
Learning to Synthesize a 4D RGBD Light Field from a Single Image

Pratul P. Srinivasan1, Tongzhou Wang1, Ashwin Sreelal1, Ravi Ramamoorthi2, Ren Ng1

1University of California, Berkeley 2University of California, San Diego

Abstract

We present a machine learning algorithm that takes as

input a 2D RGB image and synthesizes a 4D RGBD light

field (color and depth of the scene in each ray direction).

For training, we introduce the largest public light field

dataset, consisting of over 3300 plenoptic camera light

fields of scenes containing flowers and plants. Our syn-

thesis pipeline consists of a convolutional neural network

(CNN) that estimates scene geometry, a stage that renders

a Lambertian light field using that geometry, and a second

CNN that predicts occluded rays and non-Lambertian ef-

fects. Our algorithm builds on recent view synthesis meth-

ods, but is unique in predicting RGBD for each light field

ray and improving unsupervised single image depth esti-

mation by enforcing consistency of ray depths that should

intersect the same scene point.

1. Introduction

We focus on a problem that we call “local light field syn-

thesis”, which we define as the promotion of a single pho-

tograph to a plenoptic camera light field. One can think of

this as expansion from a single view to a dense 2D patch

of views. We argue that local light field synthesis is a

core visual computing problem with high potential impact.

First, it would bring light field benefits such as synthetic

apertures and refocusing to everyday photography. Further-

more, local light field synthesis would systematically lower

the sampling rate of photographs needed to capture large

baseline light fields, by “filling the gap” between discrete

viewpoints. This is a path towards making light field cap-

ture for virtual and augmented reality (VR and AR) practi-

cal. In this work, we hope to convince the community that

local light field synthesis is actually a tractable problem.

From an alternative perspective, the light field synthesis

task can be used as an unsupervised learning framework for

estimating scene geometry from a single image. Without

any ground-truth geometry for training, we can learn to es-

timate the geometry that minimizes the difference between

the light field rendered with that geometry and the ground-

truth light field.

Light field synthesis is a severely ill-posed problem,

since the goal is to reconstruct a 4D light field given just

a single image, which can be interpreted as a 2D slice of the

4D light field. To alleviate this, we use a machine learning

approach that is able to utilize prior knowledge of natural

light fields. In this paper, we focus on scenes of flowers and

plants, because they contain interesting and complex occlu-

sions as well as a wide range of relative depths. Our specific

contributions are the introduction of the largest available

light field dataset, the prediction of 4D ray depths with a

novel depth consistency regularization to improve unsuper-

vised depth estimation, and a learning framework to synthe-

size a light field from a single image.

Light Field Dataset We collect the largest available light

field dataset (Sec. 4), contaning 3343 light fields of flow-

ers and plants, taken with the Lytro Illum camera. Our

dataset limits us to synthesizing light fields with camera-

scale baselines, but we note that our model can generalize

to light fields of any scene and baseline given the appropri-

ate datasets.

Ray Depths and Regularization Current view synthesis

methods generate each view separately. Instead, we pro-

pose to concurrently predict the entire 4D light field by es-

timating a separate depth map for each viewpoint, which is

equivalent to estimating a depth for each ray in the 4D light

field (Sec. 5). We introduce a novel physically-based reg-

ularization that encourages the predicted depth maps to be

consistent across viewpoints, alleviating typical problems

that arise in depths created by view synthesis (Fig. 5). We

demonstrate that our algorithm can predict depths from a

single image that are comparable or better than depths es-

timated by a state-of-the-art physically-based non-learning

method that uses the entire light field [18] (Fig. 6).

CNN Framework We create and study an end-to-end

convolutional neural network (CNN) framework, visualized

in Fig. 1, that factorizes the light field synthesis problem

into the subproblems of estimating scene depths for every

ray (Fig. 6, Sec. 5) (we use depth and disparity interchange-

ably, since they are closely related in structured light fields),

rendering a Lambertian light field (Sec. 6.1), and predicting

occluded rays and non-Lambertian effects (Sec. 6.2). This

makes the learning process more tractable and allows us to
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Figure 1. We propose a CNN framework that factors the light field synthesis problem into estimating depths for each ray in the light field,

rendering a Lambertian approximation to the light field, and refining this approximation by predicting occluded rays and non-Lambertian

effects (incorrect rays that are refined, in this case red rays that should be the color of the background instead of the flower, are marked with

blue arrows). We train this network end-to-end by minimizing the reconstruction errors of the Lambertian and predicted light fields, along

with a novel physically-based depth regularization. We demonstrate that we can predict convincing 4D light fields and ray depths from a

single 2D image. We visualize synthesized light fields as a predicted corner view along with epipolar slices in both the u and v directions

of different spatial segments. Please view our supplementary video for compelling animations of our light fields and ray depths.

estimate scene depths, even though our network is trained

without any access to the ground truth depths. Finally, we

demonstrate that it is possible to synthesize high-quality ray

depths and light fields of flowers and plants from a single

image (Fig. 1, Fig. 6, Fig. 9, Fig. 10, Sec. 7).

2. Related Work

Light Fields The 4D light field [22] is the total spatio-

angular distribution of light rays passing through a region

of free space. Previous work has demonstrated exciting ap-

plications of light fields, including rendering images from

new viewpoints [21], changing the focus and depth-of-field

of photographs after capture [24], correcting lens aberra-

tions [23], and estimating scene flow [28].

View Synthesis from Light Fields Early work on light

field rendering [21] captures a densely-sampled 4D light

field of a scene, and renders images from new viewpoints

as 2D slices of the light field. Closely related work on the

Lumigraph [15] uses approximate geometry information to

refine the rendered slices. The unstructured Lumigraph ren-

dering framework [2] extends these approaches to use a set

of unstructured (not axis-aligned in the angular dimensions)

2D slices of the light field. In contrast to these pioneering

works which capture many 2D slices of the light field to ren-

der new views, we propose to synthesize a dense sampling

of new views from just a single slice of the light field.

View Synthesis without Geometry Estimation Alterna-

tive approaches synthesize images from new viewpoints

without explicitly estimating geometry. The work of Shi

et al. [27] uses the observation that light fields are sparse

in the continuous Fourier domain to reconstruct a full light

field from a carefully-constructed 2D collection of views.

Didyk et al. [7] and Zhang et al. [36] reconstruct 4D light

fields from pairs of 2D slices using phase-based approaches.

Recent works have trained CNNs to synthesize slices of

the light field that have dramatically different viewpoints

than the input slices. Tatarchenko et al. [29] and Yang et

al. [34] train CNNs to regress from a single input 2D view

to another 2D view, given the desired camera rotation. The

exciting work of Zhou et al. [37] predicts a flow field that

rearranges pixels from the input views to synthesize novel

views that are sharper than directly regressing to pixel val-

ues. These methods are trained on synthetic images ren-

dered from large databases of 3D models of objects such as

cars and chairs [3], while we train on real light fields. Ad-

ditionally, they are not able to explicitly take advantage of

geometry because they attempt to synthesize views at arbi-

trary rotations with potentially no shared geometry between

the input and target views. We instead focus on the problem

of synthesizing a dense sampling of views around the in-

put view, so we can explicitly estimate geometry to produce

higher quality results.

View Synthesis by Geometry Estimation Other meth-

ods perform view interpolation by first estimating geometry

from input 2D slices of the light field, and then warping the

input views to reconstruct new views. These include view

interpolation algorithms [4, 14] which use wider baseline

unstructured stereo pairs to estimate geometry using multi-

view stereo algorithms.

More recently, CNN-based view synthesis methods

been proposed, starting with the inspiring DeepStereo

method that uses unstructured images from Google’s Street

View [10] to synthesize new views. This idea has been ex-

tended to view interpolation for light fields given 4 corner

views [19], and the prediction of one image from a stereo

pair given the other image [11, 13, 32].
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Figure 2. Two equivalent interpretations of the local light field syn-

thesis problem. Left: Given an input image of a scene, with the

field-of-view marked in green, our goal is to synthesize a dense

grid of surrounding views, with field-of-views marked in black.

The u dimension represents the center-of-projection of each vir-

tual viewpoint, and the x axis represents the optical conjugate of

the sensor plane. Right: Given an input image, which is a 1D slice

of the 2D flatland light field (2D slice of the full 4D light field), our

goal is to synthesize the entire light field. In our light field parame-

terization, vertical lines correspond to points in focus, and lines at

a slope of 45 degrees correspond to points at the farthest distance

that is within the depth of field of each sub-aperture image.

We take inspiration from the geometry-based view syn-

thesis algorithms discussed above, and also predict geome-

try to warp an input view to novel views. However, unlike

previous methods, we synthesize an entire 4D light field

from just a single image. Furthermore, we synthesize all

views and corresponding depths at once, as opposed to the

typical strategy of predicting a single 2D view at a time, and

leverage this to produce better depth estimations.

3D Representation Inference from a Single Image In-

stead of synthesizing new imagery, many excellent works

address the general inverse rendering problem of inferring

the scene properties that produce an observed 2D image.

The influential algorithm of Barron and Malik [1] solves an

optimization problem with priors on reflectance, shape, and

illumination to infer these from a single image. Other inter-

esting works [8, 26] focus on inferring just the 3D structure

of the scene, and train on ground-truth geometry captured

with 3D scanners or the Microsoft Kinect. A number of ex-

citing works extend this idea to infer a 3D voxel [5, 12, 31]

or point set [9] representation from a synthetic 2D image

by training CNNs on large databases of 3D CAD models.

Finally, recent methods [25, 30, 33] learn to infer 3D voxel

grids from a 2D image without any 3D supervision by using

a rendering or projection layer within the network and min-

imizing the error of the rendered view. Our work is closely

related to unsupervised 3D representation learning meth-

ods, but we represent geometry as 4D ray depths instead of

voxels, and train on real light fields instead of views from

synthetic 3D models of single objects.

3. Light Field Synthesis

Given an image from a single viewpoint, our goal is to

synthesize views from a densely-sampled grid around the

input view. This is equivalent to synthesizing a 4D light

field, given a central 2D slice of the light field, and both of

these interpretations are visualized in Fig. 2. We do this by

learning to approximate a function f :

L̂(x,u) = f(L(x,0)) (1)

where L̂ is the predicted light field, x is spatial coordinate

(x, y), u is angular coordinate (u, v), and L(x,u) is the

ground-truth light field, with input central view L(x,0).
Light field synthesis is severely ill-posed, but certain re-

dundancies in the light field as well as prior knowledge of

scene statistics enable us to infer other slices of the light

field from just a single 2D slice. Figure 2 illustrates that

scene points at a specific depth lie along lines with corre-

sponding slopes in the light field. Furthermore, the colors

along these lines are constant for Lambertian reflectance,

and only change due to occlusions or non-Lambertian re-

flectance effects.

We factorize the problem of light field synthesis into

the subproblems of estimating the depth at each coordinate

(x,u) in the light field, rendering a Lambertian approxi-

mation of the light field using the input image and these

estimated depths, and finally predicting occluded rays and

non-Lambertian effects. This amounts to factorizing the

function f in Eq. 1 into a composition of 3 functions: d
to estimate ray depths, r to render the approximate light

field from the depths and central 2D slice, and o to predict

occluded rays and non-Lambertian effects from the approx-

imate light field and predicted depths:

D(x,u) =d(L(x,0))

Lr(x,u) =r(L(x,0), D(x,u))

L̂(x,u) =o(Lr(x,u), D(x,u))

(2)

where D(x,u) represents predicted ray depths, and Lr rep-

resents the rendered Lambertian approximate light field.

This factorization lets the network learn to estimate scene

depths from a single image in an unsupervised manner.

The rendering function r (Sec. 6.1) is physically-based,

while the depth estimation function d (Sec. 5) and occlu-

sion prediction function o (Sec. 6.2) are both structured

as CNNs, due to their state-of-the-art performance across

many function approximation problems in computer vision.

The CNN parameters are learned end-to-end by minimiz-

ing the sum of the reconstruction error of the Lambertian

approximate light field, the reconstruction error of the pre-

dicted light field, and regularization losses for the predicted

depths, for all training tuples:

min
θd,θo

∑

S

[

||Lr − L||1 + ||L̂− L||1

+λcψc(D) + λtvψtv(D)
]

(3)

where θd and θo are the parameters for the depth estimation

and occlusion prediction networks. ψc and ψtv are consis-

tency and total variation regularization losses for the pre-

dicted ray depths, discussed below in Sec. 5. S is the set of
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all training tuples, each consisting of an input central view

L(x,0) and ground truth light field L(x,u).
We include the reconstruction errors for both the Lam-

bertian light field and the predicted light field in our loss to

prevent the occlusion prediction network from attempting to

learn the full light field prediction function by itself, which

would prevent the depth estimation network from properly

learning a depth estimation function.

4. Light Field Dataset

To train our model, we collected 3343 light fields of

flowers and plants with the Lytro Illum camera, randomly

split into 3243 for training and 100 for testing. We captured

all light fields using a focal length of 30 mm and f/2 aper-

ture. Other camera parameters including the shutter speed,

ISO, and white balance were set automatically by the cam-

era. We decoded the sensor data from the Illum camera us-

ing the Lytro Power Tools Beta decoder, which demosaics

the color sensor pattern and calibrates the lenslet locations.

Each light field has 376x541 spatial samples, and 14x14

angular samples. Many of the corner angular samples lie

outside the camera’s aperture, so we used an 8x8 grid of

angular samples in our experiments, corresponding to the

angular samples that lie fully within the aperture.

This dataset includes light fields of several varieties of

roses, poppies, thistles, orchids, lillies, irises, and other

plants, all of which contain complex occlusions. Further-

more, these light fields were captured in various locations

and times of day with different natural lighting conditions.

Figure 3 illustrates the diversity of our dataset, and the ge-

ometric complexity in our dataset can be visualized in the

epipolar slices. To quantify the geometric diversity of our

dataset, we compute a histogram of the disparities across

the full aperture using our trained depth estimation network,

since we do not have ground truth depths. The left peak

of this histogram corresponds to background points, which

have large negative disparities, and the right peak of the

histogram corresponds to the photograph subjects (typically

flowers) which are in focus and have small disparities.

We hope this dataset will be useful for future investiga-

tions into various problems including light field synthesis,

single view synthesis, and unsupervised geometry learning.

5. Synthesizing 4D Ray Depths

We learn the function d to predict depths by minimiz-

ing the reconstruction error of the rendered Lambertian light

field, along with our novel depth regularization.

Two prominent errors arise when learning to predict

depth maps by minimizing the reconstruction error of syn-

thesized views, and we visualize these in Fig. 4. In texture-

less regions, the depth can be incorrect and depth-based

warping will still synthesize the correct image. Therefore,

the minimization in Eq. 3 has no incentive to predict the

correct depth. Second, depths for scene points that are oc-

cluded from the input view are also typically incorrect, be-

cause predicting the correct depth would cause the synthe-

sized view to sample pixels from the occluder.

Incorrect depths are fine if we only care about the syn-

thesized views. However, the quality of these depths must

be improved to consider light field synthesis as an unsuper-

vised learning algorithm to infer depth from a single 2D im-

age. It is difficult to capture large datasets of ground-truth

depths for real scenes, especially outdoors, while it is much

easier to use capture scenes with a plenoptic camera. We

believe that light field synthesis is a promising way to train

algorithms to estimate depths from a single image, and we

present a strategy to address these depth errors.

We predict depths for every ray in the light field, which is

equivalent to predicting a depth map for each view. This en-

ables us to introduce a novel regularization that encourages

the predicted depths to be consistent across views and ac-

counts for occlusions, which is a light field generalization of

the left-right consistency used in methods such as [13, 38].

Essentially, depths should be consistent for rays coming

from the same scene points, which means that the ray depths

should be consistent along lines with the same slope:

D(x,u) = D(x+ kD(x,u),u− k) (4)

for any continuous value of k, as illustrated in Fig. 4.

To regularize the predicted depth maps, we minimize the

L1 norm of finite-difference gradients along these sheared

lines by setting k = 1, which both encourages the predicted

depths to be consistent across views and encourages occlud-

ers to be sparse:

ψc(D(x,u)) = ||D(x,u)−D(x+D(x,u),u− 1)||1
(5)

where ψc is the consistency regularization loss for predicted

ray depths D(x,u).
Benefits of this regularization are demonstrated in Fig. 5.

It encourages consistent depths in texture-less areas as well

as for rays occluded from the input view, because predicting

the incorrect depths would result in higher gradients along

sheared lines as well as new edges in the ray depths.

We additionally use total variation regularization in the

spatial dimensions for the predicted depth maps, to encour-

age them to be sparse in the spatial gradient domain:

ψtv(D(x,u)) = ||∇xD(x,u)||1 (6)

Depth Estimation Network We model the function d to

estimate 4D ray depths from the input view as a CNN. We

use dilated convolutions [35], which allow the receptive
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Figure 3. We introduce the largest available light field dataset, containing 3343 light fields of scenes of flowers and plants captured with

the Lytro Illum camera in various locations and lighting settings. These light fields contain complex occlusions and wide ranges of relative

depths, as visualized in the example epipolar slices. No ground truth depths are available, so we use our algorithm to predict a histogram

of disparities in the dataset to demonstrate the rich depth complexity in our dataset. We will make this dataset available upon publication.

Figure 4. Top: In a Lambertian approximation of the light field, the

color of a scene point is constant along the line corresponding to

its depth. Given estimated disparities D(x, u) and a central view

L(x, 0), we can render the flatland light field as L(x, u) = L(x+
uD(x, u), 0) (D(x, u) is negative in this example). In white, we

illustrate two prominent problems that arise when estimating depth

by minimizing the reconstruction error of novel views. It is diffi-

cult to estimate the correct depth for points occluded from the in-

put view, because warping the input view using the correct depth

does not properly reconstruct the novel views. Additionally, it is

difficult to estimate the correct depth in texture-less regions, be-

cause many possible depths result in the same synthesized novel

views. Bottom: Analogous to the Lambertian color consistency,

rays from the same scene point should have the same depth. This

can be represented as D(x, u) = D(x+kD(x, u), u−k) for any

continuous value of k. We visualize ray depths using a colormap

where darker colors correspond to further objects.

field of the network to increase exponentially as a func-

tion of the network depth. Hence, each of the predicted

ray depths has access to the entire input image without the

resolution loss caused by spatial downsampling or pooling.

Every convolution layer except for the final layer consists

of a 3x3 filter, followed by batch normalization [17] and an

exponential linear unit activation function (ELU) [6]. The

last layer is followed by a scaled tanh activation function

Figure 5. Our proposed phyiscally-based depth consistency reg-

ularization produces higher-quality estimated depths. Here, we

visualize example sub-aperture depth maps where our novel reg-

ularization improves the estimated depths for texture-less regions.

Blue arrows indicate incorrect depths and depths that are inconsis-

tent across views, as shown in the epipolar slices.

instead of an ELU to constrain the possible disparities to

[−16, 16] pixels. Please refer to our supplementary mate-

rial for a more detailed network architecture description.

6. Synthesizing the 4D Light Field

6.1. Lambertian Light Field Rendering

We render an approximate Lambertian light field by us-

ing the predicted depths to warp the input view as:

Lr(x,u) = L(x+ uD(x,u),0) (7)

where D(x,u) is the predicted depth for each ray in the

light field. Figure 4 illustrates this relationship.

This formulation amounts to using the predicted depths

for each ray to render the 4D light field by sampling the in-

put central view image. Since our depth regularization en-

courages the ray depths to be consistent across views, this

effectively encourages different views of the same scene

point to sample the same pixel in the input view, resulting

in a Lambertian approximation to the light field.

6.2. Occlusions and Non-Lambertian Effects

Although predicting a depth for each ray, combined with

our depth regularization, allows the network to learn to
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model occlusions, the Lambertian light fields rendered us-

ing these depths are not able to correctly synthesize the val-

ues of rays that are occluded from the input view, as demon-

strated in Fig. 1. Furthermore, this depth-based rendering is

not able to accurately predict non-Lambertian effects.

We model the function o to predict occluded rays and

non-Lambertian effects as a residual block [16]:

o(Lr(x,u), D(x,u)) = õ(Lr(x,u), D(x,u)) + Lr(x,u)
(8)

where õ is modeled as a 3D CNN. We stack all sub-aperture

images along one dimension and use a 3D CNN so each fil-

ter has access to every 2D view. This 3D CNN predicts

a residual that, when added to the approximate Lamber-

tian light field, best predicts the training example true light

fields. Structuring this network as a residual block ensures

that decreases in the loss are driven by correctly predicting

occluded rays and non-Lambertian effects. Additionally, by

providing the predicted depths, this network has the infor-

mation necessary to understand which rays in the approx-

imate light field are incorrect due to occlusions. Figure 8

quantitatively demonstrates that this network improves the

reconstruction error of the synthesized light fields.

We simply concatenate the estimated depths to the Lam-

bertian approximate light field as the input to a 3D CNN

that contains 5 layers of 3D convolutions with 3x3x3 filters

(height x width x color channels), batch normalization, and

ELU activation functions. The last convolutional layer is

followed by a tanh activation function instead of an ELU,

to constrain the values in the predicted light field to [−1, 1].
Please refer to our supplementary material for a more de-

tailed network architecture description.

6.3. Training

We generate training examples by randomly selecting

192x192x8x8 crops from the training light fields, and spa-

tially downsampling them to 96x96x8x8. We use bilin-

ear interpolation to sample the input view for the Lamber-

tian depth-based rendering, so our network is fully differen-

tiable. We train our network end-to-end using the first-order

Adam optimization algorithm [20] with default parameters

β1 = 0.9, β2 = 0.999, ǫ = 1e−08, a learning rate of 0.001,

a minibatch size of 4 examples, and depth regularization pa-

rameters λc = 0.005 and λtv = 0.01.

7. Results

We validate our light field synthesis algorithm using our

testing dataset, and demonstrate that we are able to synthe-

size compelling 4D ray depths and light fields with complex

occlusions and relative depths. It is difficult to fully appreci-

ate 4D light fields in a paper format, so we request readers

to view our supplementary video for animations that fully

convey the quality of our synthesized light fields. No other

Figure 6. We validate our ray depths against the state-of-the-art

light field depth estimation. We give Jeon et al. [18] a distinct ad-

vantage by providing them a ground-truth 4D light field to predict

2D depths, while we use a single 2D image to predict 4D depths.

Our estimated depths are comprable, and in some cases superior,

to their estimated depths, as shown by the detailed varying depths

of the flower petals, leaves, and fine stem structures.

methods have attempted to synthesize a full 4D light field

or 4D ray depths from a single 2D image, so we separately

compare our estimated depths to a state-of-the-art light field

depth estimation algorithm and our synthesized light fields

to a state-of-the-art view synthesis method.

Depth Evaluation We compare our predicted depths to

Jeon et al. [18], which is a physically-based non-learning

depth estimation technique. Note that their algorithm uses

the entire ground-truth light field to estimate a 2D depth

map, while our algorithm estimates 4D ray depths from a

single 2D image. Figure 6 qualitatively demonstrates that

our unsupervised depth estimation algorithm produces re-

sults that are comprable to Jeon et al., and even more de-

tailed in many cases.

Synthesized Light Field Evaluation We compare our

synthesized light fields to the alternative of using the ap-

pearance flow method [37], a state-of-the-art view synthesis

method that predicts a flow field to warp an input image to
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Figure 7. We compare our synthesized light fields to the appear-

ance flow method [37]. Qualitatively, appearance flow has diffi-

culties correctly predicting rays occluded from the input view, re-

sulting in artifacts around the edges of the flowers. These types

of edge artifacts are highly objectionable perceptually, and the

improvement provided by our algorithm subjectively exceeds the

quantitative improvement given in Fig. 8.

an image from a novel viewpoint. Other recent view syn-

thesis methods are designed for predicting a held-out image

from a stereo pair, so it is unclear how to adapt them to pre-

dict a 4D light field. On the other hand, it is straightforward

to adapt the appearance flow method to synthesize a full

4D light field by modifying our depth estimation network

to instead predict x and y flow fields to synthesize each sub-

aperture image from the input view. We train this network

on our training dataset. While appearance flow can be used

to synthesize a light field, it does not produce any explicit

geometry representation, so unlike our method, appearance

flow cannot be used as a strategy for unsupervised geometry

learning from light fields.

Figure 7 illustrates that appearance flow has trouble syn-

thesizing rays occluded from the input view, resulting in

artifacts around occlusion boundaries. Our method is able

to synthesize plausible occluded rays and generate convinc-

ing light fields. Intuitively, the correct strategy to flow ob-

served rays into occluded regions will change dramatically

for flowers with different colors and shapes, so it is diffi-

cult to learn. Our approach separates the problems of depth

prediction and occluded ray prediction, so the depth predic-

tion network can focus on estimating depth correctly with-

out needing to correctly predict all occluded rays.

To quantitatively evaluate our method, we display his-

tograms for the mean L1 error on our test dataset for our

predicted light fields, our Lambertian light fields, and the

appearance flow light fields in Fig. 8. We calculate this er-

ror over the outermost generated views, since these are the

most difficult to synthesize from a central input view. Our

predicted light fields have the lowest mean error, and both

our predicted and Lambertian approximate light fields have

a lower mean error than the appearance flow light fields.

We also plot the mean L1 error as a function of the view

position in u, and show that while all methods are best at

synthesizing views close to the input view ((u, v) = 0),

Figure 8. To quantitatively validate our results, we visualize his-

tograms of the L1 errors on the testing dataset for the outermost

views of our predicted light fields L̂, our Lambertian light fields

Lr , and the light fields predicted by appearance flow. Our pre-

dicted light fields and Lambertian light fields both have lower er-

rors than those of appearance flow. We also compute the mean L1

errors as a function of view position u, and demonstrate that our

algorithm consistently outperforms appearance flow.

both our predicted and Lambertian light fields consistently

outperform the light fields generated by appearance flow.

We also tested a CNN that directly regresses from an input

image to an output light field, and found that our model out-

performs this network with a mean L1 error of 0.026 versus

0.031 across all views. Please refer to our supplementary

material for more quantitative evaluation.

Encouragingly, our single view light field synthesis

method performs only slightly worse than the light field in-

terpolation method of [19] that takes 4 corner views as in-

put, with a mean L1 error of 0.0176 compared to 0.0145 for

a subset of output views not input to either method.

Figure 9 displays example light fields synthesized by our

method, and demonstrates that we can use our synthesized

light fields for photographic effects. Our algorithm is able to

predict convincing light fields with complex occlusions and

depth ranges, as visualized in the epipolar slices. Further-

more, we can produce realistic photography effects, includ-

ing extending the aperture from f/28 (aperture of the input

view) to f/3.5 for synthetic defocus blur, and refocusing

the full-aperture image from the flower to the background.

Finally, we note that inference is fast, and it takes under

1 second to synthesize a 187x270x8x8 light field and ray

depths on a machine with a single Titan X GPU.

Generalization Figure 10 demonstrates our method’s

ability to generalize to input images from a cell phone cam-

era. We show that we can generate convincing ray depths, a

high-quality synthesized light field, and interesting photog-

raphy effects from an image taken with an iPhone 5s.

Finally, we investigate our framework’s ability to gener-

alize to other scene classes by collecting a second dataset,

consisting of 4281 light fields of various types of toys in-

cluding cars, figurines, stuffed animals, and puzzles. Fig-

ure 11 displays an example result from the test set of toys.

Although our performance on toys is quantitatively similar

to our performance on flowers (the mean L1 error on the

test dataset over all views is 0.027 for toys and 0.026 for
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Figure 9. We visualize our synthesized light fields as a corner view

crop, along with several epipolar slice crops. The epipolar slices

demonstrate that our synthesized light fields contain complex oc-

clusions and relative depths. We additionally demonstrate that our

light field generated from a single 2D image can be used for syn-

thetic defocus blur, increasing the aperture from f/28 to f/3.5.

Moreover, we can use our light fields to convincingly refocus the

full-aperture image from the flowers to the background.

flowers), we note that the toys results are perceptually not

quite as impressive. The class of toys is much more diverse

than that of flowers, and this suggests that a larger and more

diverse dataset would be useful for this scene category.

8. Conclusion

We have shown that consumer light field cameras enable

the practical capture of datasets large enough for training

machine learning algorithms to synthesize local light fields

of specific scenes from single photographs. It is viable to

extend this approach to other niches, as we demonstrate

with toys, but it is an open problem to generalize this to

the full diversity of everyday scenes. We believe that our

work opens up two exciting avenues for future exploration.

First, light field synthesis is an exciting strategy for unsu-

pervised geometry estimation from a single image, and we

hope that our dataset and algorithm enable future progress

Figure 10. Our pipeline applied to cell phone photographs. We

demonstrate that our network can generalize to synthesize light

fields from pictures taken with an iPhone 5s. We synthesize re-

alistic depth variations and occlusions, as shown in the epipolar

slices. Furthermore, we can synthetically increase the iPhone aper-

ture size and refocus the full-aperture image.

Figure 11. We demonstrate that our approach can generalize to

scenes of toys, and we display an example test set result.

in this area. In particular, the notion of enforcing consis-

tent geometry for rays that intersect the same scene point

can be used for geometry representations other than ray

depths, including voxels, point clouds, and meshes. Sec-

ond, synthesizing dense light fields is important for captur-

ing VR/AR content, and we believe that this work enables

future progress towards generating immersive VR/AR con-

tent from sparsely-sampled images.
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