56.72 0.18 1.23 37.26 35.78 34.38 78.04

DeepLab [3] 84.98 70.91 35.24 30.05 60.00 55.25 56.08 86.73

Ours(random initialize GeoNet) 85.39 69.76 39.58 33.29 57.63 56.39 57.01 86.83

Ours 87.30 73.88 45.35 41.74 63.30 59.99 61.93 88.54

Proportion 56.31 33.20 0.38 0.60 3.42 6.08 - -

PASCAL-Aeroplane

Method Bkg Body Engine Wing Tail Wheel Mean Pixel acc.

FCN [20] 82.17 42.23 0.67 10.18 28.10 7.51 28.48 78.74

DeepLab [3] 89.09 59.56 19.15 27.85 48.53 26.40 45.10 85.83

Ours(random initialize GeoNet) 89.54 58.99 24.23 33.85 49.42 25.94 47.00 86.08

Ours 89.96 60.32 26.74 33.93 52.96 39.08 50.50 86.70

Proportion 69.61 17.73 1.81 4.91 5.44 0.48 - -

PASCAL-Motorbike

Method Bkg Body Wheel Handle Light Saddle Mean Pixel acc.

FCN [20] 71.59 47.32 39.84 0.00 0.00 0.00 26.46 74.09

DeepLab [3] 79.80 62.32 64.66 0.00 15.64 0.00 37.07 83.17

Ours(random initialize GeoNet) 79.81 63.58 65.29 0.00 13.93 0.00 37.10 83.51

Ours 80.79 64.35 66.95 0.00 19.89 0.00 38.66 84.36

Proportion 56.16 28.92 13.89 0.33 0.59 0.10 - -

resized to 56×56, and the ground truth is resized to 28×28.

The segmentation result can be easily up-sampled using bi-

linear interpolation to obtain the result with the same size

as the input.

Real-world data. For each class of the PASCAL-Part,

we merge some part classes to form a new part class, i.e.,

we reserve five part classes for each class. The reserved part

classes can be found in Tab. 2.

Synthetic data. To synthesise the training data using

ShapeNet, we follow the process in [28]. Specifically, for

each class, the distribution of viewpoint and translation is

estimated respectively using PASCAL-3D dataset [35]. A

set of viewpoints and translations is then random generated

for each model according to this distribution. To render an

RGB image, the set-up of lightings is random generated.

Each RGB image is rendered in Blender. Moreover, a back-

ground is random selected from PASCAL training dataset

and added to each rendered image. The same viewpoint

and translation are used to generate volume and segmenta-

tion ground truth. The focal length and image size are con-

stant during the rendering process. For each class, 80% of

all the models are random selected as training model, which

are used to generate training data. And the rest 20% models

are used to generate testing data.

4.1. Results on Realworld Dataset

We first compare our method with DeepLab [3] and

FCN [20] on PASCAL-Part-Car, PASCAL-Part-Aeroplane,

and PASCAL-Part-Motorbike. For each class, the stream

AppNet of our method is initialized by ResNet-101, the

stream GeoNet is taught by the corresponding VolNet,

which means it is pre-trained on the synthetic data and

regress to VolNet. Actually, DeepLab method is the same

as to only use the stream AppNet.

We use stochastic gradient descent (SGD) to fine-tune

the model. The initial learning rate is set as 0.001, the mo-

mentum is set as 0.9, the weight decay is set as 0.0005, the

batch size is set as 2. The learning rate is decreased us-

ing the policy “poly” (with power as 0.9). All models are

obtained after 20 epochs.

We present the IoU of each part, the mean IoU and

the mean pixel accuracy in Tab. 2, respectively. To veri-

fy the effectiveness of our motivation and basic idea, we

also random initialize the GeoNet, then train AppNet and

GeoNet to perform object part segmentation. As we can

see, our method achieve the best performance on all these

three datasets, which demonstrates that the 3D geometric

features are useful for OPSeg and compatible with 2D ap-

pearance features.

From the results, we also find a phenomenon, the pro-

portion distribution of the parts is very uneven. And the

lower proportion of the part, the lower accuracy of the re-

sult, especially for the handle and saddle of the Motorbike.

This may be a good problem for future work since some-

times these small parts may be the right concerns of some

tasks. We also show some visual results in Fig. 5, which
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Figure 5. Some visual results of FCN [20], DeepLab [3], and our method on PASCAL-Car, PASCAL-Aeroplane, PASCAL-Motorbike.

also show that our method can obtain visual better results

compared with previous methods.

All neural network models are trained and tested using

the deep learning frame work Caffe [14]. Our computer has

an Intel Core i7-4790 CPU and a NVIDIA GTX 1080 GPU.

It takes about 40 ms to segment an test image using GPU.

4.2. Results on Synthetic Dataset

To analysis our method, we also present the results on

synthetic dataset in Tab. 3. Specially, VolNet(w/o DCT)

presents the results which are obtained by VolNet on origi-

nal volume data. VolNet presents the results which are ob-

tained by VolNet on volume(after DCT). VolNet + AppNet

means to simultaneously use VolNet on volume(after DCT)

and AppNet on image, which gives an upper-bound of the

proposed method.

We also use stochastic gradient descent (SGD) to train

the model on synthetic dataset. Most of the super-

parameters are the same as on read-world dataset. The only

difference is that we set the initial learning rate as 0.01 if a

model is trained from scratch, e.g., VolNet.

From the experimental results, we can see that 3D ge-

ometric features usually are not as strong as 2D appear-

ance features. However, 3D geometric features are com-

patible with 2D appearance features. The best perfor-

mance is achieved when simultaneously exploit these fea-

tures. Sometimes, neither 3D geometric features nor 2D

appearance features can achieve good performance. But,

the union of them can significantly reduce the ambiguities,

e.g., for the Aeroplane in Tab. 3. The results also demon-

strate that our method can obviously improve the object part

segmentation performance.

4.3. Performance of VolNet

To verify the observation that 2D CNN is effective to

process 3D volume data, we adapt VolNet to assign the

right class label to an 3D model on Dataset ModelNet-40

[32]. ModelNet-40 consists of 40 classes of 3D mesh mod-

els, where 9843 models for training and 2486 models for

testing. Each 3D mesh model is voxelized to a 30 × 30
volume as in [24]. We still use the full pre-activation unit

as building-block. Our model has four residual blocks fol-

lowed by three full-connection layers. And each building-

block is followed by a 1 × 1 convolution layer to down-

sampling the feature map.

As shown in Table 4, we compare the performance with

several 3D-Conv based methods VoxNet [22], E2E [32],

3D-NIN [24], SubvolumeSup [24], and one 2D-Conv based

method AniProbing [24]. The referenced results are re-

ported in [24]. Note that, we don’t augment the data, while

all the results of VoxNet, E2E, SubvolumeSup, AniProbing

are obtained on augmented the data via random generating
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Table 3. Results on ShapeNet-Car, ShapeNet-Aeroplane and ShapeNet-Motorbike, including IoU of each part, mean IoU and mean pixel

accuracy. The proportion of each part is also presented.

ShapeNet-Car

Method Bkg Wheel Body Roof Hood Mean Pixel acc.

FCN [20] 90.98 17.81 0.00 39.60 69.29 43.54 87.83

DeepLab [3] 93.74 43.57 47.61 59.29 77.72 64.39 91.85

VolNet(w/o DCT) 93.31 39.76 49.45 54.25 76.53 62.66 91.30

VolNet 94.41 42.99 47.01 57.50 77.42 63.86 91.89

VolNet + AppNet 94.52 46.37 49.64 63.52 80.53 66.92 92.88

GeoNet + AppNet 94.26 44.93 48.93 62.58 79.92 66.13 92.61

Proportion 65.07 1.80 2.76 4.70 25.67 - -

ShapeNet-Aeroplane

Method Bkg Body Engine Wing Tail Mean Pixel acc.

FCN [20] 93.14 44.69 0.05 4.70 2.14 28.95 90.14

DeepLab [3] 93.84 51.40 9.31 26.01 10.71 38.26 91.26

VolNet(w/o DCT) 93.17 40.92 12.24 15.16 10.67 34.43 89.14

VolNet 94.78 43.90 13.86 19.09 10.22 36.37 90.23

VolNet + AppNet 95.82 57.30 22.59 40.69 24.97 48.28 92.74

GeoNet + AppNet 94.89 53.88 18.32 35.53 22.35 44.99 91.86

Proportion 86.23 7.05 3.01 2.08 1.62 - -

ShapeNet-Aeroplane

Method Bkg Gas tank Seat Wheel Handle Light Body Mean Pixel acc.

FCN [20] 87.47 8.62 0.58 40.46 3.09 0.01 56.60 28.12 83.48

DeepLab [3] 91.79 47.92 31.79 58.80 24.97 43.42 68.49 52.46 89.10

VolNet(w/o DCT) 89.00 46.01 29.70 51.22 19.70 0.00 65.12 42.96 87.13

VolNet 89.52 50.09 31.03 55.29 24.72 0.00 64.53 44.99 87.59

VolNet + AppNet 92.59 54.44 39.57 63.86 33.56 52.87 71.52 58.35 90.38

GeoNet + AppNet 92.42 53.05 38.58 63.18 34.00 53.34 70.77 57.91 90.11

Proportion 65.45 1.87 1.09 9.15 1.03 0.43 20.96 - -

Table 4. 3D model classification results. Note that our method only

use the initial data, while all other methods use augmented data.

Method Instance accuracy

VoxNet [22] 83.8

E2E [32] 83.0

3D-NIN [24] 86.1

SubvolumeSup [24] 87.2

AniProbing [24] 85.9

Ours VolNet 86.8

azimuth and elevation rotation angles. And our method only

exploits single orientation information of the input model.

We can see that though we don’t use augmented data, our

result is still comparable with the state-of-the-art 3D-Conv

based method SubvolumeSup, which illustrates that VolNet

is effective to process 3D volume data. At the same time,

AniProbing also exploits the similar idea with VolNet. Its

drawback is that some information may be lost as it first

probes the 3D volume to one 2D feature map.

5. Conclusion

This paper exploits 3D geometric features to perform ob-

ject part segmentation. To this end, we design a 2-stream

CNN based on FCN framework. One stream is to extract

2D appearance features from the input image. While the

other stream, named GeoNet, is to extract 3D geometric

features. To pre-train the GeoNet, we propose a perspective

voxelization algorithm to generate training data using 3D

models. We also present a 2D convolution based network

to effectively extract 3D geometric features. Experimental

results show that 3D geometric features are compatible with

2D appearance features for object part segmentation.

The major limitation of this work may be that the geo-

metric features now are class-specific and limited to several

rigid object classes. To overcome this limitation, a more

larger and various 3D model dataset would be useful. Be-

sides this, the experimental results also show that the pro-

portion distribution is usually very uneven, which may be

also an interesting problem for future work.
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