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Abstract

We present a framework for learning to describe fine-

grained visual differences between instances using attribute

phrases. Attribute phrases capture distinguishing aspects

of an object (e.g., “propeller on the nose” or “door near

the wing” for airplanes) in a compositional manner. In-

stances within a category can be described by a set of these

phrases and collectively they span the space of semantic at-

tributes for a category. We collect a large dataset of such

phrases by asking annotators to describe several visual dif-

ferences between a pair of instances within a category. We

then learn to describe and ground these phrases to images

in the context of a reference game between a speaker and a

listener. The goal of a speaker is to describe attributes of an

image that allows the listener to correctly identify it within

a pair. Data collected in a pairwise manner improves the

ability of the speaker to generate, and the ability of the lis-

tener to interpret visual descriptions. Moreover, due to the

compositionality of attribute phrases, the trained listeners

can interpret descriptions not seen during training for im-

age retrieval, and the speakers can generate attribute-based

explanations for differences between previously unseen cat-

egories. We also show that embedding an image into the

semantic space of attribute phrases derived from listeners

offers 20% improvement in accuracy over existing attribute-

based representations on the FGVC-aircraft dataset.

1. Introduction

Attribute-based representations have been used for describ-

ing instances within a basic-level category as they often

share a set of high-level properties. These attributes serve

as basis for human-centric tasks such as retrieval and cate-

gorization [47, 23, 36], and for generalization to new cate-

gories based on a description of their attributes [12, 11, 39,

25]. However, most prior work has relied on a fixed set of

attributes designed by experts. This limits their scalability

to new domains since collecting expert annotations are ex-

pensive, and results in models that are less robust to noisy

open-ended descriptions provided by a non-expert user.
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Figure 1. Left: Each annotation in our dataset consists of five pairs

of attribute phrases. Right: A reference game played between a

speaker who describes an attribute of an image within a pair and a

listener whose goal is to pick the right one.

Instead of discrete attributes this work investigates the use

of attribute phrases for describing instances. Attribute

phrases are short sentences that describe a unique seman-

tic visual property of an object (e.g., “red and white color”,

“wing near the top”). Like captions, they can describe prop-

erties in a compositional manner, but are typically shorter

and only capture a single aspect. Like attributes, they are

modular, and can be combined in different ways to de-

scribe instances within a category. Their compositional-

ity allows the expression of large number of properties in

a compact manner. For example, colors of objects, or their

parts, can be expressed by combining color terms (e.g., “red

and white”, “green and blue”, etc.). A collection of these

phrases constitutes the semantic space of describable at-

tributes and can be used as a basis for communication be-

tween a human and computer for various tasks.

We begin by collecting a dataset of attribute phrases by

asking annotators to describe five visual differences be-

tween random pairs of airplanes from the OID airplane

dataset [44]. Each difference is of the form “P1 vs. P2”

with phrases P1 and P2 corresponding to the properties of

the left and right image respectively (Figure 1). By col-

lecting multiple properties at a time we obtain a diverse set

of describable attributes. Moreover, phrases collected in a

contrastive manner reveal attributes that are better suited for

fine-grained discrimination. The two phrases in a compari-

son describe the same underlying attribute (e.g., round nose

and pointy nose both describe the shape), and reflect an axis
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of comparison in the underlying semantic space. We then

analyze the ability of automatic methods to generate these

attribute phrases using the collected dataset. In particular

we learn to generate descriptions and ground them in im-

ages in the context of a reference game (RG) between a

speaker S and a listener L (Figure 1). S is provided with

a pair of images {I1, I2} and produces a visual difference

of the form P1 (or “P1 vs. P2”). L’s goal is to identify

which of the two images corresponds to P1. Reference

games have been widely used to collect datasets describing

objects within a scene. This work employs the framework

to generate and reason about compositional language-based

attributes for fine-grained visual categorization.

Our experiments show that a speaker trained to describe

visual differences displays remarkable pragmatic behavior

allowing a neural listener to rank the correct image with

91.4% top-5 accuracy in the RG compared with 80.6% of a

speaker trained to generate captions non-contrastively. We

also investigate a family of pragmatic speakers who gen-

erate descriptions by jointly reasoning about the listener’s

ability to interpret them, based on the work of Andreas and

Klein [3]. Contrastively trained pragmatic speakers offer

significant benefits (on average 7% higher top-5 accuracy

in RG across listeners) over simple pragmatic speakers. The

resulting speakers can be used to generate attribute-based

explanations for differences between two categories. More-

over, given a set of attribute phrases, the score of an image

with respect to each phrase according to a listener provides

a natural embedding of the image into the space of semantic

attributes. On the task of image classification on the FGVC

aircraft dataset [30] this representation outperforms exist-

ing attribute-based representations by 20% accuracy.

In summary, we show that reasoning about attribute phrases

via reference games is a practical way of discovering and

grounding describable attributes for fine-grained categories.

We validate our approach on a dataset of 6,286 images with

9,400 pairs for a total of 47,000 phrases (Section 3). We

systematically evaluate various speakers and listeners us-

ing the RG and human studies (Section 4.1-4.2), investigate

the effectiveness of attribute phrases on various recognition

tasks (Section 4.3-4.6), and conclude in Section 5.

2. Related Work

Attribute-based representations. Attributes have been

widely used in the computer vision as an intermediate, inter-

pretable representation for high-level recognition. They of-

ten represent properties that can be shared across categories,

e.g., both a car and bicycle have wheels, or within a subor-

dinate category, e.g., birds can be described by the shape of

their beak. Due to their semantic nature they have been used

for learning interpretable classifiers [11, 12], attribute-based

retrieval systems [6], as high-level priors for unseen cate-

gories for zero-shot learning [25, 18], and as a means for

communication in an interactive recognition system [23].

A different line of work has explored the question of dis-

covering task-specific attributes. Berg et al. [5] discover

attributes by mining frequent n-grams in captions. Parikh

and Grauman [35] ask annotators to name directions that

maximally separate the data according to some underly-

ing features. Other approaches [38, 17, 2] have mined

phrases from online text repositories to discover common-

sense knowledge about properties of categories (e.g., cars

have doors). For a detailed description of the above meth-

ods see this recent survey [29].

The interface for collecting attribute phrases is based on our

earlier work [28], which showed that annotations collected

in a pairwise manner could be analyzed to discover a lex-

icon of parts and attributes. This work extends the prior

work in a several ways. We (a) consider the complete prob-

lem of generating and interpreting attribute phrases on a sig-

nificantly larger dataset, (b) systematically evaluate speaker

and listener models on the data, and (c) show their utility in

various recognition tasks.

Referring expression comprehension and generation.

Modern captioning systems [22, 10, 46] produce descrip-

tions by using encoder-decoder architectures, typically con-

sisting of a convolutional network for encoding an image

and a recurrent network for decoding a sentence. A crit-

icism of these tasks is that captions in existing datasets

(e.g., MS COCO dataset [26]) can be generated by iden-

tifying the dominant categories and relying on a language

model. State-of-the-art systems are often matched by sim-

ple nearest-neighbor retrieval approaches [9, 50]. Visual

question-answering systems [4] face a similar issue that

most questions can be answered by relying on common-

sense knowledge (e.g., the sky is often blue). Some recent

attempts have been made to address these issues [19].

Tasks where annotators are asked to describe an object in an

image such that another can correctly identify it provides a

way to collect context-sensitive captions [20]. These tasks

have been widely studied in the linguistics community in

an area called pragmatics (see Grice’s maxims [13]). Much

prior work in computer vision has focused on generating

referring expressions to distinguish an object within an im-

age [32, 20, 31, 15, 33, 48, 49, 27]. More recently, referring

expression generation have been extended to interactive di-

alogue systems [7, 8]. In contrast, our work aims to collect

and generate referring expressions for fine-grained discrim-

ination between instances.

For the task of fine-grained recognition, the work of Reed et

al. [37] is the most related to ours. They ask annotators on

Amazon Mechanical Turk to describe properties of birds
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and flowers, and use the data to train models of images

and text. They show the utility of such models for zero-

shot recognition where a description of a novel category is

provided as supervision, and for text-based image retrieval.

Another recent work [45] showed that referring expressions

for images within a set can be generated simply by enforc-

ing separation of image probabilities during decoding using

beam search. However, their model was trained on con-

text agnostic captions. Our work takes a different approach.

First, we collect attribute phrases in a contrastive manner

that encourages pragmatic behavior among annotators. Sec-

ond, we ask annotators to provide multiple attribute descrip-

tions, which as we described earlier, allows modular reuse

across instances, and serves as an intermediate representa-

tion for various tasks. Attribute phrases capture the spec-

trum between basic attributes and detailed captions. Like

“visual phrases” [39] they capture frequently occurring re-

lations between basic attributes.

3. Method

The framework used to collect our dataset is described in

Section 3.1. Various speaker and listener models are de-

scribed in Section 3.2 and Section 3.3 respectively.

3.1. A dataset of attribute phrases

We rely on human annotators to discover the space of de-

scriptive attributes. Our annotations are collected on images

from the OID aircraft dataset [44]. The annotations are or-

ganized into 4700 image pairs (1851 images) in training set,

2350 pairs (1730 images) in validation set, and 2350 pairs

(2705 images) in test set. Each pair is chosen by picking

two different images uniformly at random within the pro-

vided split in the OID aircraft dataset.

Annotators from Amazon Mechanical Turk are asked to de-

scribe five properties in the form “P1 vs. P2”, each corre-

sponding to a different aspect of the objects in the left and

the right image respectively. We also provide some exam-

ples as guidance to the annotators. The interface shown in

Figure 2 is lightweight and allows rapid deployment com-

pared to existing approaches for collecting attribute annota-

tions where an expert decides the set and semantics of at-

tributes ahead of time. However, the resulting annotations

are noisier and reflect the diversity of open-ended language-

based descriptions. A second pass over the data is done to

check for consistency, after which about 15% of the descrip-

tion pairs were discarded.

Figure 1 shows an example of our dataset (more examples

are in the supplementary material). Annotations describe

the shapes of parts (nose, wings and tail), relative sizes, ori-

entation, colors, types of engines, etc. Most descriptions are

short with an average length of 2.4 words on each side, al-

though about 4.3% of them have more than 4 words. These

Describe differences between the two aeroplane images

Instructions: 

Annotate each one of the three tasks
Press Next to move to the next pair and Submit once done.
If the images do not display, your browser may not support this interface.
Try the latest Chrome, Safari or Firefox browsers.

Click here to see example answers before you start.

   VS   

 

List 5 differences between the two images
1.    VS   

2.    VS   

3.    VS   

4.    VS   

5.    VS   

 
 pair 1 of 3

Previous Next

Figure 2. The annotation interface used to collect five different at-

tribute phrase pairs adapted from [28]. Amazon mechanical turk-

ers were paid $0.12 for annotating three pairs.

are qualitatively different from image captions which are

typically longer and more grammatical. However, each an-

notation provides five different attribute pairs.

The OID dataset also comes with a set of expert-designed

attributes. A comparison with OID attributes shows that

attribute phrases capture novel properties that describe the

relative arrangement of parts (e.g., “door above the wing”,

“wing on top”), color combinations, relative sizes, shape,

and number of parts (e.g., “big nose”, “more windows”,

etc.) Section 4.4 shows a visualization of the space of at-

tribute phrases. Section 4.3 provides a direct comparison of

OID attributes and those derived from our data on the task

of FGVC-aircraft variant classification [30].

3.2. Speaker models

A speaker maps visual inputs to attribute phrases. We con-

sider two speakers; a simple speaker (SS) that takes a single

image as input and produces a description, and a discerning

speaker (DS) that takes two images as input and produces a

single (or a pair of) description(s).

Both our speaker models are based on the show-and-tell

model [46] developed for image captioning. Images are

encoded using a convolutional network and decoded into

a sentence using a recurrent network over words. We use

one-hot encoding for 730 words with frequency greater than

5 in the training set. We consider fc7 layer outputs of

the VGG-16 network [41] plus two fully-connected layers

with ReLU units [34] on top as the image feature, and a

LSTM model [14] with 2048 hidden units to generate the
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sentences. The image feature is fed into the LSTM not only

as the initial input, but also in each state input together with

word embeddings. This led to an improved speaker in our

experiments. For the discerning speaker, we concatenate

two image features as input to the LSTM. At test time we

apply beam search with beam size 10 and get 10 output de-

scriptions from each image (pair). Although the discerning

speaker is trained to generate phrase pairs, we can simply

take the first (or second) half of the pair and evaluate it in

the same way as a simple speaker.

We also consider a pragmatic speaker that generates con-

trastive captions by reasoning about the listener’s ability to

pick the correct image based on the description. Andreas

and Klein [3] proposed a simple strategy to do so by rerank-

ing descriptions of an image based on a weighted combi-

nation of (a) fluency – the score assigned by the speaker,

and (b) accuracy – the score assigned by the listener on

the referred image. Various pragmatic speakers are possible

based on the choice of speakers and listeners. The details

are described in Section 4.2.

Optimization details: Our implementation is based on Ten-

sorflow [1]. The descriptions are truncated at length 14
when training the LSTM. The VGG-16 network is initial-

ized with weights pre-trained on ImageNet dataset [24]. We

first fix the VGG-16 weights and train the rest of the net-

work, using Adam optimizer [21] with initial learning rate

0.001, β1 = 0.7, β2 = 0.999 and ✏ = 1.0 × 10−8. We

have batch normalization [16] in fully connected layers af-

ter VGG-16, and drop out with rate 0.7 in LSTM. We use

batch size 64 for 40000 steps (∼28 epochs). Second, we

fine tune the whole network with initial learning rate modi-

fied to 5× 10−6, batch size 32 for another 40000 steps.

3.3. Listener models

A listener interprets a single (or a pair of) attribute

phrase(s), and picks an image within a pair by measuring

the similarity between the phrase(s) and images in a com-

mon embedded space. Once again we consider two listen-

ers: a simple listener (SL) that interprets a single phrase,

and a discerning listener (DL) that interprets a phrase pair.

The simple listener models the score of the image I1 within

a pair (I1, I2) for a phrase P as:

p(I1|P ) = σ(φ(I1)
T ✓(P), φ(I2)

T ✓(P)).

Here φ and ✓ are embeddings of the image and the phrase

respectively, and σ is the softmax function σ(x, y) =
exp(x)/(exp(x)+exp(y)). Similarly, a discerning listener

models the score of an image by comparing it with an em-

bedding of the phrase pair ✓([P1 vs. P2]). A simple way to

construct a discerning listener from a simple listener is by

averaging the predictions from the left and right phrases,

i.e., p(I|[P1 vs. P2]) = (p(I|P1) + p(I|P2)) /2.

We follow the setup of the speaker to embed phrases and

use the final state of a LSTM with 1024 hidden nodes as the

phrase embedding. The vocabulary of words is kept identi-

cal. For image features, once again we use the fc7 layer of

the VGG-16 network and add a fully-connected layer with

1024 units and ReLU activation. The parameters are learned

by minimizing the cross-entropy loss.

We also evaluate two variants of the simple listener, SLr and

SL, based on whether it is trained on non-contrastive data

(I1, I2, P1) where I2 is a random image within the training

set, or the contrastive data where I2 is the other image in the

annotation pair.

Optimization details: We first fix the VGG-16 network and

use Adam optimizer with initial learning rate = 0.001, β1 =
0.7, batch size = 32 for 2000 steps (4000 steps for SLr

model), then fine-tune the entire model with a learning rate

1× 10−5 for another 7000-10000 steps.

Human listener. We also consider human annotators to

perform the task of the listener in the RG. For each gen-

erated phrase that describes one image out of an image

pair, we let three users to pick which image out of the pair

the phrase is referring to. However, unlike (most) human

speakers, neural speakers can produce irrelevant descrip-

tions. Thus, in addition to the choice of left and right image,

users have the option to say “not sure” when the description

is ambiguous. If two or more users out of three picked the

same image, we say the human listener is certain about the

choice, otherwise we say the human listener is uncertain.

The interface is shown in the supplementary material.

4. Results

We evaluate various listeners and speakers on the dataset we

collected in terms of their accuracy in the RG in Section 4.1

and Section 4.2 respectively. We then evaluate their effec-

tiveness on a fine-grained classification task in Section 4.3,

visualize the space of attribute phrases discovered from the

data in Section 4.4, for text-based image retrieval in Sec-

tion 4.5, and for generating visual explanations for differ-

ences between categories in Section 4.6.

4.1. Evaluating listeners

We first evaluate various listeners on human-generated

phrases. For simple listeners, each annotation provides ten

different reference tasks (I1, I2, P) → {0,1} corresponding

to five different left and right attribute phrases. Each task

is evaluated independently and accuracy is measured as the

fraction of correct references made by the listener. Simi-

larly, discerning listeners are evaluated by replacing P with

“P1 vs. P2” or “P2 vs. P1”.
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Accuracy using human speakers. The results are shown

in Table 1. Training on contrastive data improves the ac-

curacy of the simple listener slightly from 84.2% (SLr) to

86.3% (SL) on the test set. Discerning listeners see both

phrases at once and naturally perform better. There is al-

most no difference between a discerning listener that com-

bines two simple listeners by averaging their predictions

(2×SL), and one that interprets the two phrases at once

(DL). The results indicate that on our dataset the listener’s

task is relatively easy and contrastive data does not provide

any significant benefits. As a reference the accuracy of a hu-

man listener is close to 100% on human-generated phrases.

Input Speaker Listener Val Test

P1 Human
SLr 82.7 84.2

SL 85.3 86.3

P1 vs. P2 Human
DL 88.7 88.9

2×SL 89.6 89.3
Table 1. Accuracy (%) of various listeners in the RG using attribute

phrases provided by a human speaker.

Are the top attributes more salient? As annotators are

asked to describe five different attributes they might pick

ones that are more salient first. We evaluate this hypothesis

by measuring the accuracy of the listener (SL) on phrases as

a function of the position of the annotation in the interface

ranging from one for the top attribute to five for the last one.

The results are shown in Table 2. The accuracy decreases

monotonically from one to five suggesting that the first at-

tribute phrase is easier for the listener to discriminate. We

are uncertain if this is because the attributes near the top

are more discriminative, or because the listener is better at

interpreting these as they are likely to be more frequent in

the training data. Nevertheless, attribute saliency is a signal

we did not model explicitly and may be used to train better

speakers and listeners (e.g., see Turakhia and Parikh [42]).

1 2 3 4 5

Val 91.3 86.6 84.1 82.5 82.3

Test 92.3 87.4 85.9 84.0 81.6
Table 2. Accuracy (%) of the simple listener (SL) on RG using

human-generated attribute phrases at positions one through five

across the validation and test set. The accuracy decreases mono-

tonically from one to five suggesting that the top attribute phrases

are easier to discriminate.

4.2. Evaluating speakers

We use simple listeners, SL and SLr, and the human lis-

tener to evaluate speakers. As described in Section 3.2 we

use beam search to generate 10 descriptions for each image

pair and evaluate them individually using various listeners.

The discerning speaker generates phrase pairs but we sim-

ply take the first and second half separated by “vs.”, a spe-

cial word in the vocabulary, and evaluate it using a simple

listener (that sees only one phrase). If the word “vs.” is

missing in the generated output we simply consider the en-

tire sentence as the P1. Only 1 out of 23500 phrase pairs did

not contain the “vs.” token.

For evaluation with humans we collect three independent

annotations on a subset of 100 image pairs (with 10 descrip-

tions each) out of the full test set. The listeners are consid-

ered to be correct when the probability of the correct image

is greater than half. For human listener, we report the ac-

curacy of when there is a majority agreement on the correct

image, i.e., when two or more users picked the correct im-

age. For direct comparison with the simple speaker models,

we also report the human listener accuracy when they are al-

lowed to guess. This is the sum of earlier accuracy, and half

of the cases when there is no majority agreement. Human

annotators are uncertain when the generated descriptions

are not fluent or when they are not discriminative. There-

fore, a better human accuracy reflects speaker quality both

in terms of fluency and discriminativeness. Some examples

of the generated attribute phrases using various speakers are

shown in Figure 3.

Ground Truth:

1) small size VS large size

2) single seat VS more seated

3) facing left VS facing right

4) private VS commercial

5) wings at the top VS wings at the bottom

DS:

1) private plane VS commercial plane (p=0.3338)

2) private VS commercial (p=0.1648)

3) small plane VS large plane (p=0.0701)

4) facing left VS facing right (p=0.0355)

5) short VS long (p=0.0250)

6) white VS red (p=0.0228)

7) high wing VS low wing (p=0.0184)

8) small VS large (p=0.01775)

9) glider VS jetliner (p=0.0170)

10) white and blue color VS white red and 

      blue color (p=0.0159)

SS:

1) no engine (p=0.2963)

2) small (p=0.1800)

3) private plane (p=0.0650)

4) on the ground (p=0.0519)

5) propellor engine (p=0.0322)

6) on ground (p=0.0250)

7) glider (p=0.0228)

8) white color (p=0.0163)

9) small plane (p=0.0151)

10) no propeller (p=0.0124)

Figure 3. Example output of simple speaker SS and discerning

speaker DS. Simple speaker takes the left image in the green box

as input, while the discerning speaker takes both images as input.

In brackets are the probabilities according to the speaker.

Accuracy of various speakers and listeners. Results

on the full test set (Test) and the human-evaluated subset

(Test*) are shown in Table 3. The accuracy of discern-

ing speaker exceeds that of simple speaker by more than

10% no matter which listener to use. This result suggests

that data collected contrastively using our annotation task

allows direct training of speaker models that show remark-

able context-sensitive behavior. Somewhat surprisingly we

also see that the simple listeners are more accurate than the

human listener when evaluated on descriptions generated

by our speaker models. This is because humans tend to be

more cautious in the reference game. For example, sim-

ple listeners will accept yellowish grass being referred to

as “concrete” compared to green grass, but humans tend to

view it as an unclear reference.
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Accuracy (%)

SLr SL Human

Top Test∗ Test Test∗ Test Test∗

SS

1 84.0 79.8 83.0 81.7 68.0 (77.0)

5 80.0 79.2 78.0 80.6 64.2 (74.1)

10 78.0 78.9 76.6 80.0 61.6 (72.4)

DS

1 94.0 92.8 92.0 92.8 82.0 (88.5)

5 91.2 90.3 91.2 91.4 80.2 (86.7)

10 88.6 88.8 90.0 90.5 77.9 (85.0)
Table 3. Accuracy in the RG using different speakers and listeners.

Test represents the full test set consisting of 2350 image pairs.

Test∗ represents a subset of 100 test set image pairs for which we

collected human listener results. For the human listener, we report

the accuracy when there is a majority agreement, and accuracy

with guessing (in brackets). DS is significantly better at generating

discriminative attribute phrases than SS.

Does pragmatics help? Given that our discerning

speaker can generate highly accurate contrastive descrip-

tions, we investigate if additional benefits can be achieved if

the speaker jointly reasons about the listener’s ability to in-

terpret the descriptions. We employ the pragmatic speaker

model of Andreas and Klein [3] where a simple speaker

generates descriptions that are reranked by a simple lis-

tener using a weighted combination of speaker and listener

scores. In particular, we rerank the output 10 sentences

from speakers by the probabilities from simple listeners.

We combine the listener probability pl and speaker beam-

search probability ps as p = pλ
s
· p

(1−λ)
l

, and pick the opti-

mal λ on a validation set annotated by a human listener. We

found that the optimal λ is close to 0, so we decided to use

pl only for reranking on test set.

In Table 4, we report the accuracy of top k sentences (k =
1, 5, 7) of the human listener and the results after rerank-

ing on the Test* set. When using the listener score from

SLr the average accuracy of the top five generated descrip-

tions after reranking improves dramatically from 64.2% to

82.6% for the simple speaker. The accuracy of the discern-

ing speaker also improves to 90%. This suggests that bet-

ter pragmatics can be achieved if both the speaker and lis-

tener are trained in a contrastive manner. Surprisingly the

contrastively-trained simple listener SL is less effective at

reranking than SLr. We believe this is because the SL over-

fits on the human speaker descriptions and is less effective

when used with neural speakers.

Figure 4 shows an example pair and the output of different

speakers. Simple speaker suffers from generating descrip-

tions that are true to the target image, but fail to differentiate

two images. Discerning speaker can mostly avoid this mis-

take. Reranking by listeners can move better sentences to

the top and improves the quality of top sentences.

Human listener accuracy (%)

Reranker listener

Top None SLr SL

SS

1 68.0 (77.0) 94.0 (96.0) 87.0 (92.0)

5 64.2 (74.1) 82.6 (88.3) 80.8 (87.1)

7 63.1 (72.8) 74.3 (82.0) 74.3 (82.4)

DS

1 82.0 (88.5) 95.0 (96.5) 95.0 (97.0)

5 80.2 (86.7) 90.0 (93.3) 88.6 (92.8)

7 79.1 (85.6) 86.7 (91.5) 86.1 (91.1)
Table 4. Accuracy of pragmatic speakers with human listeners on

the Test* set. After generating the descriptions by the speaker

model (either SS or DS), we use the listener model (SLr or SL) to

rerank them. We report the accuracy based on human listener from

the user study. We report both the accuracy when there is majority

agreement, and accuracy with guessing (in brackets). Pragmatic

speakers are strictly better than non-pragmatic ones.

4.3. Fine-grained classification with attributes

We compare the effectiveness of attribute phrases to exist-

ing attributes in the OID dataset on the task of fine-grained

classification on the FGVC aircraft dataset [30]. The OID

dataset is designed with attributes in mind and has long-tail

distribution over aircraft variants with 2728 models, while

the FGVC dataset is designed for fine-grained classification

task with 100 variants each with 100 images. Both datasets

are based on the images from the airliners.net web-

site and have a few overlapping images. We exclude the

169 images from the FGVC test set that appear in the OID

training+validation set in our evaluation.

There are 49 attributes in the OID dataset organized into

14 categories. We exclude three attributes – two refer-

ring to the airline label and model, most of which have

only one training examples per category, and another that

is rare. We then trained linear classifiers to predict each

attribute using the fc7 layer feature of the VGG-16 net-

work. Using the same features and trained classifiers, we

construct a 46 dimensional embedding of the FGVC im-

ages into the space of OID attributes. The attribute classi-

fiers based on the VGG-16 network features are fairly accu-

rate (66% mean AP across attributes) and outperforms the

Fisher vector baseline included in the OID dataset paper.

For the attribute phrase embeddings, we first obtain the K

most frequent ones in our training set. Given an image I,

we compute the score φ(I)T ✓(P) for each phrase P from a

listener as the embedding. For a fair comparison the image

features are kept identical to the OID attribute classifiers.

We also explore an opponent attribute space, where instead

of top phrases we consider the top phrase pairs. Phrase pairs

represent an axis of comparison, e.g., “small vs. medium”,

or “red and blue vs. red and white”, and are better suited for

describing relative attributes. We use the discerning listener

for the embedding on the opponent attribute space.

423

airliners.net


SS: 

✔ passenger plane 

?  white 

✔ jet engine 

?  facing right 

✔ commercial plane 

?  _UNK 

?  on the ground 

✔ large 

✔ large size 

✔ on runway

DS:

✔ commercial plane 

?  facing right 

✔ turbofan engine 

✔ on concrete 

✔ t tail 

✔ jet engine 

✔ twin engine 

✔ multi seater 

✔ white and red 

✔ white colour with red stripes

SS + SLr:

✔ commercial plane 

✔ large 

✔ large size 

✔ jet engine 

✔ on runway 

✔ passenger plane 

?  on the ground 

?  _UNK 

?  white 

?  facing right

DS + SLr:

✔ commercial plane 

✔ jet engine 

✔ turbofan engine 

✔ twin engine 

✔ on concrete 

✔ multi seater 

✔ t tail 

✔ white and red 

?  facing right 

✔ white colour with red stripes

Figure 4. An example output of various speakers. Given the image pair, we use SS and DS to generate descriptions of the top left image.

Outputs from SS and DS are listed in the order of probabilities from speaker beam search. Outputs of SS+SLr and DS+SLr are reranked

by SLr . Green checks mean human listener picks correct image with certain, while question marks mean human listener is uncertain which

image is referred to. The results indicate that DS is better than SS, and reranking using listeners improves the quality of top sentences.

Figure 5. Classification accuracy on FGVC aircraft dataset using

the 46 dimensional OID attributes and varying number of attribute

phrases. See Section 4.3 for details.

Figure 5 shows a comparison of OID attributes and attribute

phrases for various listeners and number of attributes. For

the same number of attributes as the OID dataset, attribute

phrases are 12% better. With 300 attributes the accuracy

improves to 32%, about 20% better than OID. These re-

sults indicate that attribute phrases provide a better cover-

age of the space of discriminative directions. The two sim-

ple listeners perform equally well and the opponent attribute

space does not offer any additional benefits.

4.4. Visualizing the space of descriptive attributes

We visualize the space of the 500 most frequent phrases

in the training set using the embedding of the simple lis-

tener model projected from 1024 dimensions to 2 using t-

SNE [43] in Figure 6. Various semantically related phrases

are clustered into groups. The cluster on the top right re-

flects color combinations; Phrases such as “less windows”

and “small plane” are nearby (bottom right). Visualizations

of the learned embeddings of images φ(I) and opponent

attribute phrases ✓([P1 vs. P2]) are provided in the supple-

mentary material.

TensorBoard SCALARS IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS

DATA

Checkpoint: ./embedding.ckpt

Metadata: metadata_sentence.tsv

T-SNE PCA CUSTOM

Dimension 2D

Perplexity 30

Learning
rate 10

Re‑run  Stop

Iteration: 3009

 How to use t-SNE effectively.

Show All
Data

Isolate ү8Ү
points

Clear
selection

 

facing right

small plane

commercial plane

in the air

white color

white

turbofan engine

propellor engine

propeller engine

single engine

on ground

¡ying in the air

military plane

small

large plane

jet engine

big plane

¡at nose

propeller

¡ying

commercial

outside

in air

large

 1 tensor found

sentence_feat

 Label by

Class

 Color by

No color map

Sphereize data 

3D

Points: 500 Dimension: 1024 Selected 483 points

Search .*

 by

Class

BOOKMARKS (1) 

tsne_30_3000

Figure 6. Visualization of the 500 most frequent descriptions.

Each attribute is embedded into a 1024 dimensional space using

the simple listener SL and projected into two dimensions using

t-SNE [43]. (Best viewed digitally with zoom.)

4.5. Image retrieval with descriptive attributes

The listeners also allows us to retrieve an image given one

or more attribute phrases. Given a phrase P we rank the im-

ages in the test set by the listener scores φ(I)T ✓(P). Figure 7

shows some query phrases and the 18 most similar images

retrieved from the test set. These results were obtained by

simply concatenating all the query phrases to obtain a single

phrase. More sophisticated schemes for combining scores

from individual phrase predictions are likely to improve re-

sults [40]. Our model can retrieve images with multiple at-

tribute phrases well even though the composition of phrases

does not appear in the training set. For example, “red and

blue” only shows five times in total of 47, 000 phrases in the

training set, “pointy nose” and “on the runway” are never

seen in a single phrase together.
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red and blue pointy nose; on the runway red plane; many windows; facing right

Figure 7. Top 18 images ranked by the listener for various attribute phrases as queries (shown on top). We rank the images by the scores

from the simple listener on the concatenation of the attribute phrases. The images are ordered from top to bottom, left to right.

small plane

military plane

grey

single engine

pointed nose

fighter jet

grey color

gray

no windows on body

gray color

commercial plane

big plane

twin engine

rounded nose

commercial

turbofan engine

passenger jet

commercial jet

white

white color

F/A-18 Yak-42

large plane

more windows

commercial plane

more windows on body

big plane

commercial

jet engine

turbofan engine

engines under wings

on ground

private plane

less windows

medium plane

propellor engine

fewer windows on body

small plane

private

propeller engine

stabilizer on top of tail

british airways

747-400 ATR-42

Figure 8. Top 10 discriminative attribute phrases for pairs of categories from FGVC aircraft dataset. Descriptions are generated by the

discerning speaker for each pair of images in the first and second category. The phrases sorted by the occurrence frequency provides an

attribute-based explanation of the visual difference between two categories.

4.6. Generating attribute explanations

The pairwise reasoning of a speaker can be extended to an-

alyze an instance within a set by aggregating speaker utter-

ances across all pairs that include the target. Similarly one

can describe differences between two sets by considering all

pairs of instances across the two sets. We use this to gen-

erate attribute-based explanations for visual differences be-

tween two categories. We select two categories A,B from

FGVC aircraft dataset and randomly choose ten images

from each category. For each image pair (I1 ∈ A, I2 ∈ B),
we generate ten phrase pairs using our discerning speaker.

We then sort unique phrases primarily by their image fre-

quency (number of images from target category described

by the given description minus that from the opposite cate-

gory), and when tied secondarily by their phrase frequency

(number of occurrences of the phrase in target category mi-

nus that in the opposite category.) The top ten attribute

phrases for the two categories for an example pair of cate-

gories are shown in Figure 8. The algorithm reveals several

discriminative attributes between two such as “engine un-

der wings” for 747-400, and “stabilizer on top of tail” for

ATR-42.

5. Conclusion

We analyzed attribute phrases that emerge when annota-

tors describe visual differences between instances within

a subordinate category (airplanes), and showed that speak-

ers and listeners trained on this data can be used for var-

ious human-centric tasks such as text-based retrieval and

attribute-based explanations of visual differences between

unseen categories. Our experiments indicate that pragmatic

speakers that combine listeners and speakers are effective

on the reference game [3], and speakers trained on con-

trastive data offers significant additional benefits. We also

showed that attribute phrases are modular and can be used

to embed images into an interpretable semantic space. The

resulting attribute phrases are highly discriminative and out-

perform existing attributes on FGVC aircraft dataset on the

fine-grained classification task.
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