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Abstract

We motivate and address a human-in-the-loop variant of

the monocular viewpoint estimation task in which the loca-

tion and class of one semantic object keypoint is available at

test time. In order to leverage the keypoint information, we

devise a Convolutional Neural Network called Click-Here

CNN (CH-CNN) that integrates the keypoint information

with activations from the layers that process the image. It

transforms the keypoint information into a 2D map that can

be used to weigh features from certain parts of the image

more heavily. The weighted sum of these spatial features

is combined with global image features to provide relevant

information to the prediction layers. To train our network,

we collect a novel dataset of 3D keypoint annotations on

thousands of CAD models, and synthetically render millions

of images with 2D keypoint information. On test instances

from PASCAL 3D+, our model achieves a mean class accu-

racy of 90.7%, whereas the state-of-the-art baseline only

obtains 85.7% mean class accuracy, justifying our argu-

ment for human-in-the-loop inference.

1. Introduction

It is well understood that humans and computers have

complementary abilities. Humans, for example, are good

at visual perception—even in rather challenging scenar-

ios such as finding a toy in a cluttered room—and, con-

sequently, subsequent abstract reasoning from visually ac-

quired information. On the other hand, computers are good

at processing large amounts of data quickly and with great

precision, such as predicting viewpoints for millions of im-

ages within an exact, but possibly inaccurate, degree. Al-

though we, as a community, design automatic systems that

seek to extract information from images automatically—

and have done this quite well, e.g., [9, 17]—there are in-

deed situations that are beyond the capabilities of current

systems, such as inferring the extent of damage to two ve-

hicles involved in a car accident from data acquired by a

dash-cam.
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Figure 1: Semantic keypoint information can help address

ambiguities that are difficult to resolve from the image

alone. Each diagram shows the available information on

the left, the high-level structure of the model in the mid-

dle, and the confidences of the azimuth angle on the right.

In the black bars, gray indicates confidence, magenta marks

the final prediction, and the green triangle marks the ground

truth. The orange star indicates the human-provided key-

point. Both the light mask and orange star on the bottom

left image are for visualization purposes only, and are not

part of the input to any network.

In such exceptionally challenging cases, integrating the

abilities of both humans and computers during inference

is necessary; we call this methodology hybrid intelligence,

borrowing a term from social computing [18]. This strategy

can lead to pipelines that achieve better performance than

fully automatic systems without incurring a significant bur-

den on the human (Figure 1 illustrates such an example).

Indeed, numerous computer vision researchers have begun

to investigate tasks inspired by this methodology, such as

learning on a budget [24] and Markov Decision Process-

based fusion [20].

Continuing in this vein of work, we focus on integrating
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the information provided by a human as additional input

during inference to a novel convolutional neural network

(CNN) architecture. We refer to this architecture as the

Click-Here Convolutional Neural Network, or CH-CNN. In

training, we learn how to best make use of the additional

keypoint information. We develop a means to encode the

location and identity of a single semantic keypoint on an

image as the extra human guidance, and automatically learn

how to integrate it within the part of the network that pro-

cesses the image. The human guidance keypoint essentially

determines a weighting, or attention mechanism [31], to

identify particularly discriminative locations of information

as data flows through the network. To the best of our knowl-

edge, this is the first work to integrate such human guidance

into a CNN at inference time.

To ground this work, we focus on the specific problem

of monocular viewpoint estimation—the problem of identi-

fying the camera’s position with respect to the target object

from a single RGB image. This challenging problem has

applications in numerous areas such as automated driving,

robotics, and scene understanding, many of which we en-

vision a possible human-in-the-loop during inference. Al-

though discriminative CNN-based methods have achieved

remarkable performance on this task [23, 22, 14, 28], they

often make mistakes when faced with three types of chal-

lenges: occlusion, truncation, and highly symmetrical ob-

jects [22]. In the first two cases, there is not enough vi-

sual information for the model to make the correct predic-

tion, whereas in the third case, the model cannot identify

the visual cues necessary to select among multiple plausi-

ble viewpoints.

Monocular viewpoint estimation is well-suited to our hy-

brid intelligence setup as humans can locate semantic key-

points on objects, such as the center of the left-front wheel

on a car, fairly easily and with high confidence. CH-CNN

is able to integrate such a keypoint directly into the infer-

ence pipeline. It computes a distance transform based on

the keypoint location, combines it with a one-hot vector

that indicates the keypoint class label, and then uses these

data to generate a weight map that is combined with hid-

den activations from the convolutional layers that operate

on the image. At a high level, our model learns to extract

two types of information—global image information and

keypoint-conditional information—and uses them to obtain

the final viewpoint prediction.

We train CH-CNN with over 8,000 computer-aided de-

sign (CAD) models from ShapeNet [3] annotated with a

custom, web-based interface. To our knowledge, our key-

point annotation dataset is an order of magnitude larger

than the next largest keypoint dataset for ShapeNet CAD

models [14] in terms of number of annotated models. As

our thorough experiments show, we are able to use this hu-

man guidance to vastly improve viewpoint estimation per-

formance: on human-guidance instances from the PASCAL

3D+ validation set [29], a fine-tuned version of the state-of-

the-art model from Su et al. [22] achieves 85.7% mean class

accuracy, while our CH-CNN achieves 90.7% mean class

accuracy. Additionally, our model is well-suited for han-

dling challenges that the state-of-the-art model often fails

to overcome, as shown by our qualitative results.

We summarize our contributions as follows. First,

we propose a novel CNN that integrates two types of

information—an image and information about a single

keypoint—to output viewpoint predictions; this model

is designed to be incorporated into a hybrid-intelligence

viewpoint estimation pipeline. Second, to train our

model, we collect keypoint locations on thousands of

CAD models, and use these data to render millions of

synthetic images with 2D keypoint information. Fi-

nally, we evaluate our model on the PASCAL 3D+

viewpoint estimation dataset [29] and achieve substan-

tially better performance than the leading state-of-the-art,

image-only method, validating our hybrid intelligence-

based approach. Our code and 3D CAD keypoint

annotations are available on our project website at

ryanszeto.com/projects/ch-cnn.

2. Related Work

Monocular Viewpoint Estimation. Viewpoint estimation

and pose estimation of rigid objects have been tackled using

a wide variety of approaches. One line of work has extended

Deformable Part Models (DPMs) [7] to simultaneously lo-

calize objects and predict their viewpoint [29, 19, 8]. How-

ever, DPM-based methods can only predict a limited set

of viewpoints, since each viewpoint requires a separate set

of models. Patch alignment-based approaches identify dis-

criminative patches from the test image and match them

to a database of rendered 3D CAD models [1, 16]. More

recent approaches have leveraged CNNs [5, 4, 28, 14, 23,

22], which achieve high performance without requiring the

hand-crafted features used by earlier work. Additionally,

unlike DPM-based approaches, CNNs extend easily to fine-

grained viewpoints by regressing from the image to either a

continuous viewpoint space [5, 4] or a discrete, but fine-

grained space [23, 22]. Even better performance can be

achieved by supervising the CNN training stage with inter-

mediate representations [28, 14]. Nonetheless, most fully-

automatic approaches struggle from three specific chal-

lenges: occlusion [29, 22, 1], truncation [29, 22], and highly

symmetric objects [22, 16]. As we show in Section 5, CH-

CNN helps reduce the error caused by these challenges.

Human Interaction for Vision Tasks. Most prior work in

the vision community on integrating information from hu-

mans at inference time are examples of either active learn-

ing or dynamic inference. Active learning approaches re-

duce the amount of labeled data required for sufficient per-
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Figure 2: The architecture for CH-CNN. A weighting over the conv4 activation depth columns is learned by taking linear

transformations of the keypoint data and applying a softmax operation to the result. The keypoint features are obtained by

taking the sum of each activation depth column weighted by the corresponding value in the weight map. These features are

concatenated to the fc7 image features to aid with inference. The orange star only visualizes the keypoint in this figure; it is

not used as input to the network.

formance by intelligently selecting unlabeled instances for

the human to annotate [24, 25, 24, 15]. Our task differs

from active learning in that the information from the hu-

man (the keypoint) is available at inference time rather than

training time, and we leverage auxiliary human informa-

tion to improve the accuracy of our model rather than to

achieve sufficient performance with fewer examples. In

dynamic inference, a system proposes questions with the

goal of improving the confidence or quality of its final an-

swer [20, 2, 26, 27, 10]. This line of work has demonstrated

the potential of incorporating human input at inference time.

Contrasting with work in dynamic inference, which empha-

sizes the process of selecting questions for the human to an-

swer, we focus on the problem of learning how to integrate

answers in an end-to-end approach for viewpoint estimation

CNNs.

3. Click-Here CNN for Viewpoint Estimation

Our goal is to estimate three discrete angles that describe

the rotation of the camera about a target object, where we

are given a tight crop of the object, the location of a visible

keypoint in the image, and the keypoint class (e.g. the center

of the front right wheel, for a car). We do so with a novel

CH-CNN that outputs confidences for each possible angle.

Formally, let I ∈ R
h×w×3 be a single RGB image,

(x, y) be the 2D coordinate of the provided keypoint loca-

tion in the image, and ckp be the keypoint class. The label

ckp can take on one of
∑

co∈Co
|Ckp(co)| values, where Co

is the set of object classes and Ckp(co) is the set of key-

point classes for a given object class co. Furthermore, for a

given instance s = (I, x, y, ckp, co), let θgt = (θ1, θ2, θ3)
be a tuple associated with s representing the ground-truth

azimuth/longitudinal rotation, elevation/latitudinal rotation,

and in-plane rotation of the camera with respect to the

object’s canonical coordinate system; each angle is dis-

cretized into N bins (following Su et al. [22], we consider

N = 360). For each object class co, we seek a probabil-

ity distribution function P (θ|s) that is maximized at θgt for

any instance s. We approximate this set of functions with

our CH-CNN.

Prior work [23, 22] has explored the case where s =
(I, co), i.e. the image and object class are available at

test time, by fine-tuning popular CNN architectures such

as AlexNet [13] and VGGNet [21]. Note that after fine-

tuning, the intermediate activations of these models can be

interpreted as image features that are useful for viewpoint

estimation [22]. In our case, we have access to additional

information at test time, i.e. the keypoint location (x, y) and

class ckp. We believe that for viewpoint estimation, this in-

formation can be used to produce features that complement

the global image features extracted from popular CNN ar-

chitectures. We incorporate this idea in CH-CNN by learn-

ing to weigh features from certain regions in the image more

heavily based on the keypoint information.

Figure 2 illustrates the architecture of CH-CNN. The

early layers of our architecture are divided into two streams:

the first generates features from the image, and the second

produces “keypoint features” to complement the high-level

image features. The keypoint feature stream produces fea-

tures in three steps. First, a weight map is produced by

passing the keypoint map and class through a series of lin-

ear transformations and taking the softmax of the result.

Second, the activation depth columns from a convolutional

layer (conv4 in our case) are multiplied by the correspond-
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ing weights from the weight map. Finally, the keypoint fea-

tures are created by taking the sum of the weighted columns.

CH-CNN concatenates the features from the image and

keypoint streams and performs inference with one fully-

connected hidden layer and one prediction layer for each

angle. The fact that we seek a probability distribution func-

tion for each object class suggests that a separate network

must be trained for each object class. To avoid this, we

adopt the approach used in Su et al. [22] where lower-level

feature layers are shared by all object classes, and object

class-dependent prediction layers are used for each angle.

3.1. Implementation of CHCNN

We implement the image stream of CH-CNN with the

hidden layers of AlexNet [13] (i.e. the layers up to the sec-

ond fully-connected layer fc7); we take the activations of

the fc7 layer as our image features. We stress that while

AlexNet is a less powerful model than more recent ones

such as ResNet [9], our choice allows for a sensible com-

parison with Su et al. [22], who fine-tune the same archi-

tecture for viewpoint estimation. Additionally, the choice

of architecture used for the image stream is independent of

our primary contribution, which is to leverage the additional

guidance from the provided keypoint at inference time.

The keypoint feature stream takes representations of

(x, y) and ckp and generates a weighting over activation

depth columns from a convolutional layer in the image

stream (the fourth layer conv4 in our case), where spa-

tial, but high-level information is retained. We use c
(i,j)
conv4

to denote the column at position (i, j) in the conv4 activa-

tion depth column grid. We represent (x, y) with a matrix

mkp ∈ R
s×s, where each entry m

(i,j)
kp is the Chebyshev

distance of (i, j) from (x, y) divided by the largest possible

distance from the keypoint; the label ckp is represented with

a one-hot vector encoding vkp.

To learn weights over the activation depth columns, we

first learn keypoint map features by downsampling mkp

with max pooling, and applying a linear transformation to

the vectorized result:

mpool = pool(mkp)

vm = flatten(mpool)

am = Wmvm .

(1)

Similarly, features from the keypoint class vector are ob-

tained with a linear transformation:

ackp
= Wckp

vkp . (2)

Finally, the weight map for the conv4 activation depth

columns Wconv4 is obtained by linearly transforming the

concatenated keypoint features, applying the softmax func-

tion, and reshaping the result to match the shape of the

conv4 activation depth column grid (hconv4, wconv4):

akpc = Wkpc[a
⊤
m a⊤ckp

]⊤ (3)

Wconv4 = reshape(softmax(akpc), (hconv4, wconv4)) .

The keypoint feature vector akp is the sum of the conv4

activation depth columns weighted by Wconv4:

akp =

hconv4∑

i=1

wconv4∑

j=1

Wconv4
(i,j)c

(i,j)
conv4 , (4)

where i and j index into Wconv4 and the conv4 activation

depth column grid.

To perform inference, afc7 and akp are concatenated.

The result is passed through one non-linear hidden layer

with an activation function σ (e.g. the rectified linear ac-

tivation function) and a set of class-wise prediction layers

for each angle θj :

aim,kp = σ(Wim,kp[a
⊤
kp a

⊤
fc7]

⊤)

aθj ,co = Wθj ,coaim,kp, j ∈ {1, 2, 3} .
(5)

3.2. Training

To train our network, we use the geometric structure

aware loss function from Su et al. [22],

Lθ(S) = −
∑

s∈S

∑

θ∈Θ

e−d(θ,θgt)/t logP (θ|s) , (6)

where s = (I, x, y, ckp, co) is a sample from object class

co, S is the set of training instances, Θ is the set of possible

viewpoints, P (θ|s) is the estimated probability of θ given

instance s, d(θ, θgt) is a distance metric between viewpoints

θ and θgt (e.g. the geodesic distance defined in Sec. 5.1),

and t is a hyperparameter that tunes the cost of an inaccurate

prediction. This loss is a modification of the cross-entropy

loss that encourages correlation between the predictions of

nearby views.

To train the network, we begin by generating sets of

training instances from synthetic data from ShapeNet [3]

and real-world data from the PASCAL 3D+ dataset [29]

(see Section 4 for details). Then, we initialize the layers

from AlexNet with the weights learned from Su et al. [22];

the layers in the keypoint feature stream Wm,Wckp
,Wkpc,

as well as the prediction layers Wim,kp and Wθj ,co , are ini-

tialized with random weights. Next, we train on the syn-

thetic data until the validation performance on a held-out

subset of the synthetic data plateaus. Finally, we fine-tune

on the real-world training data until the loss on that data

plateaus. We develop and train our models in Caffe [11].

4. Generating Data for CH-CNN

The annotations available in the PASCAL 3D+

dataset [29] allow us to generate about 14,000 training in-

stances from real-world images (see Section 4.1 for details
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Figure 3: The pipeline for generating synthetic training data

(left) and real-world training data (right).

on this process), but this number is insufficient for training

CH-CNN. To overcome this limitation, we have extended

the synthetic rendering pipeline proposed by Su et al. [22] to

generate not only synthetic images with labels, but also 2D

keypoint locations, resulting in about two million synthetic

training instances. Because this procedure requires knowl-

edge of the 3D keypoint locations on CAD models, we have

collected keypoint annotations on 918 bus, 7,377 car, and

320 motorcycle models from the CAD model repository

ShapeNet [3] with the use of an in-house annotation inter-

face (refer to the supplemental material for details on the

CAD model filtering and annotation collection processes).

We focus on vehicles to help advance applications in auto-

motive settings, but note that our method is applicable to

any rigid object class with semantic keypoints. To the best

of our knowledge, the number of annotated CAD models in

our dataset is greater than ten times that of the next largest

ShapeNet-based keypoint dataset from Li et al. [14], who

collected keypoints on 472 cars, 80 chairs, and 80 sofas.

Our annotated CAD models are publicly available on our

project website.

4.1. Dataset Details

We render images of the annotated CAD models using

the same pipeline used in Su et al. [22], which we now de-

scribe here. First, we randomly sample light sources and

camera extrinsics. Then, we render the CAD model over

a random background from the SUN397 dataset [30] to re-

duce overfitting to synthetic instances. Finally, we crop the

object with a randomly perturbed bounding box. From a

single rendered image I , we generate one instance of the

form (I, x, y, ckp, co) with label θgt for each visible key-

point, which can be identified by ray-tracing in the render-

ing environment. We focus on visible keypoints because

in the hybrid intelligence environment, we assume that the

human locates unambiguous keypoints, which disqualifies

occluded and truncated keypoints. We follow this approach

to generate about two million synthetic training instances.

PASCAL 3D+ provides detailed annotations that make

generating labeled instances a straightforward process. To

obtain instance-label pairs from PASCAL 3D+, we extract

ground-truth bounding box crops of every vehicle in the

dataset. For each cropped vehicle image I and ground-

truth keypoint contained inside I that is labeled as visible,

we produce one labeled instance. We augment the set of

training data by horizontally flipping and adjusting (x, y),
ckp, and θgt appropriately. In total, we extract about 14,000

training instances and 7,000 test instances from the PAS-

CAL 3D+ training and validation sets, respectively.

5. Experiments

We conduct experiments to compare image-only view-

point estimation with our human-in-the-loop approach, as

well as analyze the impact of keypoint information on our

model. First, we quantitatively compare our model against

the state-of-the-art model R4CNN [22] on the three vehi-

cle object classes in PASCAL 3D+ (Section 5.1). Second,

we analyze the influence of the keypoint information on our

model via ablation tests and perturbations in the keypoint

location at inference time (Section 5.2). Finally, we pro-

vide qualitative results to compare our model’s predictions

to those made by R4CNN (Section 5.3).

5.1. Comparison to ImageOnly Models

We compare multiple viewpoint estimation models by

evaluating their performance on instances extracted from

the PASCAL 3D+ validation set [29]. To be consis-

tent with prior work [23, 22], we report two metrics,

Accπ/6 and MedErr, which are defined as follows. Let

∆(Rpr, Rgt) =
|| log(R⊤

prRgt)||F√
2

be the geodesic distance

between the predicted rotation matrix Rpr and the ground-

truth rotation matrix Rgt on the manifold of rotation ma-

trices. We define Accπ/6 as the fraction of test instances

where ∆(Rpr, Rgt) < π/6 in radians, and MedErr as the

median value of ∆(Rpr, Rgt) in degrees over all test in-

stances.

Table 1 summarizes the performance of various models

on the instances extracted from the PASCAL 3D+ valida-

tion set. We include R4CNN with and without fine-tuning

(Section 3.2) to account for the difference in object classes

used in Su et al. [22]. We also compare against two base-

lines that use a fixed weight map for Wconv4 (Equation 4)

1599



Accπ/6 MedErr
bus car motor mean bus car motor mean

R4CNN [22] 92.4 78.5 81.4 84.1 5.04 7.86 14.5 9.14

R4CNN [22], fine-tuned 90.6 82.4 84.1 85.7 2.93 5.63 11.7 6.74

Keypoint features (Gaussian fixed attention) 88.9 81.3 82.8 84.4 3.00 5.88 11.4 6.76

Keypoint features (uniform fixed attention) 90.6 82.0 83.7 85.4 3.01 5.72 12.1 6.93

CH-CNN (keypoint map only) 90.6 82.0 84.2 85.6 3.04 5.73 11.3 6.68

CH-CNN (keypoint class only) 90.9 86.3 83.1 86.8 2.92 5.29 11.0 6.41

CH-CNN (keypoint map + class) 96.8 90.2 85.2 90.7 2.64 4.98 11.4 6.35

Table 1: PASCAL 3D+ performance for R4CNN [22] with and without fine-tuning on our data, models using a fixed activation

depth column weight map, and variants of our CH-CNN model. The CH-CNN models weigh the conv4 columns based on

the keypoint map, the keypoint class, or both. See Section 5.1 for details on the reported metrics.
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Figure 4: Distribution of angle error across all classes from

fine-tuned R4CNN and our model. In each graph, the area

in the dashed box is blown up for clarity.

instead of learning attention from the keypoint data. The

first baseline (Gaussian fixed attention) sets Wconv4 to a

normalized 13 × 13 Gaussian kernel with a standard de-

viation of 6, and the second baseline (uniform fixed atten-

tion) sets Wconv4 to a 13 × 13 box filter. Aside from the

baselines, we evaluate three versions of our CH-CNN model

described in Section 3.1. The first two learn a weight map

using either the keypoint map or the keypoint class vector

exclusively, and the third is our full model that integrates

both sources of information into the weight map computa-

tion.

As shown in Table 1, our full CH-CNN model obtains

the highest accuracies out of all tested models by a wide

margin; noticeable drops in median error also occur. A con-

clusion that we draw from these results is that a weighted

sum of feature columns can help improve viewpoint esti-

mates. Most importantly, learning to weigh these features

based on the keypoint information is critical to substantially

improving performance over image-only methods. This in-

dicates that providing a single keypoint during inference can

indeed help viewpoint estimation by providing features that

compliment those extracted solely from the image.

Figure 4 shows the histograms of angle errors across all

object classes obtained by our full CH-CNN model and fine-

tuned R4CNN (we refer to this model simply as R4CNN for

the remainder of the paper). The most notable difference

between the two error distributions occurs along the tails:

CH-CNN obtains high errors noticeably less frequently than

Keypoint R4CNN f.t. CH-CNN % ↑
Left front wheel 86.9 89.5 2.99

Left back wheel 80.6 89.0 10.4

Right front wheel 89.4 91.2 2.01

Right back wheel 85.9 90.8 5.70

Left front light 90.5 94.5 4.42

Right front light 93.2 95.5 2.47

Left front windshield 87.3 91.0 4.24

Right front windshield 88.9 91.7 3.15

Left back trunk 76.8 89.5 16.5

Right back trunk 72.8 88.0 20.9

Left back windshield 72.1 84.7 17.5

Right back windshield 70.8 87.6 23.7

Overall 82.4 90.2 9.47

Table 2: Values of Accπ/6 for the fine-tuned R4CNN

model [22] and CH-CNN, stratified by car keypoint class.

The % ↑ column lists relative percent increase in Accπ/6 of

CH-CNN over R4CNN. The smallest value in each column

is italicized, and the largest value is bolded.

R4CNN, which we attribute to our model’s ability to take

advantage of keypoint features when the image features are

not informative enough to make a good estimate.

Table 2 stratifies performance by car keypoint classes.

In all cases, our model estimates the viewpoint more accu-

rately than R4CNN. However, relative improvement varies

greatly, meaning that if certain keypoints can be provided,

the improvement from using our model over R4CNN will

become more apparent. For instance, CH-CNN yields the

greatest relative increase in accuracy when the right back

windshield keypoint is provided, but the lowest relative im-

provement when the right front light keypoint is provided.

We attribute this difference to the varying amount of vi-

sual information that an image-only system can leverage,

which depends on which keypoints are visible: front lights

are often more visually distinguishable from their rear coun-

terparts than windshield corners are to their front counter-

parts. Stratified performance for bus and motorcycle key-

points can be found in the supplementary materials.

5.2. Sensitivity to Keypoint Information

In this section, we explore how changing the keypoint

information at inference time affects our trained CH-CNN
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KPM KPC bus car mbike mean

Accπ/6 ✘ ✘ 75.1 67.2 80.0 74.1

Accπ/6 ✘ ✓ 78.0 79.4 81.8 79.7

Accπ/6 ✓ ✘ 89.2 77.2 82.9 83.1

Accπ/6 ✓ ✓ 96.8 90.2 85.2 90.7

MedErr ✘ ✘ 3.81 8.00 12.1 7.98

MedErr ✘ ✓ 3.68 6.03 12.1 7.27

MedErr ✓ ✘ 2.92 6.08 11.9 6.97

MedErr ✓ ✓ 2.64 4.98 11.4 6.35

Table 3: Impact of blank keypoint data on predictions. The

KPM and KPC columns respectively indicate whether the

ground-truth keypoint map or class was used. ✘ indicates

that a blank keypoint map or keypoint class vector was used.

Figure 5: Sensitivity of CH-CNN to perturbations in the

keypoint map. The mean class accuracy is plotted with a

solid curve, and the mean class median error is plotted with

a dashed curve.

model. To argue that CH-CNN adapts to the keypoint fea-

tures rather than ignoring them in favor of the image fea-

tures, we experiment with providing a keypoint map of all

zeros, a keypoint class vector of all zeros, or both to our

trained model at test time. As shown in Table 3, CH-CNN

attains the worst performance when both the keypoint map

and class vector are blank. In the cases where either the

keypoint map or class is available, but not both, the model

achieves better performance. Finally, the best performance

is obtained by providing both sources of information. These

results indicate that our model adapts to the keypoint infor-

mation, rather than relying solely on the image features.

Next, we demonstrate that CH-CNN is robust to noise in

the keypoint location at inference time, which is required

in order to be useful for the hybrid intelligence environ-

ment. The noise is modeled by sampling the keypoint loca-

tion from a 2D Gaussian whose mean is at the true keypoint

location. We accomplish this by creating a new test set for

each standard deviation σ as follows. We replace each in-

stance (I, x, y, ckp, co) from the PASCAL 3D+ validation

set with one instance of the form (I, x′, y′, ckp, co), where

[x′, y′]⊤ ∼ N ([x, y]⊤, σ2
I2). Here, I2 is the 2 × 2 identity

matrix and σ parameterizes the covariance matrix.

In Figure 5, we plot the mean class performance of CH-

CNN as σ increases. We see that our model is robust to

(a) Occlusion

(b) Truncation

(c) High symmetry

Figure 6: Visualization of challenging instances. Each

grayscale bar is the azimuth confidence across all 360 de-

grees for a model. The green triangle marks the ground

truth, and each magenta line marks a final prediction. The

light masks and orange stars are for visualizing the keypoint

location in this figure only, and are not part of the input to

any network.

misplaced keypoints, retaining over 98% of its maximum

performance even when the standard deviation is about 20%

of the image dimensions. This is likely due to our method

of downsampling the keypoint map, which would map the

perturbed keypoint to a similar depth column weight map.

5.3. Qualitative Results

To conclude our analysis, we present qualitative compar-

isons between CH-CNN and R4CNN [22] by illustrating the

confidences across azimuth, the most challenging angle to

predict for PASCAL 3D+ [29]. In Figure 6, we compare the

two models for images that exhibit either occlusion, trunca-

tion, or highly symmetric objects, observing that CH-CNN

tends to estimate viewpoint more robustly than R4CNN un-

der these circumstances. In the shown examples, our model

estimates a narrow band around the true azimuth with high

confidence. On the other hand, R4CNN exhibits a variety

of behaviors, such as multiple peaks (all rows, left), wide

bands (middle row, left), or high confidence for the angle

opposite the true azimuth (top row, right). We attribute the
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Figure 7: Azimuth confidences across all object classes, as well as failure cases where our model made an incorrect prediction.

See Figure 6 for a description of each plot.

relative improvement of CH-CNN to the keypoint features,

which can help suppress contradictory viewpoint estimates.

Figure 7 includes multiple examples of each object class,

as well as failure cases for our model. In the positive cases,

we continue to see narrower, but more accurate, bands of

high confidence from CH-CNN than from R4CNN. Al-

though the negative cases show that CH-CNN does not en-

tirely overcome the main challenges of viewpoint estima-

tion, the improved performance as shown in Table 1 indi-

cates that these factors impact our model less severely than

they impact R4CNN.

6. Conclusion

Limitations and Suggestions. Our work makes a few crit-

ical assumptions that are worth addressing in future work.

First, we assume that information about only one keypoint

is provided; in reality, we should be able to leverage multi-

ple keypoints to further improve the estimate. Second, we

assume that viewpoint estimates of the same object with

different keypoint data are unrelated, whereas a better ap-

proach would be to enforce the consistency of viewpoint

estimates of the same object. Third, we assume that the

provided keypoint is both unoccluded and within the object

bounding box. However, this is sensible in the context of

hybrid intelligence because we can trust the human to sug-

gest unambiguous keypoints or indicate that none exist, in

which case we can fall back on image-only systems.

Summary. We have presented a hybrid intelligence ap-

proach to monocular viewpoint estimation called CH-CNN,

which leverages keypoint information provided by humans

at inference time to more accurately estimate the viewpoint.

Our method combines global image features with keypoint-

conditional features by learning to weigh feature activa-

tion depth columns based on the keypoint information. We

train this model by generating synthetic examples from a

new, large-scale 3D keypoint dataset. As shown by our

experiments, our method vastly improves viewpoint esti-

mation performance over state-of-the-art, image-only sys-

tems, validating our argument that applying hybrid intel-

ligence to the domain of viewpoint estimation can yield

great benefits with minimal human effort. To spur further

work in hybrid intelligence for 3D scene understanding, we

have made our code and keypoint annotations available at

ryanszeto.com/projects/ch-cnn.
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