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Abstract

Human pose analysis is presently dominated by deep

convolutional networks trained with extensive manual an-

notations of joint locations and beyond. To avoid the need

for expensive labeling, we exploit spatiotemporal relations

in training videos for self-supervised learning of pose em-

beddings. The key idea is to combine temporal ordering and

spatial placement estimation as auxiliary tasks for learn-

ing pose similarities in a Siamese convolutional network.

Since the self-supervised sampling of both tasks from nat-

ural videos can result in ambiguous and incorrect train-

ing labels, our method employs a curriculum learning idea

that starts training with the most reliable data samples and

gradually increases the difficulty. To further refine the train-

ing process we mine repetitive poses in individual videos

which provide reliable labels while removing inconsisten-

cies. Our pose embeddings capture visual characteristics

of human pose that can boost existing supervised repre-

sentations in human pose estimation and retrieval. We re-

port quantitative and qualitative results on these tasks in

Olympic Sports, Leeds Pose Sports and MPII Human Pose

datasets.

1. Introduction

The ability to recognize human posture is essential for

describing actions and comes natural to a human being. Dif-

ferent poses in a video form a visual vocabulary similar to

words in text. An important objective of computer vision is

to bring this ability to the computer. Finding similar pos-

tures across different videos automatically enables a lot of

different applications like action recognition [3, 4] or video

content retrieval.

So what makes two postures look similar? More for-

mally, a similarity function, which is entailed by a pose

embedding, needs to capture the characteristics of differ-
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ent postures, while exhibiting the necessary invariance to

strong intra-class variations. In particular, it should be sen-

sitive to articulation of body parts while being invariant to

illumination, background, clutter, deformations (e.g. facial

expressions) or occlusions. Often human joints are used as

a surrogate for describing similarity, but there are several

issues: First, measuring distances in pose space accurately

and coming up with a non-ambiguous Euclidean embedding

is already a challenging problem. Second, the manual an-

notation of human joints in larger datasets is expensive and

time-consuming.

Convolutional networks have recently been immensely

helpful to computer vision. The feature hierarchy of such a

network is effectively defined by a cascade of filter banks

that are recursively applied to extract discriminative fea-

tures for the given task. In this work we take advantage

of convolutional networks to learn pose embeddings from

videos.

In supervised similarity learning we assume that we are

given positive and negative pairs of postures for training.

In this supervised setting convolutional networks excel and

have recently surpassed human performance in some basic

tasks. In contrast unsupervised training of convolutional

networks is still an open problem and currently the focus of

the research community. In this paper we investigate how

to learn a pose representation without labels.

A solution for the problem of missing supervision is

to switch to a related auxiliary task for which label infor-

mation is available. For this self-supervised strategy sev-

eral well-known sources of weak supervision have been re-

cently re-visited: among them spatial configuration of natu-

ral scenes, inpainting, super-resolution, image colorization,

tracking, ego-motion and even audio. Although there are

many sources available, not all of them are suitable for the

application in pose analysis. We exploit human motion in

videos to make pose similarity apparent and learnable with-

out labels. With an almost infinite supply of video data on-

line exploiting this idea is very attractive.

We propose learning spatiotemporal relations in videos
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by means of two complementary auxiliary tasks: a temporal

ordering task which learns whether two given person im-

ages are temporally close (similar) and a spatial placement

task which discovers randomly extracted crops from the

spatial neighborhood of persons, and learns whether given

patches are a person or not. Learning spatial and tempo-

ral relations of human movement simultaneously provides

us information of “what” we are looking at (person/ not

person) and “how” the instances differ (similar/dissimilar

poses). Curriculum-based learning and repetition mining

arrange the training set by starting from only the easy sam-

ples and then iteratively extend to harder ones, while also

eliminating inactive video parts. Then our spatiotempo-

ral embeddings successfully learn representative features of

human pose in a self-supervised manner.

2. Related Work

Human pose analysis deals with problems such as pose

retrieval, similarity learning and pose estimation. Most ap-

proaches in pose analysis rely on supervised data and there

exists only a few unsupervised approaches. Here, we sum-

marize significant examples of pose analysis and related un-

supervised learning approaches:

Pose estimation Pose estimation aims at finding loca-

tions of body joints, whereas pose retrieval or embedding

finds a metric that can retrieve the most similar poses and

discriminates samples according to their pose information,

without localizing joints directly. With the advancements in

convolutional neural networks [21], pose estimation is also

dominated by deep learning-based methods. Toshev and

Szegedy [31] estimated joint locations directly regressing

in a CNN architecture. Instead of simply regressing joint

locations, Chen and Yuille [10] learned pairwise part re-

lations combining CNN with graphical models. Tompson

et al. [30] exploited CNNs for relationship between body

parts with a cascade refinement. A recent work by Newell

et al. [25] used fully convolutional networks in a bottom-up

top-down manner to predict heatmaps for joint locations.

Similarity learning The first Siamese-type architecture

[8] was proposed to learn a similarity metric for signature

verification. Similarity learning was also applied in human

pose analysis. In [24] and [22], body joint locations are used

to create similar and dissimilar pairs of instances from an-

notated human pose datasets. [22] also transferred a learned

pose embedding to action recognition.

These works in pose estimation and similarity learning

exploited large amounts of annotations (body joints or label-

ing of similar/dissimilar postures). However, unsupervised

learning methods without using labels showed promising

performance in various learning tasks in the last decade.

Self-supervised learning is very popular similar to classi-

cal unsupervised methods such as clustering, autoencoders

[29], restricted Boltzman machines [17].

Self-supervised learning The availability of big data

motivated the community to investigate alternative sources

of supervision such as ego-motion [1, 33], colorization [34],

image generation [28], spatial [12, 27] or temporal clues

[32, 23]. As our approach belongs to the class of self-

supervised methods using spatial and temporal information,

we describe these methods in detail.

Doersch et al. [12] trained convolutional neural net-

works to take image patches from a 3 × 3 grid and clas-

sify the relative location of 8 patches with respect to a cen-

ter patch. Norozzi and Favaro [27] argued that solving lo-

cations of relative patches could introduce ambiguities and

proposed a localization problem given all 9 patches at once.

Also, they used 100 relative locations as class labels out of

9! permutations using a Hamming distance-based selection.

Wang and Gupta [32] exploited videos by detecting in-

teresting regions with SURF keypoints and tracking them.

Then, they used a Siamese-triplet architecture with a rank-

ing loss together with random negative selection and hard

negative mining. However, tracking is not the best solu-

tion in the challenging context of pose analysis due to the

non-rigid deformations of person patches which are in low

resolution and contain too few keypoints to detect parts and

track them precisely.

Misra et al. [23] defined a temporal order verification

task, which classifies whether given 3-frame sequences are

temporally ordered or not by altering the middle frame. In

action/pose benchmarks or internet videos, there are a lot of

cyclic human actions (e.g. running based sports, dancing),

which often produce confusing samples and interfere with

representation learning.

In order to learn a better representation, we argue that

temporal cues which aim to learn whether given inputs are

from temporally close windows or not will be a more effec-

tive approach. The use of temporal cues to learn whether

given inputs are from temporally close windows or not is an

effective approach for representation learning. Local prox-

imity in data (slow feature analysis, SFA) has first been pro-

posed by Becker and Hinton [6]. The most recent spatial

and temporal self-supervised learning methods are inspired

from SFA. Goroshin et al. [16] created a connection be-

tween slowness and metric learning by temporal coherence.

Motivated by temporal smoothness in feature space, Jayara-

man and Grauman [18] exploited higher order coherence,

which they referred to as steadiness, in various tasks. Slow-

ness or steadiness criterion can introduce significant draw-

backs mostly because of limited motion and the repetitive

nature of human actions. Thus, we learn auxiliary tasks

in relatively small temporal windows which do not con-

tain more than a single cycle of action. Moreover, the use

of curriculum learning [7] and repetition mining refine and

guide our self-supervised tasks to learn stronger temporal

features.
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Figure 1: Sampling procedure for training self-supervised pose embeddings. For each query image in a video, positive and

negative pairs of temporal ordering are collected from specific temporal ranges (left). In spatial placement, samples are

cropped using the IoU criterion (right).

Curriculum learning has been proposed by Bengio et al.

[7] and it speeds up training and improves test performance

by using samples whose difficulties are gradually increasing

in shape recognition and language modeling. To the best of

our knowledge, the potential of a curriculum has not been

studied in the self-supervised setting, where we associate

the difficulty of training samples with their inherent motion.

3. Approach

Our motivation is to learn pose embeddings from videos

without labels. We follow the insight that spatiotemporal

relations in videos provide sufficient information for learn-

ing. For this purpose, we propose a self-supervised pipeline

that creates training data for two auxiliary tasks: 1) tempo-

ral ordering and 2) spatial placement. Since the raw self-

supervised output needs refinement, we introduce curricu-

lum learning and repetition mining as key ingredients for

successful learning. The two auxiliary tasks are trained in

a Siamese CNN architecture and the learned features are

eventually used as pose embeddings in order to retrieve sim-

ilar postures and estimate pose.

3.1. Selfsupervised Pose Embeddings: Temporal
Ordering and Spatial Placement

We consider a temporal and a spatial auxiliary task

which are automatically sampled from videos as described

in Fig. 1. Both tasks capture complementary information

from inside videos essential for learning a pose embedding.

The temporal task teaches the pose embedding to become

more sensitive to body movements and more invariant to

camera motion (i.e. panning, zoom in/out, jittering), while

the spatial task relies on the spatial configuration of a single

frame and focuses on learning a human appearance model

which strengthens the ability to separate posture from back-

ground.

For the temporal ordering task, a tuple of two frames is

sampled from the same video together with a binary label

which indicates whether the first frame (anchor) is closely

followed in time by the second frame (candidate). In order

to focus on learning human posture, we do not sample the

full frames, but instead crop bounding box estimates of the

person of interest. Thus, the training input for the temporal

ordering task consists of two cropped boxes and a binary

label indicating whether the two boxes are temporally or-

dered.

For a frame It0 sampled at time point t0, we sample a

candidate frame It with a temporal offset of ∆t = t− t0. In

order to sample a positive candidate the offset needs to be

∆t = τ+, while a negative candidate is sampled if

∆t ∈ τ− = [τ−
min

, τ−max] ∪ [−τ−max,−τ−
min

]

holds. τ−
min

, τ−max are the range limits of the negative can-

didates. In other words, a positive candidate comes exactly

from τ+ frames in the future, while negative candidates

come from ranges before or after the anchor frame.

The temporal ordering task relies on the assumption of

temporal coherence that frames in a small temporal neigh-

borhood are more similar than distant frames. We add the

constraint that positive candidates can only come from the

future. Since the self-supervised sampling from videos al-

ready introduces large amounts of variation, we want the

positive class to be as homogeneous as possible in order to

facilitate training. In contrast the negative class is sampled

from a larger range that allows more variation, but is still

close enough to the positive class to provide challenging

similarities for discriminative learning.

For the spatial placement task, a box is randomly

cropped from a single frame together with a binary label
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that indicates whether the cropped box overlaps with the

estimated bounding box of a person in this frame. The over-

lap is measured with the Intersection-over-Union (IoU) cri-

terion [13]. For the estimated bounding box Ib and a ran-

domly cropped box Ir, the binary label yS is defined as

yS(Ib, Ir) =

{

1, if IoU(Ib, Ir) ∈ [σ+

min
, σ+

max]

0, if IoU(Ib, Ir) ∈ [σ−

min
, σ−

max]
(1)

where IoU(·, ·) computes the IoU and [σ+

min
, σ+

max] defines

the positive range of overlap while [σ−

min
, σ−

max] defines the

negative. Since the estimated bounding boxes are not com-

pletely reliable, the positive and negative IoU ranges are

usually selected with a gap between them to help the sepa-

ration of the classes.

In both auxiliary tasks, three negative samples are used

for each positive posture, because sampling of negatives

(what it is not) from larger ranges helps with learning pos-

itive similarities (what it is) precisely. The intuition is that

the pose embedding learns to discriminate between a homo-

geneous positive and a more heterogeneous negative class

in both tasks. Since both tasks focus on different aspects

of human posture, the best pose embedding is obtained by

joint training. We investigate the contribution of different

configurations in Sect. 4.2.

3.2. Creating a Curriculum for Training

In supervised training with human annotations, it is often

beneficial to avoid difficult samples with ambiguous or even

incorrect labels, because this kind of data can inhibit con-

vergence and lead to inferior results. In the self-supervised

case, we find that data quality fluctuates even more and

needs to be taken into account. On the other hand, skipping

too many difficult training samples can result in overfitting

on a small subset of easy samples and hurts generalization

to unseen datasets. We propose to strike a balance by using

a curriculum of training data that gradually increases in dif-

ficulty over the course of training. We create the curriculum

with regard to the temporal ordering task which produces

far more inconsistent samples than spatial placement.

In order to determine the difficulty of temporal order-

ing for a particular training sample, we look into the mo-

tion characteristics of the respective video. For instance, a

clean-and-jerk video mainly consists of inactive parts with

little motion, whereas a long-jump video is dominated by a

highly repetitive structure with fast moving, deforming pos-

tures. Training samples from video sequences with clear

foreground motion (e.g. a long-jump video) are preferable

for learning temporal ordering, because their negative can-

didates, which are sampled from the range of τ−, are easier

to distinguish from the positive ones from τ+. Therefore,

we determine the difficulty of a training sample by estimat-

ing the motion in videos and sample training frames with

sufficient action.

When creating a curriculum, we use an optical flow

based criterion that computes the ratio of the optical flow

in the foreground and background of the frame. To com-

pute the fg/bg ratio the mean magnitude of optical flow in

the foreground bounding box is divided by mean magnitude

of optical flow of the background. We use the method from

[9] to estimate the optical flow between two frames. The

fg/bg ratio acts as a proxy of a signal-to-noise ratio, as ex-

amples with higher values are more easily separated from

the background.

The curriculum is assembled by sorting the training sam-

ples according to their flow ratio and splitting them in dis-

crete blocks, curriculum updates, with increasing difficulty

(decreasing flow ratio). We analyze the impact of the cur-

riculum in an ablation experiment in Table 1 where we train

the network with and without a curriculum using the same

subset of self-supervised training data. Details of ablation

experiments and the effect of curriculum will be explained

in Sect. 4.1 and Sect. 4.2.

3.3. Mining Repetitive Poses

There are two reasons why we pay special attention to

repetitive poses in video sequences: First, they impair the

training of the temporal ordering task. Second, if the loca-

tion of repetitions were known, they could be extracted and

used as valuable training data, which we refer to as repe-

tition mining. The mined repetitions augment temporal or-

dering by providing a new similarity learning task.

While the proposed curriculum avoids difficult samples

in the early stages of self-supervised training, repetitive

poses in videos are not filtered by the motion-based curricu-

lum. The training of the temporal ordering task suffers from

repetitions which can cause incorrect labeled image pairs

by violating the assumption of temporal coherence. For in-

stance, if a negative frame is sampled from a video with a

repetitive action like running or walking, it might be more

similar to the anchor frame than the positive candidate.

After an initial training of the temporal ordering task,

we use the learned pose embeddings to detect repetitive

poses in the training data. For each video, we obtain a

self-similarity matrices by computing all the pairwise dis-

tances between frames. As distance measure, we use the

Euclidean norm of the normalized pool5 features. In or-

der to extract reliable and strong repetitions, we convolve

the self-similarity matrix with a 5x5 circulant filter matrix

to suppress potential outliers that are not aligned with the

off-diagonals by thresholding. The maxima of each row

indicate the fine-scaled repetitions of the respective query

frame. Fig. 2 shows an example self-similarity matrix and

repetitions which are mined using this approach.

Repetitive poses form groups of very similar but not

identical images due to small variations over time caused

by the persons movement, changes in the camera viewpoint,
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Figure 2: Mining repetitive poses. Off-diagonal structures of the self-similarity matrix on the left indicate repetitions in a

video. For each row, repetitions are mined using a query frame. Repetitive poses from three videos are shown on the right.

or even the frame rate of the video camera. These groups

of highly similar images help to learn the more fine-grained

details of human posture. They can be used to create a new

type of similar-dissimilar problem. Similar pairs are cho-

sen among repetition groups, negative candidates are picked

from regions between the repetitions.

As repetitions occur only in a subset of the available

video data, they are combined with samples from non-

repetitive videos and added to the first stages of the cur-

riculum. The mined repetitive poses are in quality close to

human annotated similarities and provide a stabilizing ef-

fect on the whole training procedure.

Our method can be employed in a bootstrapping fashion,

by repeatedly training the temporal ordering task and min-

ing repetitions which provide better training samples with-

out additional supervision.

3.4. Network Architecture

For the two self-supervised tasks we train two convolu-

tional neural networks which differ in the number of images

they process as shown in Fig. 3. The temporal ordering

task is trained using a Siamese architecture [8] that takes

a pair of images as input while the spatial placement task

is trained on single images using a common single stream

architecture.

We adopt the well-known Alexnet architecture [21] for

both tasks. In the temporal task the two Siamese streams

consist of convolutional layers. After the last pooling layer

the output from the two streams is concatenated. The fully-

connected layers compute a binary output probability for

testing. The convolutional networks are trained by minimiz-

ing binary cross-entropy loss functions. For joint training

of both tasks the weights in the convolutional layers are not

only shared between the Siamese parts but are also shared

with the convolutional layers of the spatial placement task.

Moreover, the joint loss of the two auxiliary tasks is com-

puted in a weighted sum.

After training the network, we use the feature representa-

tion from the last shared layer Pool5 as pose embeddings.

Features of this layer provide good localization which is im-

portant for pose retrieval and estimation.

We make several modifications to the Alexnet architec-

ture: 1) Because we want to avoid overfitting and our bi-

nary tasks do not require a large number of parameters, both

networks have a reduced number of neurons in the fully

connected layers compared to the original Alexnet (namely

2048/1024 vs 4096/4096). 2) To improve training of the

temporal task we replace the regular rectified linear unit in

the last convolutional layer with a non-linearity that has a

negative slope. We find that this modification is critical for

Figure 3: Network architecture for temporal ordering and

spatial placement.
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performance. 3) The use of batch normalization in the fully

connected layers is an important regularizer in our training

that helps with generalization to other datasets.

4. Experiments

We present experiments on posture analysis, pose esti-

mation and pose retrieval. The training of our method is

demonstrated on the Olympic Sports dataset (OSD) [26]. In

different ablation experiments we highlight the design de-

cisions in our proposed method. To study the ability of our

approach to generalize to unseen datasets we include exper-

iments on Leeds Sports Pose (LSP) [20] and the challenging

and unconstrained MPII Human Pose [2]. Additionally in

a supervised pose estimation setting [31], we report perfor-

mance of our method in comparison with other initialization

approaches.

4.1. Training and Testing Details

From 680 videos in Olympic Sports dataset, we extract

approximately 140,000 frames for which we obtain bound-

ing box estimates using the method in [14]. Our training

curriculum uses about 80,000 frames which are ordered us-

ing the flow ratio criterion described in Sect. 3.2. It starts

out with about five percent of the easiest training samples

and increases the amount of training data in seven steps ev-

ery 2.5K iterations. The amount of training data grows ex-

ponentially during the first few curriculum updates, but does

not surpass 25 percent of training data for a single update.

For training of the convolutional networks we use the

Caffe framework [19]. We optimize our model using the

Adam solver for stochastic batch gradient descent with

batch size of 48 and a fixed learning rate of 10−4. In the con-

volutional layers, we use a reduced learning rate of 10−5.

The training is stopped after 40K iterations. For joint train-

ing we reduce the loss weight for the spatial task by a factor

of 0.1. In the auxiliary tasks we use τ+ = 4 and τ− =
[8, 16] as well as σ+ = [0.65, 0.95] and σ− = [0.25, 0.55].
For mining repetitions we follow the procedure described

in Sect. 3.3 and iterate it two times to collect about 15000

frames with repetitive poses. We find that two iterations

are sufficient, since our method has found most of the rep-

etitions by this time. For testing, we use the pairwise Eu-

clidean distance of Pool5 features as a similarity measure

between images.

4.2. Ablation Experiments on Posture Analysis in
Olympic Sports Dataset

We demonstrate on the Olympic Sports dataset, how dif-

ferent configurations of our method affect the performance

of the learned pose embeddings. For the evaluation on the

the Olympic Sports dataset, we adopt the posture analysis

benchmark proposed in [5]. It consists of 1200 exemplar

postures for each of which ten positive (similar) and ten

Task without curriculum with curriculum

temporal(T) 0.592 0.630

temporal& spatial 0.664 0.679

temporal(T)∗ 0.762 0.781

temporal& spatial∗ 0.767 0.784

Table 1: Average AUC in Olympic Sports benchmark shows

effect of curriculum training. Methods with (∗) are initial-

ized with Imagenet pre-trained weights.

negative (dissimilar) poses are defined. The performance

is determined by the ability of the pose embeddings to sep-

arate positives from negatives and measured in terms of the

area under the curve (AuC) of a ROC.

First, we study the impact of curriculum learning. We

train our temporal (T) and temporal & spatial (ST) tasks

once with and once without a curriculum, but using the

same amount of training data. The experiments in Table 1

show that the curriculum as proposed in Sect. 3.2 improves

the performance of our method by 5% in mean AUC in ran-

dom initialized temporal task. When the temporal task is

initialized with Imagenet pre-trained weights, it improves

by 2%, and this improvement is preserved even in joint

learning of temporal ordering and spatial placement. Tem-

poral ordering itself seems less powerful than spatial place-

ment and cannot be learned without curriculum learning.

However, our fg/bg ratio based curriculum significantly in-

creases its performance in posture analysis.

Second, we analyze the contributions of repetition min-

ing and the two individual auxiliary tasks in Table 2. Tem-

poral ordering underperforms with respect to spatial place-

ment when initialized with random weights. We argue that

temporal ordering is a more challenging task, since the tem-

poral nature of actions has to be learned by the network.

When the network is initialized from Imagenet, temporal

ordering performs well. It has already learned to filter rel-

evant visual information and improves with additional tem-

poral cues from videos. On the other hand, spatial place-

ment does not improve on Alexnet by such a large margin,

because pre-trained Alexnet already comes with a good lo-

calization ability. In both settings (initialized randomly or

from Imagenet pre-trained weights), repetition mining fur-

ther boosts performance. This improvement highlights the

benefit of the usage of repetitions.

Additionally in Table 2, we compare our best perform-

ing method with related work. When randomly initial-

ized, our method performs better than several different self-

supervised methods [12, 32, 27] and surpasses the best com-

petitor by nearly 5 points. It even approaches the perfor-

mance of the Imagenet pre-trained Alexnet, which is im-

pressive considering that our training leveraged 680 sport

videos (approx. 80K frames used) without labels, whereas
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Figure 4: Pose retrieval results on MPII validation set: (a) Mean pose distance, (b) Hit rate@K using nearest neighbor

criterion, (c) Hit rate@K using relative distance criterion. Model with (∗) initialized with Imagenet pre-trained weights.

Method Avg. AUC

temporal(T) 0.630

spatial(S) 0.668

temporal & spatial 0.679

T with repetitions 0.658

S&T with repetitions 0.701

HOG-LDA 0.580

Doersch et al. [12] 0.580

Jigsaw puzzles [27] (Imagenet) 0.653

Jigsaw puzzles [27] (OSD) 0.646

Shuffle&Learn [23] 0.646

Video triplet [32] 0.598

Alexnet [21] 0.722

temporal∗ 0.781

spatial∗ 0.756

temporal & spatial∗ 0.784

T with repetitions∗ 0.794

S&T with repetitions∗ 0.804

CliqueCNN∗ [5] 0.790

Table 2: Comparative posture analysis performance of aux-

iliary tasks in Olympic Sports dataset. Methods with (∗) are

initialized with Imagenet pre-trained weights of Alexnet.

Imagenet contains 1.2M labeled images. In the case of

finetuning our model improves about 8 points on ImageNet

pre-trained Alexnet and surpasses CliqueCNN [5] which is

trained in the same setting.

4.3. Pose Retrieval

In this set of experiments we want to study the abil-

ity of our trained pose embeddings to generalize to unseen

datasets. For this purpose, we evaluate our methods in the

task of pose retrieval on the challenging MPII Human Pose

dataset. We adopt the same procedure as described in [22],

and split the fully annotated MPII training set into train and

validation set. The validation set is further split in 1919 im-

ages for query and 8000 images for test purposes. The input

images and pose annotations are normalized with respect to

smallest square patch tightly enclosing all body part loca-

tions, and normalized into the input size of our network.

According to [22] three performance metrics are used:

mean pose distance, hit rate using nearest neighbor and rel-

ative distance criterion. The pose distance is the mean of

Euclidean distances between normalized pose vectors. The

mean pose distance is computed across the first K nearest

neighbors. The hit rate measures the correctness of retrieval

and is defined in two different ways: 1) nearest neighbor

criterion determines whether at least one retrieval among

the K nearest neighbors belongs to the first fifty nearest

neighbors in the pose space. 2) relative distance crite-

rion uses a +10 margin of minimum pose distance between

query and test set.

The pose retrieval results evaluated on the three perfor-

mance metrics on MPII are shown in Fig. 4. Here, we

trained our method on the spatial&temporal (ST) tasks with

repetition mining using OSD only. It successfully general-

izes to the challenging MPII dataset. When randomly ini-

tialized, it shows better mean pose distance and hit rate per-

formance than previous methods, which are also trained on

videos [32, 23].

When the jigsaw puzzles method [27] is trained on

the larger Imagenet dataset, they clearly outperform our

method. We argue that this performance gap is due to dif-

ferent training data. To support this assumption, we re-train

their method on OSD person boxes using their official im-
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plementation 1, and find it to perform worse than our self-

supervised method across all measures.

When initialized from Imagenet pre-trained weights, our

method outperforms Alexnet across all measures particu-

larly in hit rates.

4.4. Pose Estimation

For pose estimation we evaluate on the Leeds Sports

Pose dataset [20]. We follow the procedure described in

[5] and use the 1000 training images and 3938 (fully an-

notated) images from the extended training set as test set

for retrieval while the original 1000 test images are used as

query. In both query and test images, joint locations are

normalized into our networks input size.

Method Head Torso U.arms L.arms U.legs L.legs Mean

random weights 19.3 45.2 9.6 4.1 21.1 20.3 19.9

ground truth 72.4 93.7 58.7 36.4 78.8 74.9 69.2

Chu et al.[11] 89.6 95.4 76.9 65.2 87.6 83.2 81.1

Shuffle&Learn [23] 36.7 66.6 20.1 8.3 37.5 35.0 34.0

Video triplet [32] 40.5 76.6 23.9 10.0 46.1 39.6 39.4

Jigsaw puzzles [27] (Imagenet) 49.3 80.1 27.5 11.9 50.5 47.4 44.4

Jigsaw puzzles [27] (OSD) 41.0 72.8 23.8 12.2 43.0 39.8 38.7

S&T with repetitions 40.3 74.7 23.8 11.5 45.8 42.8 39.8

Alexnet [21] 42.4 76.9 47.8 41.8 26.7 11.2 41.1

CliqueCNN [5] ∗ 45.5 80.1 27.2 12.6 50.1 45.7 43.5

S&T with repetitions∗ 55.8 86.5 35.0 18.9 58.7 53.8 51.5

Table 3: Pose estimation results in Leeds Sports Pose dataset

with PCP measures for each method. Methods with (∗) are

initialized with Imagenet pre-trained weights.

We report the Percentage of Correct Parts (PCP) mea-

sure [15] on 14 body joints for different methods. Accord-

ing to PCP a part is considered correct, if its endpoints are

within 50% part length of the corresponding ground truth

endpoints.

Unsupervised pose estimation results of LSP in Table 3

show that our method, when initialized randomly, performs

better than other self-supervised methods except for jigsaw

puzzles trained on Imagenet. As in the case of pose re-

trieval, we argue that it is due to the size of Imagenet. When

initialized from pre-trained weights, our method clearly out-

performs [21, 5].

Figure 5: Pose estimation results in Leeds Sports Pose

dataset. First images are from test set with the superim-

posed ground truth skeleton depicted in red and the pre-

dicted skeleton in green. Second images are corresponding

nearest neighbors.

1https://github.com/MehdiNoroozi/JigsawPuzzleSolver

Some qualitative samples from the query set together

with their nearest neighbors are shown in Fig. 5. Our

method is able to retrieve similar poses even if the query

is very different from our training data.

In addition to our unsupervised experiments, we use

our pose embeddings as an initialization of the supervised

DeepPose [31] method. In total, we evaluate four different

initializations of [31] on the MPII dataset: (i) our randomly

initialized spatial&temporal (ST) with repetitions model,

(ii) Shuffle&Learn [23], (iii) random initialization, and (iv)

Imagenet pre-trained Alexnet [21].

Ours Shuffle&Learn [23] Random init. Alexnet[21]

Head 82.6 75.8 79.4 87.2

Neck 90.3 86.3 87.1 93.2

LR Shoulder 79.5 75.0 71.6 85.2

LR Elbow 62.8 59.2 52.1 69.6

LR Wrist 47.1 42.2 34.6 52.0

LR Hip 75.5 73.3 64.1 81.3

LR Knee 65.3 63.1 58.3 69.7

LR Ankle 59.5 51.7 51.2 62.0

Thorax 90.1 87.1 85.5 93.4

Pelvis 80.3 79.5 70.1 86.6

Total 73.3 69.3 65.4 78.0

Table 4: PCKh@0.5 measure for DeepPose method [31] on

MPII Pose benchmark dataset comparing different initial-

ization approaches.

For all initializations, we train the DeepPose method us-

ing the same setup and evaluate using PCKh@0.5 metric

as shown in Table 4. Our method shows an improvement

of 7.9% and 4% compared with random initialization and

Shuffle&Learn, respectively. It is only 4.7% below Alexnet,

which is learned using the labels of 1.2 million images.

5. Conclusion

In this paper, we have proposed two complementary

self-supervised tasks, temporal ordering and spatial place-

ment which are trained jointly on unlabeled video data.

To boost self-supervised training, we have introduced a

motion-based curriculum and a procedure for mining repet-

itive poses and using them as valuable training data. Our

pose embeddings capture the characteristics of human pos-

ture, which we have demonstrated in experiments on pose

analysis. In the Olympics Sports dataset, the learned repre-

sentation decreases the gap between self-supervised meth-

ods and Imagenet supervision, and fine-tuning with our

self-supervised approach significantly improves the perfor-

mance of models pre-trained on Imagenet. Finally, we have

shown that the trained embeddings are able to generalize to

unseen datasets in pose analysis without fine-tuning.
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