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Abstract

The success of deep learning in vision can be attributed

to: (a) models with high capacity; (b) increased compu-

tational power; and (c) availability of large-scale labeled

data. Since 2012, there have been significant advances in

representation capabilities of the models and computational

capabilities of GPUs. But the size of the biggest dataset has

surprisingly remained constant. What will happen if we in-

crease the dataset size by 10× or 100×? This paper takes

a step towards clearing the clouds of mystery surrounding

the relationship between ‘enormous data’ and visual deep

learning. By exploiting the JFT-300M dataset which has

more than 375M noisy labels for 300M images, we inves-

tigate how the performance of current vision tasks would

change if this data was used for representation learning.

Our paper delivers some surprising (and some expected)

findings. First, we find that the performance on vision tasks

increases logarithmically based on volume of training data

size. Second, we show that representation learning (or pre-

training) still holds a lot of promise. One can improve per-

formance on many vision tasks by just training a better base

model. Finally, as expected, we present new state-of-the-

art results for different vision tasks including image clas-

sification, object detection, semantic segmentation and hu-

man pose estimation. Our sincere hope is that this inspires

vision community to not undervalue the data and develop

collective efforts in building larger datasets.

1. Introduction

There is unanimous agreement that the current ConvNet

revolution is a product of big labeled datasets (specifically,

1M labeled images from ImageNet [35]) and large compu-

tational power (thanks to GPUs). Every year we get further

increase in computational power (a newer and faster GPU)

but our datasets have not been so fortunate. ImageNet, a

dataset of 1M labeled images based on 1000 categories, was

used to train AlexNet [25] more than five years ago. Curi-
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Figure 1. The Curious Case of Vision Datasets: While GPU com-

putation power and model sizes have continued to increase over

the last five years, size of the largest training dataset has surpris-

ingly remained constant. Why is that? What would have happened

if we have used our resources to increase dataset size as well? This

paper provides a sneak-peek into what could be if the dataset sizes

are increased dramatically.

ously, while both GPUs and model capacity have contin-

ued to grow, datasets to train these models have remained

stagnant. Even a 101-layer ResNet with significantly more

capacity and depth is still trained with 1M images from Im-

ageNet circa 2011. Why is that? Have we once again be-

littled the importance of data in front of deeper models and

computational power? What will happen if we scale up the

amount of training data 10× or 100×, will the performance

double?

This paper takes the first steps towards clearing the

clouds of mystery surrounding the relationship between

‘enormous data’ and deep learning. We exploit the al-
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ready existing JFT-image dataset, first introduced by Hin-

ton et al. [17] and expanded by [7]. The JFT dataset has

more than 300M images that are labeled with 18291 cate-

gories. The annotations have been automatically obtained

and, therefore, are noisy and not exhaustive. These an-

notations have been cleaned using complex algorithms to

increase the precision of labels; however there is still ap-

proximately 20% error in precision. We will use this data

to investigate the nature of relationship between amount of

data and performance on vision tasks. Specifically, we will

look into the power of data for visual representation learn-

ing (pre-training). We evaluate our learned representation

on a variety of vision tasks: image classification, object de-

tection, semantic segmentation and human pose estimation.

Our experiments yield some surprising (and some expected)

findings:

• Better Representation Learning Helps! Our first ob-

servation is that large-scale data helps in representation

learning as evidenced by improvement in performance

on each and every vision task we study.

This suggests that collection of a larger-scale dataset to

study visual pretraining may greatly benefit the field.

Our findings also suggest a bright future for unsuper-

vised or self-supervised [10, 43] representation learn-

ing approaches. It seems the scale of data can over-

power noise in the label space.

• Performance increases logarithmically based on

volume of training data. We find there is a logarith-

mic relationship between performance on vision tasks

and the amount of training data used for representa-

tion learning. Note that previous papers on large-scale

learning [23] have shown diminishing returns even on

log-scale.

• Capacity is Crucial: We also observe that to fully ex-

ploit 300M images, one needs higher capacity models.

For example, in case of ResNet-50 the gain on COCO

object detection is much smaller (1.87%) compared to

(3%) when using ResNet-152.

• Training with Long-tail: Our data has quite a long

tail and yet the representation learning seems to work.

This long-tail does not seem to adversely affect the

stochastic training of ConvNets (training still con-

verges).

• New state of the art results: Finally, our paper

presents new state-of-the-art results on several bench-

marks using the models learned from JFT-300M. For

example, a single model (without any bells and whis-

tles) can now achieve 37.4 AP as compared to 34.3 AP

on the COCO detection benchmark.

2. Related Work

Ever since the seminal work by Krizhevsky et al. [25]

showcased the power of Convolutional Neural Networks

(ConvNets) on large-scale image recognition task, a lot of

work has been done to make them more accurate. A com-

mon approach is to increase the complexity of these net-

works by increasing the width or depth of these networks.

For example, Simonyan and Zisserman [37] proposed the

VGG-19 model which uses smaller convolutional filters and

has depth of 19 layers. Since then the representational

power and depth of these models have continued to grow

every year. GoogleNet [39] was a 22-layer network. In

this paper, we perform all our experiments with the ResNet

models proposed by He et al. [16]. The core idea is to add

residual connections between layers which helps in opti-

mization of very-deep models. This results in new state-

of-the-art performances on a number of recognition tasks.

Convolutional neural networks learn a hierarchy of vi-

sual representations. These visual representations have

been shown to be effective on a wide range of computer

vision tasks [1, 4, 14, 22, 29, 33, 36]. Learning these visual

representations require large-scale training data. However,

the biggest detection and segmentation datasets are still on

the order of hundreds of thousands of images. Therefore,

most of these approaches employ pre-training. The origi-

nal model is learning using million labeled images in Ima-

geNet and then further trained on target tasks (fine-tuning)

to yield better performance [4, 14, 33]. Huang et al. [18]

thoroughly evaluated the influence of multiple ConvNet ar-

chitectures on object detection performance, and found that

it is closely correlated with the models’ capacity and classi-

fication performances on ImageNet.

While there has been significant work on increasing the

representational capacity of ConvNets, the amount of train-

ing data for pre-training has remain kind of fixed over years.

The prime reason behind this is the lack of human verified

image datasets larger than ImageNet. In order to overcome

the bottleneck, there have been recent efforts on visual rep-

resentation learning using web-supervision [2, 5, 6, 9, 21,

23, 24, 27] or unsupervised [10, 11, 31, 32, 34, 42, 43]

paradigms. However, most of these efforts are still are still

exploratory in nature and far lower in performance com-

pared to fully-supervised learning.

In this paper, we aim to shift the discussion from mod-

els to data. Our paper is inspired from several papers which

have time and again paid closer look to impact and proper-

ties of data rather than models. In 2009, Pereira et al. [30]

presented a survey paper to look into impact of data in fields

such as natural language processing and computer vision.

They argued unlike physics, areas in AI are more likely

to see an impact using more data-driven approaches. An-

other related work is the empirical study by Torralba and

Efros [41] that highlighted the dataset biases in current com-
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puter vision approaches and how it impacts future research.

Specifically, we focus on understanding the relationship

between data and visual deep learning. There have been

some efforts to understand this relationship. For example,

Oquab et al. [28] showed that expanding the training data

to cover 1512 labels from ImageNet-14M further improves

the object detection performance. Similarly, Huh et al. [19]

showed that using a smaller subset of images for training

from ImageNet hurts performance. Both these studies also

show that selection of categories for training is important

and random addition of categories tends to hurt the perfor-

mance. But what happens when the number of categories

are increased 10x? Do we still need manual selection of

categories? Similarly, neither of these efforts demonstrated

data effects at significantly larger scale.

Some recent work [23, 44] have looked at training Con-

vNets with significantly larger data. While [44] looked at

geo-localization, [23] utilized the YFCC-100M dataset [40]

for representation learning. However, unlike ours, [23]

showed plateauing of detection performance when trained

on 100M images. Why is that? We believe there could be

two possible reasons: a) YFCC-100M images come only

from Flickr. JFT includes images all over the web, and has

better visual diversity. The usage of user feedback signals

in JFT further reduces label noise. YFCC-100M has a much

bigger vocabulary size and noisier annotations. b) But more

importantly, they did not see real effect of data due to use of

smaller AlexNet of VGG models. In our experiments, we

see more gain with larger model sizes.

3. The JFT-300M Dataset

We now introduce the JFT-300M dataset used through-

out this paper. JFT-300M is a follow up version of the

dataset introduced by [7, 17]. The JFT-300M dataset is

closely related and derived from the data which powers the

Image Search. In this version, the dataset has 300M images

and 375M labels, on average each image has 1.26 labels.

These images are labeled with 18291 categories: e.g., 1165

type of animals and 5720 types of vehicles are labeled in

the dataset. These categories form a rich hierarchy with the

maximum depth of hierarchy being 12 and maximum num-

ber of child for parent node being 2876.

The images are labeled using an algorithm that uses com-

plex mixture of raw web signals, connections between web-

pages and user feedback. The algorithm starts from over

one billion image label pairs, and ends up with 375M labels

for 300M images with the aim to select labeled images with

high precision. However, there is still some noise in the

labels: approximately 20% of the labels in this dataset are

noisy. Since there is no exhaustive annotation, we have no

way to estimate the recall of the labels. Figure 2 shows the

kind of noise that exists in the dataset. Because the labels

are generated automatically, there is a problem of ‘tortoise’
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Figure 2. JFT-300M dataset can be noisy in terms of label confu-

sion and incorrect labels. This is because labels are generated via

a complex mixture of web signals, and not annotated or cleaned by

humans. x-axis corresponds to the quantized distances to K-Means

centroids, which are computed based on visual features.

being confused with ‘tortoise-shell glasses’.

Finally, it is important to discuss the data distribution

of JFT-300M. The distribution is heavily long-tailed: e.g.,

there are more than 2M ‘flowers’, 3250 ‘subarau360’ but

only 131 images of ‘train conductors’. In fact, the tail is so

heavy that we have more than 3K categories with less than

100 images each and approximately 2K categories with less

than 20 images per category.

4. Training and Evaluation Framework

We now describe our training and evaluation framework

for the paper.

4.1. Training on JFT-300M Data

Although there are several novel ConvNet architectures

recently proposed, we decide to use a standard Residual

Network architecture [16] with 101 layers (ResNet-101) for

its state-of-the-art performance and the ease of comparison

with previous work. To train a ResNet-101 model on JFT-

300M, We add a fully-connected layer with 18291 outputs

at the end of the network for classification. As the image

labels are not mutually exclusive, we compute per-label lo-

gistic loss, and treat all non-present labels as negatives. To

alleviate the issue of missing labels, we use a hand-designed

label hierarchy and fill in the missing labels accordingly.

For example, an image with label ‘apple’ is also considered

as a correct example for ‘fruit’.

During training, all input images are resized to 340×340
pixels, and then randomly cropped to 299×299. The image

pixels are normalized to the range of [−1, 1] independently

per channel, and we use random reflection for data augmen-

tation. We set weight decay to 10−4 and use batch normal-

ization [20] after all the convolutional layers. RMSProp op-

timizer is used with momentum of 0.9, and the batch size

is set to 32. The learning rate is 10−3 initially and we de-

cay it by 0.9 every 3M steps. We use asynchronous gradient

descent training on 50 NVIDIA K80 GPUs. The model is

implemented in TensorFlow.

To allow asynchrounous training of models on 50 GPUs,

we adopt the Downpour SGD training scheme [8], where

we use 17 parameter servers to store and update the model
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Figure 3. Comparison of training progress with random initial-

ization (blue) and ImageNet initialization (yellow) on JFT-300M

data. x-axis is the number of training steps, and y-axis shows the

mAP@100 metric computed on FastEval14k.

weights. The final classification fully-connected layer with

2048 input units and over 18K output units has over 36M

parameters. To handle this in our parameter servers, we split

it vertically into 50 equal sized sub-fc layers, and distribute

them around different parameter servers.

ImageNet baseline: As observed by [7], hyperpa-

rameters that are selected to train with JFT-300M data

yield sub-optimal performance when training on ImageNet

(IVSVRC 2012 image classification dataset with 1.2M im-

ages). Therefore, for ImageNet, we use a momentum opti-

mizer with the momentum of 0.9, and set the initial learning

rate to 5 × 10−2 and batch size to 32. Learning rate is re-

duced by a factor of 10 every 30 epochs ( 1.2M steps), and

we train the model for a total of 5M steps. Similar to JFT-

300M training, we use asynchronous gradient descent train-

ing on 50 NVIDIA K80 GPUs and 17 parameter servers.

Our baseline ResNet-101 performs 1% better than the

open-sourced ResNet-101 checkpoint from the authors

of [16], using the same evaluation protocol.

4.2. Monitoring Training Progress

For monitoring the training progress on JFT-300M, we

use the validation set from Chollet [7]: ‘FastEval14k’.

FastEval14k consists of 14000 images with labels from

6000 classes (subset of 18291 classes from JFT-300M). Un-

like labels in JFT-300M, the images in FastEval14k are

densely annotated and there are around 37 labels per image

on average. We use the same mAP@100 metric as in [7],

which is computed as the mean average precision (mAP)

for top-100 predictions. Note that the class AP is weighted

by how common the class is among social media images.

We tried two strategies to initialize the model weights for

training: random initialization and initializing from an Ima-

geNet checkpoint. In both settings, we used the same train-

ing schedule (e.g., learning rates). We found that on FastE-

val14k benchmark, model trained from ImageNet initializa-

tion performs better at the first 15M iterations, but then be-

comes on par with random initialization. Figure 3 shows

the training progress for these two settings. On FastEval14k

benchmark, model trained from ImageNet initialization per-

forms better at the first 15M iterations, but then becomes on

par with random initialization.

Please note that the full training schedule takes 90M iter-

ations or around 10 epochs. However, due to the time con-

straints, we train the models for 36M iterations or 4 epochs,

which takes approximately 2 months. We will study the im-

pact of training iterations in Section 5.

4.3. Evaluating the Visual Representations

We use two approaches to evaluate the quality of visual

representations learned from 300M training data. The first

approach is to freeze the model weights and use these mod-

els as pure feature extractors. The second approach is to use

the model weights as initialization and fine-tune the weights

for other tasks. For evaluating visual representations, we

select three representative computer vision tasks: object de-

tection, semantic segmentation and human pose estimation.

We will perform a more rigorous ablative analysis to ob-

serve the effect of dataset size, vocabulary size, etc. on the

object detection task. For the other tasks, we will just show

how JFT-300M provides significant improvement compared

to baseline ImageNet ResNet.

De-duplication One concern with using large-scale sets

such as JFT-300M is the possible overlap between training

and test sets. Such duplication exist in current frameworks

as well: e.g. 890 out of 50K validation images in ImageNet

have near-duplicate images training set. However, to en-

sure such duplication does not affect our results, we per-

formed all experiments by removing near-duplicate images

from test sets. We found the difference in performance to

be insignificant for all the experiments. We therefore report

de-duplicated test-set results in Appendix A.

Object Detection. We use the Faster RCNN frame-

work [33] for its state-of-the-art performance. Faster RCNN

is a two-stage model. The first stage is called region

proposal network (RPN), which aims at generating class-

agnostic object proposals. The second stage is a box clas-

sifier, it takes the boxes predicted by RPN and crops fea-

ture maps to generate classification predictions and refined

bounding box predictions. These two stages share a com-

mon feature map generated by a ConvNet, and box classifier

has additional convolutional layers before its final classifi-

cation and regression layers. To use the ResNet-101 model

pre-trained on JFT-300M data, we split the model into two

parts: the first part starts from conv1 block and ends at

conv4 block, it is used for feature extraction and is shared

by both RPN and box classifier; the second part consists of

the conv5 block, it is used by box classifier.

Semantic Segmentation. We use the DeepLab frame-

work [4] with ResNet-101 base architecture for the task

of semantic segmentation. In particular, we use a variant

which adds four branches after the conv5 block of ResNet-

101 architecture. Each branch is an atrous convolutional
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Initialization Top-1 Acc. Top-5 Acc.

MSRA checkpoint [16] 76.4 92.9

Random initialization 77.5 93.9

Fine-tune from JFT-300M 79.2 94.7

Table 1. Top-1 and top-5 classification accuracy on the ImageNet

‘val’ set (single model and single crop inference are used).

layer that predicts a sub-sampled pixel-wise class probabil-

ities. Predictions from all branches are fused together to

produce the final segmentation output. Please refer to the

DeepLab-ASPP-L model (Atrous Spatial Pyramid Pooling,

with Large atrous rates) from [4] for details.

Pose Estimation. We follow the framework proposed by

Papandreou et al. [29]. It uses person bounding boxes de-

tected by Faster RCNN, then applies a ResNet [16] fully

convolutionally to produce heatmaps and offsets for all key-

points. A novel scoring and non-maximum suppression

(NMS) scheme is used to suppress duplicate detections and

improve performance. We simply replace the base models

used in their framework by our trained ResNet-101 models.

5. Experiments

We present results of fine-tuning JFT-300M ResNet-101

checkpoints on four tasks: image classification, object de-

tection, semantic segmentation and human pose estimation.

5.1. Image Classification

We fine-tune the JFT-300M pre-trained ResNet101 us-

ing ImageNet classification data and compare it with a

ResNet101 model trained from scratch. For this experi-

ment, we use the standard ILSVRC 2012 ‘train’ and ‘val’

sets for training and evaluation. There are 1.2M training

images and 50K validation images, over 1000 classes.

We use the same ImageNet training setup as described

in Section 4.1 for the ImageNet baseline, but lowered the

initial learning rate to 10−3 (standard for fine-tuning). We

initialize the model weights from the JFT-300M checkpoint

trained for 36M iterations and fine-tune on ImageNet for

4M iterations.

Table 1 compares the fine-tuning results with models

trained from the scratch. For reference, we show the ran-

dom initialization performance for the open-sourced check-

point from the authors of [16]. We report top-1 and top-5 ac-

curacies with a single crop being evaluated. We can see that

fine-tuning on JFT-300M gives considerable performance

boost for both top-1 and top-5 accuracies.

5.2. Object Detection

We next evaluate the JFT-300M checkpoints on object

detection tasks. We evaluate on the two most popular

datasets: COCO [26] and PASCAL VOC [13]. Instead of

just showing state-of-the-art performance, we will also per-

form a rigorous ablative analysis to gain insights into the

relationship between data and representation learning.

Specifically, we use object detection experiments to an-

swer the following questions:

• How does the performance of trained representations

vary with iterations and epochs?

• Does the performance of learned visual representations

saturate after certain amount of data? Do we see any

plateauing effect with more and more data?

• How important is representational capacity?

• Is the number of classes a key factor in learning visual

representation?

• How could clean data (e.g., ImageNet) help improve

the visual representations?

Experimental Setup

For COCO [26], we use a held-out 8000 images from the

standard ‘val’ set as our validation set, we refer to it as

‘minival∗’, the same set of images was used by [18]. We

use a combination of the standard training set and the re-

maining validation images for training. Unless otherwise

specified, all COCO results are reported on the minival∗

set. In particular, we are interested in mean average pre-

cision at 50% IOU threshold (mAP@.5), and the average of

mAP at IOU thresholds 50% to 95% (mAP@[.5, .95]). For

our best ResNet101 models, we also evaluate on the COCO

‘test-dev’ split (evaluated by the official result server). For

PASCAL VOC, we use the 16551 ‘trainval’ images from

PASCAL VOC 2007 and 2012 for training, and report per-

formance on the PASCAL VOC 2007 Test, which has 4952

images using mAP@.5 metric.

We use the TensorFlow Faster RCNN implementa-

tion [18] and adopt their default training hyperparameters

except for learning rate schedules. We use asynchronous

training with 9 GPU workers and 11 parameter servers, mo-

mentum optimizer is used with the momentum of 0.9. Each

worker takes a single input image per step, the batch size for

RPN and box classifier training are 64 and 256 respectively.

Input images are resized to have 600 minimum pixels and

1024 maximum pixels while maintaining the aspect ratio.

The only data augmentation used is random flipping.

For COCO, we set the initial learning rate to be 4×10−4,

and decay the learning rate by a factor of 10 after 2.5M

steps, the total number of steps is 3M. For PASCAL VOC,

we set the initial learning rate to be 3 × 10−4, and decay

the learning rate by 0.1 after 500K steps, and the model

is trained for 700K steps. The training schedules were se-

lected on held-out validation images using the open-source

ResNet-101 model (pre-trained on ImageNet). We found

the same training schedules work well on other checkpoints,

and keep them fixed throughout for fairer comparison. Dur-
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Method mAP@0.5 mAP@[0.5,0.95]

He et al. [16] 53.3 32.2

ImageNet 53.6 34.3

300M 56.9 36.7

ImageNet+300M 58.0 37.4

Inception ResNet [38] 56.3 35.5

Table 2. Object detection performance comparisons with baseline

methods on the COCO test-dev split. The first four Faster RCNN

detectors are all based on ResNet-101 architecture, the last one is

based on the InceptionResNet-v2 architecture. During inference, a

single image scale and crop, and a single detection model are used

for all experiments. Vanilla Faster RCNN implementations are

used for all systems except for He et al. [16], which also includes

box refinement and context.

ing inference, we use 300 RPN proposals. Our vanilla

FasterRCNN implementation does not use the multi-scale

inference, context or box-refinement as described in [33].

Comparison with ImageNet Models

We first present the performance comparison with Ima-

geNet checkpoints. Table 2 shows the detection perfor-

mance on COCO ‘test-dev’ split. To show that our Faster

RCNN baseline is competitive, we also report results from

the Faster RCNN paper [16], which uses both box refine-

ment and context information. We can see that our Ima-

geNet baseline performs competitively.

We evaluate JFT-300M trained from scratch (‘300M’)

and from ImageNet initialization (’ImageNet+300M’).

Both models outperforms the ImageNet baseline by large

margins, with 3.3% and 4.4% boost in mAP@.5, 2.4% and

3.1% in mAP@[.5,.95] respectively. As a reference, we also

show the performance of ImageNet trained InceptionRes-

Netv2 in Table 2. We would like to point out that the gain

is even more significant than recently achieved by doubling

the number of layers on Inception ResNet [18]. This clearly

indicates that while there are indications of a plateauing ef-

fect on model representation capacity; in terms of data there

is still a lot that can be easily gained.

Table 3 shows the performance on the PASCAL VOC

2007 ‘test’ set. Again, both JFT-300M checkpoints out-

performs the ImageNet baseline significantly, by 5.1% and

5.0% mAP@.5 respectively.

Impact of Epochs

We study how the number of training epochs affects the

object detection performance. For this experiment we re-

port results on COCO minival∗ set. Table 4 shows the per-

formance comparison when the JFT-300M model has been

trained for 1.3, 2.6 and 4 epochs respectively. We can see

that as the number of training steps increases, the perfor-
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Figure 4. Object detection performance when initial checkpoints

are pre-trained on different subsets of JFT-300M from scratch.

x-axis is the data size in log-scale, y-axis is the detection per-

formance in mAP@[.5,.95] on COCO minival∗ (left), and in

mAP@.5 on PASCAL VOC 2007 test (right).

mance also improves. As a comparison, in Table 5 we show

the ImageNet counterpart when trained for 3, 6, 12 and

150 epochs, we can see that the performance of ImageNet

checkpoints improves faster than JFT-300M with respect to

the number of epochs.

We would also like to point out that our learning sched-

ules have been developed using the experience from smaller

datasets. One can envision better learning schedules which

provide more improvement as more epochs are used.

Impact of Data Size

For this experiment, we randomly sample a subset of 10M,

30M and 100M images from the JFT-300M training data.

We use the same training schedule as the JFT-300M model

training. We pick the checkpoints corresponding to the 4th

epoch for each subset. To study the impact of learned visual

representations, we also conduct an experiments to freeze

the model weights for all layers before the conv5 block. For

this set of experiments we change the learning rate decay to

happen at 900K steps, and the total number of training steps

to 1.5M, as we find they tend to converge earlier.

In Figure 4, we show the mAP@[.5,.95] with check-

points trained on different JFT-300M subsets, the blue curve

corresponds to the regular faster RCNN training (with fine-

tuning), while the red curve corresponds to freezing feature

extractors. Not surprisingly, fine-tuning offers significantly

better performance on all data sizes. Most interestingly, we

can see that the performance grows logarithmically as pre-

training data expands, this is particularly true when feature

extraction layers are frozen.

Impact of Classes

JFT-300M has 18K labels in total. To understand what the

large number of classes brings us, we select a subset of 941

labels which have direct correspondence to the 1000 Ima-

geNet labels, and sample JFT-300M images which contain
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method airplane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train TV mean

ImageNet 79.7 80.6 77.1 65.9 64.2 85.3 81.0 88.4 60.5 83.1 70.8 86.7 86.2 79.7 79.5 49.5 78.3 80.2 79.2 69.7 76.3

300M 87.2 88.8 79.6 75.2 67.9 88.2 89.3 88.6 64.3 86.1 73.6 88.7 89.1 86.5 86.4 57.7 84.2 82.1 86.7 78.6 81.4

ImageNet+300M 86.9 88.0 80.1 74.7 68.8 88.9 89.6 88.0 69.7 86.9 71.9 88.5 89.6 86.9 86.8 53.7 78.2 82.3 87.7 77.9 81.3

Table 3. Average Precision @ IOU threshold of 0.5 on PASCAL VOC 2007 ‘test’ set. The ‘trainval’ set of PASCAL VOC 2007 and 2012

are used for training.

#Iters on JFT-300M #Epochs mAP@[0.5,0.95]

12M 1.3 35.0

24M 2.6 36.1

36M 4 36.8

Table 4. mAP@[.5,.95] on COCO minival∗ with JFT-300M check-

point trained from scratch for different number of epochs.

#Iters on ImageNet #Epochs mAP@[0.5,0.95]

100K 3 22.2

200K 6 25.9

400K 12 27.4

5M 150 34.5

Table 5. mAP@[.5,.95] on COCO minival∗ with ImageNet check-

point trained for different number of epochs.

Number of classes mAP@[.5,.95]

1K ImageNet 31.2

18K JFT 31.9

Table 6. Object detection performance in mean AP@[.5,.95] on

COCO minival∗ set. We compare checkpoints pre-trained on 30M

JFT images where labels are limited to the 1K ImageNet classes,

and 30M JFT images covering all 18K JFT classes.

#Layers ImageNet 300M

50 31.6 33.5

101 34.5 36.8

152 34.7 37.7

50 101 152

Number of layers →

20

25

30

35

40

m
ea
n
A
P
→

300M

ImageNet

Figure 5. Object detection performance on COCO minival∗ on

ResNet models with different number of layers.

at least one of such labels. This results in a subset of 30M

images. We then train on this dataset for 4 epochs using the

same training scheme.

Table 6 shows the performance comparison on COCO

minival∗ set. We see that the two models perform on par

with each other. This indicates that the performance benefit

comes from more training images instead of more labels.

Impact of Model Capacity

Finally, we study the impact of model capacity when 300M

images are available for training. We conduct the exper-

iments on the 50-layer, 101-layer and 152-layer ResNet

models. Each model is trained from scratch on the JFT-

300M data, with the same hyper parameters used for

ResNet-101 experiments. For comparison, we also train the

models on ImageNet data till convergence, using the same

hyper parameters for ResNet-101.

Figure 5 shows the performance of fine-tuning different

pre-trained models on COCO minival∗set. We observe that

higher capacity models are better at utilizing 300M data.

For example, in case of ResNet-50 the gain is smaller com-

pared to when using ResNet-152.

5.3. Semantic Segmentation

We use the PASCAL VOC 2012 semantic segmentation

benchmark [12] which has pixel-wise labels for 20 fore-

ground classes and one background class. As is standard

practice, all models are trained on an augmented PASCAL

VOC [12] 2012 ‘trainaug’ set with 10582 images (extra an-

notations from [15]). We report quantitative results on the

PASCAL VOC 2012 ‘val’ set (1449 images) using the stan-

dard mean intersection-over-union (mIOU) metric.

Implementation details. The DeepLab-ASPP-L

model [4] has four parallel branches after conv5 block

of ResNet101 architecture. Each branch is a (3 × 3)
convolutional layer, with a different atrous rate r (r ∈
{6, 12, 8, 24}). Different atrous rates enable the model to

capture objects and context at different scales. Output of

each branch is pixel-wise scores for 21 classes with the

same resolution output map (subsampled by factor of 8

compared to the original image). These scores are added

together and normalized for the final pixel-wise class prob-

abilities.

For training, we use mini-batch SGD with momentum.

Our model is trained for 30k SGD iterations using a mini-

batch of 6 images, momentum of 0.9, an initialize learning

rate (LR) of 10−3 and ”polynomial” learning rate policy [4].

All layers are trained with L2-regularization (weight decay

of 5× 10−4). We do not use any data-augmentation, multi-

scale training/testing or post-processing using CRFs for this

task. To initialize the DeepLab-ASPP-L model using Ima-

geNet or JFT-300M trained checkpoints, the final classifi-

cation layer from these checkpoints is replaced with four

convolutional branches (initialized using Xavier). All in-
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Initialization mIOU

ImageNet 73.6

300M 75.3

ImageNet+300M 76.5

Figure 6. Semantic segmentation performance on Pascal VOC

2012 val set. (left) Quantitative performance of different initial-

izations; (right) Impact of data size on performance.

AP AP@.5 AR AR@.5

CMU Pose [3] 61.8 84.9 66.5 87.2

ImageNet [29] 62.4 84.0 66.7 86.6

300M 64.8 85.8 69.4 88.4

ImageNet+300M 64.4 85.7 69.1 88.2

Table 7. Human pose estimation performance on COCO ‘test-dev’

split. We follow the implementation of G-RMI Pose [29], but

change the ResNet-101 initial checkpoints from ImageNet pre-

trained to JFT-300M pre-trained.

put images are resized to (513 × 513), which results in a

(65× 65) conv5 block from the ResNet101 network as well

as (65× 65× 21) predictions from the entire model.

Comparison with ImageNet Models. We present quanti-

tative comparison of JFT-300M checkpoints with ImageNet

checkpoints in Figure 6 (left). We see that the JFT-300M

checkpoint outperforms ImageNet by 1.7% points. We fur-

ther observe that the JFT-300M model trained from the

ImageNet checkpoint provides 2.9% points boost over the

vanilla ImageNet checkpoint.

Impact of Data Size. In Figure 6 (right), we further

present analysis of impact of training data size by randomly

sampling a subset of 10M, 30M and 100M images from

the JFT-300M for training base checkpoints (same as Sec-

tion 5.2). Once again we observe that the performance in-

creases logarithmically as the pre-training dataset increases.

5.4. Human Pose Estimation

We train the fully-convolutional pose detector [29] by

initializing the base ResNet model with our checkpoints and

fine-tuning. The model is trained with SGD+Momentum

for 450K steps. The learning rate was dropped by a factor

of 10 after 250K steps, starting with a base learning rate.

Best hyper parameter combination for each model was then

selected independently and used in further experimentation.

In Table 7, we present the end to end pose estimation re-

sults evaluated on COCO ‘test-dev’ set. G-RMI Pose uses

the ImageNet pre-trained checkpoint for fine-tuning, and

we can see that our models with JFT-300M initialization

perform much better. Note that to have a fair comparison

with G-RMI Pose, we show their performance when only

COCO images are used for training (fine-tuning) and no en-

sembling is performed. We use the person detection results

provided by the authors and apply our trained pose detectors

on the same set of person boxes.

6. Discussions

Is it to be expected that performance of computer vi-

sion algorithms would always improve with more and more

data? In our personal correspondences with several re-

searchers, the general consensus seems to be that everyone

expects some gain in performance numbers if the dataset

size is increased dramatically, with decreasing marginal

performance as the dataset grows. Yet, while a tremen-

dous amount of time is spent on engineering and parameter

sweeps; little to no time has been spent collectively on data.

Our paper is an attempt to put the focus back on the data.

The models seem to be plateauing but when it comes to the

performance with respect to data – but modest performance

improvements are still possible for exponential increases of

the data. Another major finding of our paper is that hav-

ing better models is not leading to substantial gains because

ImageNet is no more sufficient to use all the parameters or

their representational power.

Representation learning: One of the underlying debates

is that should we spend more time collecting data for indi-

vidual tasks such as detection and segmentation. Our find-

ings show there is still a lot to be gained from representation

learning. Improved base models or base features can lead to

significant gains in performance.

Disclaimer – Large scale learning: We would like to

highlight that the training regime, learning schedules and

parameters used in this paper are based on our understand-

ing of training ConvNets with 1M images. Searching the

right set of hyper-parameters requires significant more ef-

fort: even training a JFT model for 4 epochs needed 2

months on 50 K-80 GPUs. Therefore, in some sense the

quantitative performance reported in this paper underesti-

mates the impact of data for all reported image volumes.
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