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Abstract

Compositional models represent visual patterns as hier-

archies of meaningful and reusable parts. They are attrac-

tive to vision modeling due to their ability to decompose

complex patterns into simpler ones and resolve the low-

level ambiguities in high-level image interpretations. How-

ever, current compositional models separate structure and

part discovery from parameter estimation, which generally

leads to suboptimal learning and fitting of the model. More-

over, the commonly adopted latent structural learning is not

scalable for deep architectures. To address these difficult is-

sues for compositional models, this paper quests for a uni-

fied framework for compositional pattern modeling, infer-

ence and learning. Represented by And-Or graphs (AOGs),

it jointly models the compositional structure, parts, fea-

tures, and composition/sub-configuration relationships. We

show that the inference algorithm of the proposed frame-

work is equivalent to a feed-forward network. Thus, all

the parameters can be learned efficiently via the highly-

scalable back-propagation (BP) in an end-to-end fashion.

We validate the model via the task of handwritten digit

recognition. By visualizing the processes of bottom-up com-

position and top-down parsing, we show that our model

is fully interpretable, being able to learn the hierarchical

compositions from visual primitives to visual patterns at in-

creasingly higher levels. We apply this new compositional

model to natural scene character recognition and generic

object detection. Experimental results have demonstrated

its effectiveness.

1. Introduction

Compositionality [9, 15] refers to the evident capabil-

ity of humans to represent entities as hierarchies of parts,

which themselves are meaningful and reusable entities. It

is believed to be fundamental to all of cognition [7, 1]. For

human vision, compositionality enables a unique high-level

interpretation of most natural images despite the existence

of abundant low-level ambiguities. Besides, compared with

the whole objects, potentially with enormous variations,

Figure 1. (a) Our approach, based on AOGs, models the composi-

tional structure, parts, features and composition/sub-configuration

relationships in a unified framework. The And-node characterizes

subpart-part compositions in a local window and involves longer-

range contexts via multiscale modeling. Or-nodes point to switch-

able sub-configurations with different biases (indicated by the line

widths). Leaf-nodes model primitives, the lowest-level parts, via

CNNs. The structure is discovered via learning the connection po-

larities and strengths (detailed in Sec. 3.3) between And-nodes

and their children, respectively indicated by the line colors and

widths. (b) The inference is equivalent to a feed-forward network.

All the parameters in (a) can be learned end-to-end via BP.

their parts and subparts are less complex. Thus, it is at-

tractive to incorporate compositionality in vision modeling.

Compositional models1 aim at modeling the composi-

tionality of patterns. They have been studied in several lines

of vision research [44, 15, 43] and exploited in tasks like se-

mantic segmentation [35], object detection [42, 37, 41, 29],

and image parsing [44, 24]. Jin and Geman [15] propose a

composition machine based on a Bayesian network for con-

structing probabilistic hierarchical image models, designed

to accommodate arbitrary contextual relationships. Zhu and

Mumford [44] quest for a stochastic and context sensitive

grammar of images, embodied in a simple And-Or graph

(AOG), to model a large number of object categories. Zhu

et al. [43] also exploit the AOG to design the recursive com-

positional model but put more emphasis on discriminative

techniques and efficient inference and learning algorithms.

However, there are problems with all the existing com-

1We focus on multilevel compositional models in this paper.
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positional models. First, many previous approaches manu-

ally design the compositional architectures and require the

annotations of objects and parts at all levels [44, 15, 9].

This kind of annotations are difficult to obtain. Moreover,

the predefined parts and architectures might be subopti-

mal and result in inferior training [6]. Second, when only

image/object-level labeling is available, the compositional

structures and part placements are usually mined from the

data in a bottom-up fashion [42, 43, 35, 37, 40]. The separa-

tion of structure and part discovery from parameter learning

generally leads to suboptimal learning of the model. Third,

due to the lack of part annotations, latent structural learning

is exploited for parameter estimation [43, 41, 35, 38, 24]. It

is difficult to scale up to big data for deep structures [41].

To address these difficult issues, we propose a novel

compositional model, termed as composition network

(CompNet), for image pattern modeling. As illustrated in

Fig. 1, it is represented by an AOG. Given a dataset of visual

patterns with only image/object-level labels, our approach

can learn the structure, parts, features and composition/sub-

configuration relationships in a unified framework. Then, it

can be used for pattern classification or detection. Specifi-

cally, we propose a multiscale nonparametric model to char-

acterize the part-subpart relationships. It not only makes

CompNets more flexible but also simplifies the part discov-

ery. Instead of adopting predefined primitives and hand-

crafted features, we utilize the convolutional neural network

(CNN) [18] to model them. Hence, CompNets can be more

adaptable. By learning both the valid and invalid compo-

nents of a part/object as well as their importance to the

task, the structure can be discovered simultaneously with

parameter estimation. The consideration of irrelevant com-

ponents also makes CompNets discriminative. Finally, we

show the inference algorithm of a CompNet is equivalent to

a feed-forward network (FFN). Thus, all the parameters can

be learned end-to-end via the highly-scalable BP [26].

In summary, the novelty of this paper is as follows:

• To the best of our knowledge, the proposed CompNet

is the first of its kind to unify the following key in-

gredients in compositional modeling: structure, parts,

features and composition/sub-configuration relations.

The unification makes it flexible and adaptable.

• This is also the first attempt to relate an AOG to an

FFN and combine it with CNNs. As a result, all the

parameters of CompNets can be learned end-to-end via

BP. This not only makes the learning scalable to big

data but also enables a better fitting of the model.

• Compared with artificial neural networks, e.g., CNNs,

our model is fully interpretable. We show in the ex-

periments that the learned primitives can be composed

recursively to form increasingly higher-level patterns.

Besides, top-down parsing of an input pattern en-

ables us to trace its part locations and choices of sub-

configurations at each level.

2. Related Work

Compositional models. As described in the previous

section, existing compositional models [9, 44, 15, 42, 43,

35, 41, 37, 38, 24, 40] treat structure discovery, part mod-

eling and parameter estimation seperately. Our approach

attempts to address these problems in a unified framework,

leading to a more flexible, adaptable and scalable composi-

tional model.

Convolutional neural networks (CNNs). Our model

is inherently different with CNNs. The CompNet is based

on a probabilistic graphical model defined on an AOG,

with explicit composition/sub-configuration semantics em-

bedded in each node. Thus, it is fully interpretable. In con-

trast, CNNs are compositions of nonlinear functions with-

out clear semantics. As pointed out by Fodor and Pylyshyn

[7], neural networks fail to mimic the basic compositional-

ity of human cognition. Instead, they mean to simulate the

responses of individual neurons to stimuli within their re-

ceptive fields. Though meaningful object parts have been

observed at the intermediate layers [39], their relationships

remain unclear. In sum, our CompNets aim to model com-

positional structures of patterns, while CNNs are to learn

powerful features. Thus, it is natural to integrate them.

CNN-DPM. Recently, there have been attempts [32,

12, 34] to formulate graphical models as FFNs and at-

tach CNNs before them as feature extractors for end-to-

end training. The work most related to ours is the CNN-

DPM frameworks [12, 34], where deformable part-based

models (DPMs) [6], unrolled as FFNs, are combined with

CNNs to model the object-part relationships. Ouyang et

al. [23] also generalize DPMs as pooling layers and insert

them between successive convolutional layers to constrain

the geometric distributions of the neural activations. Our

approach differs from them in that: i) it exploits recur-

sive composition/sub-configuration relationships between

patterns at different levels, ii) it learns the compositional

structure by considering both relevant and irrelevant com-

ponents of a pattern as well as their importance, and iii) it

learns subpart-part displacements automatically and shows

how to use them for bottom-up composition from primitives

to patterns at increasingly higher levels.

Sprite models. Unlike our decomposing object patterns

into their parts and subparts and focusing on discriminative

learning, sprite models [16, 36, 2] represent image scenes

as layered compositions of flexible sprites and backgrounds

via probabilistic generative models. Unsupervised learning

methods such as the EM algorithm [4] are used for parame-

ter estimation and object discovery.
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Figure 2. (a) An example AOG with a predefined architecture. (b)

A parse graph of the AOG in (a).

3. Composition network

A composition network (CompNet) is a compositional

model that takes as input an image and produces as out-

put scores for each pattern class. Represented by an

AOG, it models the compositional structure, features, parts

and composition/sub-configuration relationships in a uni-

fied framework. Its inference process is equivalent to an

FFN, whose parameters can be learned efficiently by BP.

3.1. AndOr graph

An And-Or graph (AOG), as shown in Fig. 2 (a), is

defined by a 5-tuple (V, E , φand, φor, φleaf ), which spec-

ifies its graph structure (V, E) and potential functions

(φand, φor, φleaf ).

An AOG can have three types of nodes: V = Vand ∪
Vor ∪ V leaf . And-nodes Vand model the composition of

components into a higher-level part/object. Or-nodes Vor

model the switches among sub-configurations of a con-

cept, e.g., different views or subcategories. Leaf-nodes

V leaf , having no child, model the primitives, the lowest-

level parts that cannot be decomposed further. We only

consider vertical edges in this paper. Let ch(u) denote the

set of children of a node u. An edge connects an And/Or-

node u with its child v ∈ ch(u): E = {(u, v) : u ∈
Vand ∪ Vor, v ∈ ch(u)}. Note different And-nodes at the

same level can share their children but Or-nodes cannot. We

call the And/Or-nodes at the highest level as root nodes. For

multi-class pattern modeling, we can always use an Or-node

as the root node, whose children represent all the target ob-

jects. We call this child level as an Object-level.

A parse graph is a subgraph of an AOG derived by mak-

ing choices at each Or-node. It represents a hierarchical

interpretation of a specific image. Since each Or-node can

point to different children, an AOG can have multiple valid

parse graphs and correspondingly, an image may have more

than one valid (but not necessarily good) interpretation. An

example parse graph is shown in Fig. 2 (b).

State variables are associated with each node u ∈ V . For

And-nodes and Leaf-nodes, the state variable wu represents

the spatial location of a part/primitive. Each Or-node has

two types of state variables. zu denotes the switch among its

children: zu ∈ ch(u). wu stores the location of the selected

child: wu ≡ wzu . Let Ω denote the set of all state variables

in the AOG: Ω = {wu : u ∈ Vand ∪ V leaf} ∪ {(wu, zu) :
u ∈ Vor}. Note a valid Ω should always correspond to a

parse graph. For those nodes not included in a parse graph,

we define their state variables as empty: wu = ∅ or zu = ∅
and their potential functions as zero: φ = 0.

The probability distribution over the state variables Ω is

of the following Gibbs form:

p(Ω|I) =
1

Z
exp{−E(Ω, I)} (1)

where I is the input image, E(Ω, I) is the energy and Z

is the partition function. For convenience, we use a score

function, defined as the negative energy, to specify the

model and omit I:

S(Ω) ≡ −E(Ω, I) =
∑

u∈Vleaf

φleaf
u (wu, I)

+
∑

u∈Vand

∑

v∈ch(u)

φand
u,v (wu, wv) +

∑

u∈Vor

φor
u (zu, wu) (2)

where the three terms are potential functions corresponding

to Leaf, And and Or nodes, respectively. The first term acts

like a detector: it determines how likely the primitive mod-

eled by the Leaf-node u is present at wu in the image. The

second term models the preferred position of the child v

relative to its parent u. The last term models the Or-nodes’

selection biases towards each of their children.

In Eq. (2), only Leaf-nodes are related to the observed

images. By including extra data potentials, we can also as-

sociate the higher-level And-nodes to the observations. To

put more emphasis on the relational modeling, we derive

our framework using Eq. (2) while the derivation of the ex-

tended model is straightforward and similar.

3.2. Node models

We first decouple the three node models by computing

S(Ω) in a recursive and level-by-level fashion. Let Vu ⊆ V
denote the set of node u and all its descendants. Note Vu

and the corresponding edges form a new AOG, which is a

subgraph of the AOG (V, E). We use Ωu ⊆ Ω to repre-

sent the set of state variables of the nodes in Vu. Thanks to

the hierarchical structure of AOGs, the score S(Ω) can be

computed recursively using the following three equations:

(And) Su(Ωu) =
∑

v∈ch(u)

φand
u,v (wu, wv) + Sv(Ωv) (3)

(Or) Su(Ωu) = φor
u (zu, wu) + Szu(Ωzu) (4)

(Leaf) Su(Ωu) = Su(wu) = φleaf
u (wu, I) (5)

where Su(Ωu) is the score of the AOG rooted at u and de-

fined similarly as Eq. (2). The recursion begins from the
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Figure 3. (a) Previous compositional models use an anchor point

(the red pixel) and Gaussian distributions to model the displace-

ment of a child from its parent’s position (the green pixel). (b)

Our And-node characterizes the composition relationship in a lo-

cal window. Each position is assigned a bias indicating the prior

the child is placed there. (c) By modeling the higher-level part’s

position in lower resolutions, the local model can involve increas-

ingly larger image regions.

Leaf-nodes and is initialized by Eq. (5). Then, Eq. (3) or

Eq. (4) will be called whenever an And-level or an Or-level

is met until the root node is reached. We refer to these three

equations as node models of an AOG.

3.2.1 And-node

In existing works, the And-node is always modeled para-

metrically as: φand
u,v (wu, wv) = λand

u,v ·hu,v(wu, wv), where

λand
u,v and hu,v(wu, wv) represent the parameters and fea-

tures, respectively. Fig. 3(a) shows a typical example: the

feature function hu,v(wu, wv) exploited in [43, 35, 41, 29,

37] is quadratic in the displacement of a child node from its

reference position, and hence corresponds to Gaussian dis-

tributions. Such kind of parametric models result in some

potential problems. i) There may not exist a single ideal an-

chor point for some parts. For example, the head of a horse

is high in the air when it is walking but close to the ground

when it is eating or drinking. ii) Even with such unique

reference locations, the distributions of the parts’ positions

may not be Gaussian. They may not even be symmetric. iii)

It introduces a critical parameter, i.e., the anchor position

of a part relative to its parent. It is obtained via manual an-

notation [15, 41] or bottom-up clustering [43, 35], both of

which may be suboptimal and lead to inferior learning.

To attack these problems, we propose a multiscale non-

parametric model for the And-node. As shown in Fig. 3(b),

we use a local window Dv = [−c, c]× [−c, c] to character-

ize the patterns of the child’s location relative to its parent.

Each position is assigned a bias to indicate the prior the

child is placed there. Obviously, this model is able to rep-

resent any local subpart-part displacement and avoids the

specification of anchor points. For example, Fig. 3(b) sug-

gests that the child is most likely present at the left part

of its parent. The longer-range context is modeled via the

hierarchical structure of the CompNet and multiscale mod-

eling, as shown in Fig. 3(c). Using a lower resolution for

the parent’s positions can enlarge the context an And-node

can model on the image space. If we periodically insert

downsampling between successive And-nodes in the archi-

tecture, the higher-level nodes will model larger context.

This agrees with our intuition that the child-parent displace-

ments of lower-level compositions, e.g., from edges to their

junctions, should be smaller than those of higher-level ones,

e.g., from semantic parts to objects. Specifically, Eq. (3) is

instantiated as

Su(Ωu) =
∑

v∈ch(u)

λand
u,v (w̄v) + Sv(Ωv) (6)

where w̄v ≡ wv − wu (w̄v ∈ Dv) denotes the displacement

of the child v w.r.t. the parent u. λand
u,v () is a lookup table

mapping w̄v ∈ Dv to a real value. It should account for the

natural frequency a child appears somewhere relative to its

parent. Here, we implicitly assume the child node has been

scaled to the same resolution as its parent.

3.2.2 Or-node

The potential function of an Or-node φor
u (zu, wu) reflects

the priors of selecting each child. We can simply assign

each zu ∈ ch(u) a real value λor
u (zu) and Eq. (4) becomes:

Su(Ωu) = λor
u (zu)δ(wu = wzu) + Szu(Ωzu) (7)

where λor
u () are parameters and account for the natural fre-

quency of each child, δ(wu = wzu) constrains that the loca-

tion of the selected child will be transmitted to the Or-node.

3.2.3 Leaf-node

Leaf-nodes model the primitives. Acting as the cornerstone

for the composition of all the higher-level parts/objects, they

should be modeled with two principles: reusable and dis-

criminative. The first principle drives us to learn primitives

from the training images. To best fit the data, primitives

that occur most will pop up. Compared with some prede-

fined primitives, such as rectangles and curves [44, 29, 38],

learned primitives would be more adaptable. Recently, deep

features [14] have been proved to outperform handcrafted

ones by a large margin in several pattern recognition tasks.

This motivates us to exploit CNNs to extract discriminative

features. Specifically, the Leaf-node is modeled as

Su(Ωu) = λleaf
u · fu(wu, I; Θ) (8)

where λleaf
u is the primitive filter; fu(wu, I; Θ) is CNN fea-

tures extracted at location wu of image I with Θ being the

collection of the CNN’s parameters. Both λleaf
u and Θ will

be learned from the data. Note Eq. (8) is general and can be

used as data potentials for the higher-level And-nodes.
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Figure 4. (a) Existing compositional models only connect each

And-node to relevant parts and assume they contribute equally to

the composition. (b) An And-node in CompNets not only consid-

ers both relevant (green) and irrelevant (red) components but also

assigns them with different importance (indicated by line widths).

3.3. Structure

Till now, we have assumed a given and fixed architec-

ture of an AOG, e.g., Fig. 2(a). It is often defined manu-

ally or discovered in a bottom-up fashion. In this paper, we

propose to unify the structure discovery and parameter esti-

mation. We assume the level number in the AOG, the level

types and the node number in each level are known. Since

the Or-nodes at the same level do not share child nodes, we

simply assign them with the same number of children.

For the And-nodes, we first connect each of them with

all the nodes at one level lower and then model the structure

via a set of connection parameters, whose signs and mag-

nitudes indicate the connection polarities and strengths, re-

spectively. Assume l(u) returns the index of the level node

u belongs to. V l(u) denotes the set of nodes on level l(u).
Then, the And-node model in Eq. (6) is reformulated as:

Su(Ωu) =
∑

v∈Vl(u)−1

λand
u,v (w̄v) + λcon

u,v Sv(Ωv) (9)

where λcon
u,v ∈ R is the connection parameter between nodes

u and v. Note multiplying λcon
u,v to the first term is redundant

because it will be absorbed. The sign of λcon
u,v indicates the

connection polarity: whether node v is a relevant compo-

nent of node u. A positive value of λcon
u,v , which means v is

likely to be a part of u, makes Su a monotonically increas-

ing function of Sv: seeing v increases the confidence that u

appears. A more interesting case is when λcon
u,v < 0. Then,

a larger Sv leads to a smaller Su. It means that when v is

not a component of u, seeing v will decrease the probability

that u appears, which is consistent with our intuition. As

pointed out by Fukushima [8], checking the absence of ir-

relevant features plays an important role in pattern recogni-

tion. Thus, the consideration of irrelevant components will

make CompNets more discriminative. The magnitude of

λcon
u,v indicates the connection strength between nodes u and

v. It evaluates the importance of this connection to the tar-

get task and allows CompNets to put more emphasis on the

discriminative parts in the composition. Fig. 4 compares

the structure modeling of CompNets and previous methods.

Figure 5. The connection between the input and output feature

maps of (a) an And-layer and (b) an Or-layer. Each cube denotes a

set of stacked feature maps, whose channel and spatial dimensions

are annotated by C and (H, W), respectively.

3.4. Inference as a feedforward network

Since each child node may have multiple parents, there

will be closed loops in our AOG. Empirical studies [42, 43]

show that the update rules of dynamic programming, which

can be thought of as belief propagation using message pass-

ing [25], can obtain good approximation for inference on

such kind of AOGs. Thus, the maximum score S∗ =
maxΩ S(Ω) for an input image I can be computed recur-

sively with the following three equations:

(And) S∗
u(wu) =
∑

v∈Vl(u)−1

max
w̄v∈Dv

λand
u,v (w̄v) + λcon

u,v S
∗
v (wv) (10)

(Or) S∗
u(wu) = max

v∈ch(u)
λor
u (v) + S∗

v (wu) (11)

(Leaf) S∗
u(wu) = Su(wu) = λleaf

u · fu(wu, I; Θ) (12)

where S∗
u(wu) is the maximum score of the subgraph

formed by Vu with root node u taking state wu, and is com-

puted recursively by Eq. (10) or Eq. (11), depending on the

node type, with boundary conditions provided by Eq. (12).

The recursion begins from the Leaf-level and goes up un-

til the root node is reached. At the Object-level, we obtain

scores for each pattern class. wv in Eq. (10) is a function of

w̄v and thus should be included in the max operation.

The function S∗
u(wu), which maps the node index u and

2-D position wu to real values, can be thought of as |V l(u)|
stacked feature maps, whose channel and spatial dimen-

sions are indexed by u and wu, respectively. Then, Eqs.

(10)-(12) can be interpreted as And, Or and Primitive lay-

ers, transforming input feature maps (S∗ or f on the RHS)

to the output ones (S∗ on the LHS). Thus, the inference of

a CompNet is equivalent to an FFN, as shown in Fig. 1(b).

The Primitive-layer defined in Eq. (12) can be consid-

ered as a CNN, formed by stacking a convolution layer

[18] with weights λleaf
u and the CNN feature extractor

fu(wu, I; Θ). An And-layer is illustrated in Fig. 5(a). Each

output unit (u,wu) is connected to a local region of the in-

2788



put feature maps {(v, wv) : v ∈ V l(u)−1, wv − wu ∈ Dv}.

An Or-layer is illustrated in Fig. 5(b). The input feature

maps are divided into groups, each of which will output a

one-channel feature map with the same spatial dimensions

as the input. Indeed, the only difference between the formu-

lations of the Or-layer and the Maxout function [13] is that

the former has bias terms. From a Bayesian point of view,

when the likelihoods of two sub-configurations are similar,

the one that occurs more frequently in nature should be se-

lected. Thus, the bias term is necessary.

Another building block for our CompNet is the max-

pooling layer, which has been widely used in CNNs. It

is necessary for several reasons. First, it is used for mul-

tiscale modeling, discussed in Sec. 3.2.1. Second, since

the exact location of a part is less important than its rough

displacement relative to its parent, max-pooling will make

And-layers robust to small shifts on the image. Third, it

reduces the sizes of feature maps and thus the computation.

3.5. Learning via BP

The inference process of a CompNet is an FFN con-

sisting of four types of layers, i.e., And, Or, Primi-

tive and max-pooling, with the Primitive-layer being a

CNN. Thus, it is natural to learn all the parameters

(λand, λor, λleaf , λcon,Θ) via BP in a unified framework.

For multi-class classification, we exploit the Softmax loss

[14]. When an input pattern is present to a CompNet, it

is propagated forward through the network, layer by layer,

until it reaches the Object-level. The scores of each object

class are then compared with the label using the loss func-

tion. An error value is calculated, which is then propagated

backwards, starting from the loss layer, all the way to the

Primitive-layer. Partial derivatives of the loss function w.r.t.

each parameter can be obtained from the back-propagated

errors and used to update these parameters.

We alleviate overfitting in two ways. First, we constrain

the model complexity by setting both the size of Dv and the

number of each Or-node’s children small. Second, inspired

by the recent success in training deep CNNs [14], we exploit

large training datasets, data augmentation, pre-trained CNN

feature extractors and/or dropout techniques [30].

4. Experiments

We apply CompNets to solve three practical problems

of increasing complexities. First, the MNIST handwritten

digit database [18] is used to demonstrate the CompNet’s

capability for compositional modeling and its interpretabil-

ity. Then, we apply a CompNet to natural scene character

recognition, a natural extension of the first task. Finally, we

show CompNets can be applied to generic object detection.

We implement the CompNet using Caffe [14] and train it

end-to-end with stochastic gradient descent (SGD) and BP.

(λand, λor) are initialized to 0. We exploit a data-driven

method [20] to initialize (λleaf , λcon,Θ). A momentum

of 0.9 and parameter decay of 0.0005 are used. Since the

properties of the datasets, e.g., image sizes and variations,

vary greatly from task to task, we use different batch sizes

and learning rates for them, which will be detailed later. We

adopt a base learning rate [14] and reduce it by a factor of

10 when the loss on the validation set stops decreasing.

4.1. Model validation

The goal of this experiment is to investigate what the

CompNet has learned from the data instead of comparing

it with the state-of-the-art algorithms. The MNIST dataset

consists of 28 × 28 pixel greyscale images of handwritten

digits 0-9, with 60,000 training and 10,000 test examples.

Since the patterns in this dataset are not complex, we exploit

a relatively simple architecture: data-conv(k5c20)-pool-

and(k5c200)-pool-or(c100)-and(k4c10)-loss2. No data aug-

mentation is used in this experiment. The batch size and

base learning rate are set to 100 and 0.05, respectively.

With this architecture, the CompNet obtains a test set er-

ror of 0.80%. As a baseline, the LeNet-5 [18] implemented

in Caffe achieves a test set error of 0.89%. Its architec-

ture is: data-conv(k5c20)-pool-conv(k5c50)-pool-fc(c500)-

relu-fc(c10)-loss. If we treat the Or-layer as an activation

function, in analog to the Maxout and ReLU activations, our

CompNet is indeed one layer shallower and also narrower

than the LeNet-5, but can still get a slightly better result.

4.1.1 Bottom-up composition of filters via recursion

Beginning from the primitive filters, i.e., weights of

conv(k5c20), we use the learned parameters to recursively

compose filters corresponding to patterns of increasingly

higher levels. No input image is required. There are larger

numbers of valid filters for higher-level nodes due to i) the

local shift-invariance modeled by the pooling layer, ii) sub-

configurations modeled by the Or-nodes and iii) potential

multimodal distributions of the subpart-part displacements.

We first show one of the most preferred filters for each

node to illustrate the composition process. Specifically, it

begins from the primitive level and goes up all the way to

the Object-level. For an And-node u without pooling before

it, its filter is formed by first shifting each child filter v to the

learned most preferred location w̄∗
v = argmaxw̄v

λand
u,v (w̄v)

and then linearly combining them with weights λcon
u,v . If

pooling exists, the values of w̄∗
v should be doubled and re-

sult in 4 possible locations (a 2×2 local region). We simply

use the top-left position. An Or-node can switch between

two child filters. We choose the child with greater bias.

2Pooling layers with kernel size 2× 2 and stride 2 are always used; ’k’

and ’c’ respectively specify the kernel (window) size and channel number

for the And or convolution layer, e.g., ’k5c20’ means kernel size 5×5 and

channel number 20. ’fc’ will be used to denote a fully-connected layer.
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Figure 6. Node filters learned on the MNIST dataset. Cyan and red are used to encode the filters’ positive and negative values, with brighter

colors indicating larger absolute values. Each higher-level filter is composed from the child filters using the learned parameters. Bottom

row: 20 primitive filters. Top row: 10 Object-level filters. Middle row: 80 Or-node filters. The 4 filters in a green (red) box are those most

relevant (irrelevant) to the corresponding object filter, evaluated by λ
con

uv
. Due to part sharing, some filters may occur in multiple columns.

Figure 7. Choosing different sub-configurations in the process of

bottom-up composition leads to variations of a pattern filter.

The composed filters are shown in Fig. 6. We can ob-

serve that the primitive filters (bottom row) are mostly edge

detectors. The shapes of the object filters (top row) clearly

correspond to the 10 digits. The brighter parts of a digit are

caused by larger magnitudes of λcon
u,v , i.e., the connection

strength. As expected, they are related to the discriminative

parts of each digit, e.g., the middle part of ’4’ and upper part

of ’7’. The Or-node filters (middle row) are joints of edges,

representing relevant or irrelevant parts of each digit. We

can easily see some part sharing among different columns.

As shown in Fig. 7, choosing different sub-configurations

at each node in the composition process leads to a large

amount of valid filters for higher-level patterns. This is how

CompNets differ from simple template matching and is able

to model enormous variations of a pattern.

4.1.2 Top-down parsing of objects via backtracking

Given an input image, top-down pass is used to find the best

state configurations Ω∗ and the corresponding parse graph

of an AOG. It recursively inverts Eqs. (10) and (11) to ob-

tain the optimal states of the child nodes that yield the max-

imum node scores. The complete parse graph, which in-

terprets both the backgrounds and objects, contains a large

number of paths from the root node to the Leaf-nodes. We

define the score of a path as the multiplication of all the

Figure 8. Top-down parsing of an input image (top) to its parts

(the third row) and primitives (bottom) by making choices at the

Or-nodes (the second row). Red pixels denote the locations of

primitives on each part.

node scores on this path. To focus on the parsing of objects

and avoid too large parse graphs (so that we could display),

we only retain paths with scores larger than 0.3.

Fig. 8 gives an example of the obtained parse graphs.

Fig. 9 shows the parsing of input images to their primitives.

By placing the corresponding primitive filters on their back-

tracked locations, we can obtain shapes similar to the input

digits. Note that the densities of primitives on each part of

a digit can be quite different and roughly correspond to the

brightness of these parts on Fig. 6, e.g., the middle part of

’4’, upper parts of ’7’ and ’9’ and lower part of ’2’.

4.2. Natural scene character recognition

Three datasets, i.e., ICDAR-03 [19], IIIT5K [21] and

Chars74K [3], are used here. Following [27, 31], charac-

ters with similar structures, such as ’X’ and ’x’, ’P’ and

’p’, ’K’ and ’k’, are relabeled as the same class, result-

ing in 49 classes. For the first two datasets, we use their

own splitting of the data for training and testing. The

Chars74K dataset assigns only 930 out of 7705 samples

as training set, which makes our model overfitting. Thus,

we use the model trained on the ICDAR-03 training set
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Figure 9. (a) Top-down parsing of input images to their primitives. First row: backtracked primitive locations (red pixels) superposed on

the input images. Second row: placing the corresponding primitive filters on these locations leads to shapes similar to the input digits. For

clearer visualization, only the positive parts of the composed filters are displayed. (b) Top-down parsing of the same pattern with variations.

ICDAR-03 IIIT5K Chars74K

[31] 79.9 - -

[22]3 86.0 85.0 -

[27] 77.9 - 71.7

CNN 83.0 87.7 83.3

Maxout 82.7 87.9 83.6

Ours 85.3 88.9 85.3

Table 1. Character classification accuracy (in %) on 3 datasets.

to test on all the Chars74K samples. All the training im-

ages are resized to 32 × 32. Simple data augmentations,

i.e., shifting and rotation, are used. The CompNet architec-

ture is: data-conv(k3c32)-conv(k3c32)-pool-and(k5c128)-

or(c64)-and(k3c256)-or(c128)-and(k3c49)-loss. The batch

size and base learning rate are set to 128 and 0.05, respec-

tively. We compare the CompNet with i) a part-based model

[27], ii) state-of-the-art methods using HOG [31] and CNN

[22] features, iii) CNN and Maxout networks with simi-

lar architectures with our CompNet, i.e., the same layer

numbers, kernel sizes and channel numbers. The results

are shown in Tab. 1. Note extra datasets, including the

Chars74K, are exploited to train the CNN used in [22]. If

we also include the Chars74K as training set in the ICDAR-

03 task, the CompNet’s classification accuracy is 88.1%.

4.3. Object detection

We apply CompNets to the PASCAL VOC 2007 object

detection task [5]. It contains 20 object classes. Mean av-

erage precision (mAP) [5] is used to evaluate the results.

The CNN-DPMs [12, 34] exploit the conv5 features of the

pre-trained AlexNet [17] or its variant [39]. To have a

fair comparison with them, we also use the conv5 features

of the AlexNet in our CompNet. We follow the region-

based CNN (R-CNN) frameworks [11, 10], which gener-

ate object proposals [33] from each input image, later re-

fined by a regression, and utilize the region of interest (RoI)

pooling layer [11] to extract feature maps of fixed size,

i.e., 6 × 6 × 256, for each proposal from the conv5 fea-

tures. Specially, we respectively use and(k4c256)-or(c128)-

and(k3c512)-and(k1c21) for structure modeling and fc(c21)

as Object-level data potentials to obtain the classification

3Extra data are used to train the CNN feature extractor.

method CNN-DPM [12] CNN-DPM [34] RCM [41]

mAP 45.2 46.9 29.6

method R-CNN p5 [11] AOT [29] Ours

mAP 47.3 34.7 52.0

Table 2. mAP (in%) on PASCAL VOC 2007. All CNN-based

methods use conv5 of pre-trained AlexNets as feature extractors.

scores for the 20 object classes and background. For bet-

ter convergence, the And/Or-layers are first trained using

a larger batch size, i.e., 10. Then the whole network is

trained as [11, 10] with base learning rate 0.001 and batch

size 2. We compare our method with CNN-DPMs [12, 34],

two state-of-the-art compositional models designed for this

task, i.e., the recursive compositional model (RCM) [41]

and the And-Or tree (AOT) [29], and the R-CNN version us-

ing pool5 features (R-CNN p5) [11]. We have tried to train

a Fast R-CNN [10] using pool5 features but fail to make it

converge. As shown in Tab. 2, the proposed approach out-

performs the baseline methods. The R-CNN with fc6 and

fc7 layers can achieve a better mAP, i.e., 58.5%. Extending

our model to use deeper networks can also provide similar

gains from better feature representations. For example, we

have tested another version of the CompNet with the pre-

trained VGG16 network [28] as feature extractor and obtain

67.4% mAP. This is why we constrain all CNN-based meth-

ods to use features from the same network and same depth.

5. Conclusion

This paper presents a novel compositional model for vi-

sual pattern modeling. It learns the structure, parts, features

and composition/sub-configuration relationships via BP in

an end-to-end and unified fashion. As a result, our frame-

work is flexible, adaptable and scalable. The validation ex-

periments demonstrate that the learned compositionality is

fully interpretable. We also show it can be applied to natu-

ral scene character recognition and generic object detection.

Quantitative results demonstrate its effectiveness.
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