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Abstract

Previous CNN-based video super-resolution approaches

need to align multiple frames to the reference. In this pa-

per, we show that proper frame alignment and motion com-

pensation is crucial for achieving high quality results. We

accordingly propose a “sub-pixel motion compensation”

(SPMC) layer in a CNN framework. Analysis and exper-

iments show the suitability of this layer in video SR. The

final end-to-end, scalable CNN framework effectively incor-

porates the SPMC layer and fuses multiple frames to reveal

image details. Our implementation can generate visually

and quantitatively high-quality results, superior to current

state-of-the-arts, without the need of parameter tuning.

1. Introduction

As one of the fundamental problems in image processing

and computer vision, video or multi-frame super-resolution

(SR) aims at recovering high-resolution (HR) images from a

sequence of low-resolution (LR) ones. In contrast to single-

image SR where details have to be generated based on only

external examples, an ideal video SR system should be

able to correctly extract and fuse image details in multiple

frames. To achieve this goal, two important sub-problems

are to be answered: (1) how to align multiple frames to con-

struct accurate correspondence; and (2) how to effectively

fuse image details for high-quality outputs.

Motion Compensation While large motion between con-

secutive frames increases the difficulty to locate corre-

sponding image regions, subtle sub-pixel motion contrar-

ily benefits restoration of details. Most previous methods

compensate inter-frame motion by estimating optical flow

[2, 7, 19, 20, 23] or applying block-matching [28]. After

motion is estimated, traditional methods [7, 20, 23] recon-

struct the HR output based on various imaging models and
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image priors, typically under an iterative estimation frame-

work. Most of these methods involve rather intensive case-

by-case parameter-tuning and costly computation.

Recent deep-learning-based video SR methods [2, 14]

compensate inter-frame motion by aligning all other frames

to the reference one, using backward warping. We show that

such a seemingly reasonable technical choice is actually not

optimal for video SR, and improving motion compensation

can directly lead to higher quality SR results. In this paper,

we achieve this by proposing a sub-pixel motion compensa-

tion (SPMC) strategy, which is validated by both theoretical

analysis and extensive experiments.

Detail Fusion Besides motion compensation, proper im-

age detail fusion from multiple frames is the key to the suc-

cess of video SR. We propose a new CNN framework that

incorporates the SPMC layer, and effectively fuses image

information from aligned frames. Although previous CNN-

based video SR systems can produce sharp-edge images, it

is not entirely clear whether the image details are those in-

herent in input frames, or learned from external data. In

many practical applications such as face or text recognition,

only true HR details are useful. In this paper we provide

insightful ablation study to verify this point.

Scalability A traditionally-overlooked but practically-

meaningful property of SR systems is the scalability. In

many previous learning-based SR systems, the network

structure is closely coupled with SR parameters, making

them less flexible when new SR parameters need to be ap-

plied. For example, ESPCN [26] output channel number is

determined by the scale factor. VSRnet [14] and VESPCN

[2] can only take a fixed number of temporal frames as in-

put, once trained.

In contrast, our system is fully scalable. First, it can

take arbitrary-size input images. Second, the new SPMC

layer does not contain trainable parameters and can be ap-

plied for arbitrary scaling factors during testing. Finally, the

ConvLSTM-based [29] network structure makes it possible

to accept an arbitrary number of frames for SR in testing
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phase.

1.1. Related Work

Deep Super-resolution With the seminal work of SR-

CNN [3], a majority of recent SR methods employ deep

neural networks [4, 11, 15, 16, 18, 26]. Most of them

resize input frames before sending them to the network

[4, 11, 15, 16], and use very deep [15], recursive [16]

or other networks to predict HR results. Shi et al. [26]

proposed a subpixel network, which directly takes low-

resolution images as input, and produces a high-res one with

subpixel location. Ledig et al. [18] used a trainable decon-

volution layer instead.

For deep video SR, Liao et al. [19] adopted a separate

step to construct high-resolution SR-drafts, which are ob-

tained under different flow parameters. Kappeler et al. [14]

estimated optical flow and selected corresponding patches

across frames to train a CNN. In both methods, motion es-

timation is separated from training. Recently, Caballero et

al. [2] proposed the first end-to-end video SR framework,

which incorporates motion compensation as a submodule.

Motion Estimation Deep neural networks were also used

to solve motion estimation problems. Zbontar and LeCun

[31] and Luo et al. [22] used CNNs to learn a patch distance

measure for stereo matching. Fischer et al. [8] and Mayer

et al. [25] proposed end-to-end networks to predict optical

flow and stereo disparity.

Progress was made in spatial transformer networks [10]

where a differentiable layer warps images according to pre-

dicted affine transformation parameters. Based on it, Warp-

Net [13] used a similar scheme to extract sparse correspon-

dence. Yu et al. [30] warped output based on predicted

optical flow as a photometric loss for unsupervised optical

flow learning. Different from these strategies, we introduce

a Sub-pixel Motion Compensation (SPMC) layer, which is

suitable for the video SR task.

2. Sub-pixel Motion Compensation (SPMC)

We first introduce our notations for video SR. It takes a

sequence of NF = (2T + 1) LR images as input (T is the

size of temporal span in terms of number of frames), where

ΩL = {IL−T , · · · , I
L
0 , · · · , I

L
T }. The output HR image IH0

corresponds to center reference frame IL0 .

LR Imaging Model The classical imaging model for LR

images [7, 19, 20, 23] is expressed as

ILi = SKW0→iI
H
0 + ni, (1)

where W0→i is the warping operator to warp from the 0th

to ith frame. K and S are downsampling blur and deci-

mation operators, respectively. ni is the additive noise to

frame i. For simplicity’s sake, we neglect operator K in the

following analysis, since it can be absorbed by S.
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Figure 1. Visualization of operators in image formation. (a)

Decimation operator S (2×) reduces the input 1D signal to its half-

size. The transpose S
T corresponds to zero-upsampling. (b) With

arrows indicating motion, warping operator W produces the blue

signal from the gray one through backward warping. W
T pro-

duces the green signal through forward warping. (c) Illustration

of matrices S, ST , W and W
T . Grayed and white blocks indicate

values 1 and 0 respectively.

Flow Direction and Transposed Operators Operator

W0→i indicates the warping process. To compute it, one

needs to first calculate the motion field Fi→0 (from the ith
to 0th frame), and then perform backward warping to pro-

duce the warped image. However, current deep video SR

methods usually align other frames back to IL0 , which actu-

ally makes use of flow F0→i.

More specifically, directly minimizing the L2-norm re-

construction error
∑

i ‖SW0→iI
H
0 − ILi ‖

2 results in

IH0 = (
∑

i

WT
0→iS

TSW0→i)
−1(

∑

i

WT
0→iS

T ILi ). (2)

With certain assumptions [5, 7], WT
0→iS

TSW0→i becomes

a diagonal matrix. The solution to Eq. (2) reduces to a feed-

forward generation process of

IH0 =

∑

i W
T
0→iS

T ILi
∑

i W
T
0→iS

T1
, (3)

where 1 is an all-one vector with the same size as ILi .

The operators that are actually applied to ILi are ST and

WT
0→i. ST is the transposed decimation corresponding to

zero-upsampling. WT
0→i is the transposed forward warping

using flow Fi→0. A 1D signal example for these operators

is shown in Fig. 1. We will further analyze the difference of

forward and backward warping after explaining our system.

3. Our Method

Our method takes a sequence of NF LR images as in-

put and produces one HR image IH0 . It is an end-to-end

fully trainable framework that comprises of three modules:

motion estimation, motion compensation and detail fusion.
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Figure 2. Our framework. Network configuration for the ith time step.
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Figure 3. Subpixel Motion Compensation layer (×4). (a) Layer

diagram. (b) Illustration of the SPMC layer (×4).

They are respectively responsible for motion field estima-

tion between frames; aligning frames by compensating mo-

tion; and finally increasing image scale and adding image

details. We elaborate on each module in the following.

3.1. Motion Estimation

The motion estimation module takes two LR frames as

input and produces a LR motion field as

Fi→j = NetME(I
L
i , I

L
j ; θME), (4)

where Fi→j = (ui→j , vi→j) is the motion field from frame

ILi to ILj . θME is the set of module parameters.

Using neural networks for motion estimation is not a new

idea, and existing work [2, 8, 25, 30] already achieves good

results. We have tested FlowNet-S [8] and the motion com-

pensation transformer (MCT) module from VESPCN [2]

for our task. We choose MCT because it has less param-

eters and accordingly less computation cost. It can process

500+ single-channel image pairs (100 × 100 in pixels) per

second. The result quality is also acceptable in our system.

3.2. SPMC Layer

According to the analysis in Sec. 2, we propose a

novel layer to utilize sub-pixel information from motion

and simultaneously achieve sub-pixel motion compensation

(SPMC) and resolution enhancement. It is defined as

JH = LayerSPMC(J
L, F ;α), (5)

where JL and JH are input LR and output HR images, F is

optical flow used for transposed warping and α is the scal-

ing factor. The layer contains two submodules.

Sampling Grid Generator In this step, transformed co-

ordinates are first calculated according to estimated flow

F = (u, v) as

(

xs
p

ysp

)

= WF ;α

(

xp

yp

)

= α

(

xp + up

yp + vp

)

, (6)

where p indexes pixels in LR image space. xp and yp are

the two coordinates of p. up and vp are the flow vectors

estimated from previous stage. We denote transform of co-

ordinates as operator WF ;α, which depends on flow field F
and scale factor α. xs

p and ysp are the transformed coordi-

nates in an enlarged image space, as shown in Fig. 3.

Differentiable Image Sampler Output image is con-

structed in the enlarged image space according to xs
p and

ysp. The resulting image JH
q is

JH
q =

∑

p=1

JL
p M(xs

p − xq)M(ysp − yq), (7)

where q indexes HR image pixels. xq and yq are the two

coordinates for pixel q in the HR grid. M(·) is the sampling

kernel, which defines the image interpolation methods (e.g.

bicubic, bilinear, and nearest-neighbor).

We further investigate differentiability of this layer. As

indicated in Eq. (5), the SPMC layer takes one LR image

JL and one flow field F = (u, v) as input, without other

trainable parameters. For each output pixel, partial deriva-

4474



tive with respect to each input pixel is

∂JH
q

∂JL
p

=
∑

p=1

M(xs
p − xq)M(ysp − yq). (8)

It is similar to calculating partial derivatives with respect to

flow field (up, vp) using the chain rule as

∂JH
q

∂up

=
∂JH

q

∂xs
p

·
∂xs

p

∂up

= α
∑

p=1

JL
p M

′(xs
p − xq)M(ysp − yq),

(9)

where M ′(·) is the gradient of sampling kernel M(·). Sim-

ilar derivatives can be derived for
∂Jq

∂vp
. We choose M(x) =

max(0, 1− |x|), which corresponds to the bilinear interpo-

lation kernel, because of its simplicity and convenience to

calculate gradients. Our final layer is fully differentiable, al-

lowing back-propagating loss to flow fields smoothly. The

advantages of having this type of layers is threefold.

• This layer can simultaneously achieve motion com-

pensation and resolution enhancement. Note in most

previous work, they are separate steps (e.g. backward

warping + bicubic interpolation).
• This layer is parameter free and fully differentiable,

which can be effectively incorporated into neural net-

works with almost no additional cost.
• The rationale behind this layer roots from accurate LR

imaging model, which ensures good performance in

theory. It also demonstrates good results in practice,

as we will present later.

3.3. Detail Fusion Net

The SPMC layer produces a series of motion compen-

sated frames {JH
i } expressed as

JH
i = LayerSPMC(I

L
i , Fi→0;α). (10)

Design of the following network is non-trivial due to the

following considerations. First, {JH
i } are already HR-size

images that produce large feature maps, thus computational

cost becomes an important factor.

Second, due to the property of forward warping and zero-

upsampling, {JH
i } is sparse and majority of the pixels are

zero-valued (e.g. about 15/16 are zeros for scale factor 4×).

This requires the network to have large receptive fields to

capture image patterns in JH
i . Using simple interpolation to

fill these holes is not a good solution because interpolated

values would dominate during training.

Finally, special attention needs to be paid to the use of

the reference frame. On the one hand, we rely on the ref-

erence frame as the guidance for SR so that the output HR

image is consistent with the reference frame in terms of im-

age structures. On the other hand, over-emphasizing the

reference frame could impose an adverse effect of neglect-

ing information in other frames. The extreme case is that

the system behaves like a single-image SR one.

Network Architecture We design an encoder-decoder

[24] style structure with skip-connections (see Fig. 2) to

tackle above issues. This type of structure has been proven

to be effective in many image regression tasks [21, 24, 27].

The encoder sub-network reduces the size of input HR im-

age to 1/4 of it in our case, leading to reduced computation

cost. It also makes the feature maps less sparse so that in-

formation can be effectively aggregated without the need of

employing very deep networks. Skip-connections are used

for all stages to accelerate training.

A ConvLSTM module [29] is inserted in the middle

stage as a natural choice for sequential input. The network

structure includes

fi = NetE(J
H
i ; θE)

gi, si = ConvLSTM(fi, si−1; θLSTM ) (11)

I
(i)
0 = NetD(gi, SE

i ; θD) + IL↑
0

where NetE and NetD are encoder and decoder CNNs

with parameters θE and θD. fi is the output of encoder net.

gi is the input of decoder net. si is the hidden state for

LSTM at the ith step. SE
i for all i are intermediate feature

maps of NetE , used for skip-connection. IL↑
0 is the bicubic

upsampled IL0 . I
(i)
0 is the ith time step output.

The first layer of NetE and the last layer of NetD have

kernel size 5 × 5. All other convolution layers use kernel

size 3 × 3, including those inside ConvLSTM. Deconvolu-

tion layers are with kernel size 4 × 4 and stride 2. Rec-

tified Linear Units (ReLU) are used for every conv/deconv

layer as the activation function. For skip-connection, we use

SUM operator between connected layers. Other parameters

are labeled in Fig. 2.

3.4. Training Strategy

Our framework consists of three major components, each

has a unique functionality. Training the whole system in an

end-to-end fashion with random initialization would result

in zero flow in motion estimation, making the final results

similar to those of single-image SR. We therefore separate

training into three phases.

Phase 1 We only consider NetME in the beginning of

training. Since we do not have ground truth flow, unsuper-

vised warping loss is used as [21, 30]

LME =

T
∑

i=−T

‖ILi − ĨL0→i‖1 + λ1‖∇Fi→0‖1, (12)

where ĨL0→i is the backward warped IL0 according to es-

timated flow Fi→0, using a differentiable layer similar to

spatial transformer [10]. Note that this image is in low res-

olution, aligned with ILi . ‖∇Fi→0‖1 is the total variation

term on each (u, v)-component of flow Fi→0. λ1 is the reg-

ularization weight. We set λ1 = 0.01 in all experiments.
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(a) Bicubic ×4 (b) Using BW #1 (c) Using BW #2 (d) Using BW #3

(e) Ground truth (f) Using SPMC #1 (g) Using SPMC #2 (h) Using SPMC #3

Figure 4. Effectiveness of SPMC Layer (F3-×4). (a) Bicubic ×4. (b)-(d) Output for each time step using BW. (e) Ground truth. (f)-(h)

Outputs using SPMC.

Phase 2 We then fix the learned weights θME and only

train NetDF . This time we use Euclidean loss between our

estimated HR reference frame and the ground truth as

LSR =

T
∑

i=−T

κi‖I
H
0 − I

(i)
0 ‖22, (13)

where I
(i)
0 is our network output in the ith time step, cor-

responding to reference frame IL0 . {κi} are the weights

for each time step. We empirically set κ−T = 0.5 and

κT = 1.0, and linearly interpolate intermediate values.

Phase 3 In the last stage, we jointly tune the whole system

using the total loss as

L = LSR + λ2LME , (14)

where λ2 is the weight balancing two losses.

4. Experiments

We conduct our experiments on a PC with an Intel Xeon

E5 CPU and an NVIDIA Titan X GPU. We implement our

framework on the TensorFlow platform [6], which enables

us to easily develop our special layers and experiment with

different network configurations.

Data Preparation For the super-resolution task, training

data needs to be of high-quality without noise while con-

taining rich fine details. To our knowledge, there is no

such publicly available video dataset that is large enough

to train our deep networks. We thus collect 975 sequences

from high-quality 1080p HD video clips. Most of them are

commercial videos shot with high-end cameras and contain

both natural-world and urban scenes that have rich details.

Each sequence contains 31 frames following the configura-

tion of [19, 20, 23]. We downsample the original frames to

540× 960 pixels as HR ground truth using bicubic interpo-

lation. LR input is obtained by further downsampling HR

frames to 270 × 480, 180 × 320 and 135 × 240 sizes. We

randomly choose 945 of them as training data, and the rest

30 sequences are for validation and testing.

Model Training For model training, we use Adam solver

[17] with learning rate of 0.0001, β1 = 0.9 and β2 = 0.999.

We apply gradient clip only to weights of ConvLSTM mod-

ule (clipped by global norm 3) to stabilize the training pro-

cess. At each iteration, we randomly sample NF consecu-

tive frames (e.g. NF = 3, 5, 7) from one sequence, and ran-

domly crop a 100×100 image region as training input. The

corresponding ground truth is accordingly cropped from the

reference frame with size 100α× 100α where α is the scal-

ing factor. Above parameters are fixed for all experiments.

Batch size varies according to different settings, which is

determined as the maximal value allowed by GPU memory.

We first train the motion estimation module using only

loss LME in Eq. (12) with λ1 = 0.01. After about 70,000 it-

erations, we fix the parameters θME and train the system us-

ing only loss LSR in Eq. (13) for 20,000 iterations. Finally,

all parameters are trained using total loss L in Eq. (14), λ2

is empirically chosen as 0.01. All trainable variables are

initialized using Xavier methods [9].

In the following analysis and experiments, we train sev-
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Table 1. Performance of baseline models

Model (F3) BW DF-Bic DF-0up Ours

SPMCS (×4) 29.23 / 0.82 29.67 / 0.83 29.65 / 0.83 29.69 / 0.84

eral models under different settings. For simplicity, we use

×(·) to denote scaling factors (e.g. ×2, ×3, and ×4). And

F(·) is used as the number of input frames (e.g. F3, F5,

and F7). Moreover, our ConvLSTM based DF net pro-

duces multiple outputs (one for each time step), we use

{#1,#2, · · · } to index output.

4.1. Effectiveness of SPMC Layer

We first evaluate the effectiveness of the proposed SPMC

layer. For comparison, a baseline model BW (F3-×4) is

used. It is achieved by fixing our system in Fig. 2, except

replacing the SPMC layer with backward warping, followed

by bicubic interpolation, which is a standard alignment pro-

cedure. An example is shown in Fig. 4. In Fig. 4(a), bicu-

bic ×4 for reference frame contains severe aliasing for the

tile patterns. Baseline model BW produces 3 outputs cor-

responding to three time steps in Fig. 4(b)-(d). Although

results are sharper when more frames are used, tile patterns

are obviously wrong compared to ground truth in Fig. 4(e).

This is due to loss of sub-pixel information as analyzed in

Section 2. The results are similar to the output of single

image SR, where the reference frame dominates.

As shown in Fig. 4(f), if we only use one input im-

age in our method, the recovered pattern is also similar to

Fig. 4(a)-(d). However, with more input frames fed into the

system, the restored images dramatically improve, as shown

in Fig. 4(g)-(h), which are both sharper and closer to the

ground truth. Quantitative values on our validation set are

listed in Table 1.

4.2. Detail Fusion vs. Synthesis

We further investigate if our recovered details truly exist

in original frames. One example is already shown in Fig. 4.

Here we conduct a more illustrative experiment by replac-

ing all input frames with the same reference frame. Specif-

ically, Fig. 5(f)-(h) are outputs using 3 consecutive frames

(F3-×3). The numbers and logo are recovered nicely. How-

ever, if we only use 3 copies of the same reference frame as

input and test them on the same pre-trained model, the re-

sults are almost the same as using only one frame. This

manifests that our final result shown in Fig. 5(h) is truly

recovered from the 3 different input frames based on their

internal detail information, rather than synthesized from ex-

ternal examples because if the latter holds, the synthesized

details should also appear even if we use only one reference

frame.

(a) Bicubic ×4 (b) DF 0up-

(c) DF Bic- (d) Ours

Figure 6. Detail fusion net with various inputs.

4.3. DF­Net with Various Inputs

Our proposed detail fusion (DF) net takes only JH
i as

input. To further evaluate if the reference frame is needed,

we design two baseline models. Model DF-bic and DF-0up

respectively add bicubic and zero-upsampled IL0 as another

channel of input to DF net. Visual comparison in Fig. 6

shows that although all models can recover reasonable de-

tails, the emphasis on the reference frame may mislead de-

tail recovery and slightly degrade results quantitatively on

the evaluation set (see Table 1).

4.4. Comparisons with Video SR Methods

We compare our method with previous video SR ones

on the evaluation dataset. BayesSR [20, 23] is an impor-

tant method that iteratively estimates motion flow, blur ker-

nel, noise and the HR image. DESR [19] ensembles “draft”

based on estimated flow, which makes it an intermediate

solution between traditional and CNN-based methods. We

also include a recent deep-learning-based method VSRnet

[14] in comparison. We use author-provided implementa-

tion for all these methods. VESPCN [2] did not provide

code or pre-trained model, so we only list their reported

PSNR/SSIM on the 4-video dataset VID4 [20]. The quan-

titative results are listed in Table 2. Visual comparison is

shown in Fig. 7.

4.5. Comparisons with Single Image SR

Since our framework is flexible, we set NF = 1 to

turn it into a single image SR solution. We compare this

approach with three recent image SR methods: SRCNN

[3], FSRCNN [4] and VDSR [15], on dataset Set5 [1] and

Set14 [32]. To further compare the performance of using

one and multiple frames, we also run all single-image SR

methods and ours under F3 setting on our evaluation dataset

SPMCS. The quantitative results are listed in Table 3.
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(a) Bicubic ×3 (b) Using copied frames #1 (c) Using copied frames #2 (d) Using copied  frames #3

(e) Ground truth (f) Using 3 frames #1 (g) Using 3 frames #2 (h) Using 3 frames #3

Figure 5. SR using multiple frames (F3-×3). (a) Bicubic ×3. (b)-(d) Output for each time step using 3 reference frames that are with the

same content. (e) Ground truth. (f)-(h) Output using 3 consecutive frames.

(b)BayesSR (c) DESR (e) Ours F5 ×4( - )(a) Bicubic ×4 (d) VSRnet

Figure 7. Comparisons with video SR methods.
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(a) Bicubic ×4 (b) Ours (c) Bicubic ×4 (d) Ours

Figure 8. Real-world examples under configuration (F7-×4).

Table 2. Comparison with video SR methods (PSNR/SSIM)

Method (F3) Bicubic BayesSR DESR VSRnet Ours (F3)

SPMCS×2 32.48 / 0.92 31.85 / 0.92 - 33.39 / 0.94 36.71 / 0.96

SPMCS×3 28.85 / 0.82 29.42 / 0.87 - 28.55 / 0.85 31.92 / 0.90

SPMCS×4 27.02 / 0.75 27.87 / 0.80 26.64 / 0.76 24.76 / 0.77 29.69 / 0.84

Method (F5) Bicubic BayesSR DESR VSRNet Ours (F5)

SPMCS×2 32.48 / 0.92 31.82 / 0.92 - 35.44 / 0.95 36.62 / 0.96

SPMCS×3 28.85 / 0.82 29.55 / 0.87 - 30.73 / 0.88 32.10 / 0.90

SPMCS×4 27.02 / 0.75 28.03 / 0.81 26.97 / 0.77 28.35 / 0.79 29.89 / 0.84

Method (F3) BayesSR DESR VSRNet VESPCN Ours (F3)

Vid4×3 25.64 / 0.80 - 25.31 / 0.76 27.25 / 0.84 27.49 / 0.84

Vid4×4 24.42 / 0.72 23.50 / 0.67 22.81 / 0.65 25.35 / 0.76 25.52 / 0.76

(a) Bicubic ×4 (b) SRCNN (c) FSRCNN

(d) VDSR (e) Ours (F1) (f) Ours (F3)

Figure 9. Comparisons with single image SR methods. (a) Bicu-

bic ×4. (b)-(d) Output from image SR methods. (e) Our result

using 1 frame. (f) Our result using 3 frames.

For the F1 setting on Set5 and Set14, our method pro-

duces comparable or slightly lower-PSNR or -SSIM results.

Under the F3 setting, our method outperforms them by a

large margin, indicating that our multi-frame setting can ef-

fectively fuse information in multiple frames. An example

is shown in Fig. 9, where single image SR cannot recover

the tiled structure of the building. In contrast, our F3 model

can faithfully restore it.

Table 3. Comparison with image SR methods (PSNR/SSIM)

Method SRCNN FSRCNN VDSR Ours (F1) Ours (F3)

Set 5 (×2) 36.66 / 0.95 37.00 / 0.96 37.53 / 0.96 37.35 / 0.96 -

Set 5 (×3) 32.75 / 0.91 33.16 / 0.92 33.66 / 0.92 33.45 / 0.92 -

Set 5 (×4) 30.49 / 0.86 30.71 / 0.88 31.35 / 0.88 30.96 / 0.87 -

Set 14 (×2) 32.45 / 0.91 32.63 / 0.91 33.03 / 0.91 32.70 / 0.91 -

Set 14 (×3) 29.30 / 0.82 29.43 / 0.83 29.77 / 0.83 29.36 / 0.83 -

Set 14 (×4) 27.45 / 0.75 27.59 / 0.77 28.01 / 0.77 27.57 / 0.76 -

SPMCS (×2) 35.20 / 0.95 35.56 / 0.95 36.14 / 0.96 36.23 / 0.96 36.71 / 0.96

SPMCS (×3) 30.66 / 0.87 30.87 / 0.88 31.26 / 0.89 31.18 / 0.88 31.92 / 0.90

SPMCS (×4) 28.29 / 0.79 28.43 / 0.79 28.80 / 0.81 28.80 / 0.80 29.69 / 0.84

4.6. Real­World Examples

The LR images in the above evaluation are produced

though downsampling (bicubic interpolation). Although

this is a standard approach for evaluation [3, 4, 14, 15, 19,

20], the generated LR images may not fully resemble the

real-world cases. To verify the effectiveness of our method

on real-world data, we captured four examples as shown

in Fig. 8. For each object, we capture a short video using

a hand-held cellphone camera, and extract 31 consecutive

frames from it. We then crop a 135 × 240 region from the

center frame, and use TLD tracking [12] to track and crop

the same region from all other frames as the input data to our

system. Fig. 8 shows the SR result of the center frame for

each sequence. Our method faithfully recovers the textbook

characters and fine image details using the F7-×4 model.

More examples are included in our supplementary material.

4.7. Model Complexity and Running Time

Using our un-optimized TensorFlow code, the F7-×4
model takes about 0.26s to process 7 input images with size

180× 120 for one HR output. In comparison, reported tim-

ings for other methods (F31) are 2 hours for Liu et al. [20],

10 min. for Ma et al. [23], and 8 min. for DESR [19]. VS-

Rnet [14] requires ≈40s for F5 configuration. Our method

is further accelerated to 0.19s for F5 and 0.14s for F3.

5. Concluding Remarks

We have proposed a new deep-learning-based approach

for video SR. Our method includes a sub-pixel motion com-

pensation layer that can better handle inter-frame motion for

this task. Our detail fusion (DF) network that can effectively

fuse image details from multiple images after SPMC align-

ment. We have conducted extensive experiments to validate

the effectiveness of each module. Results show that our

method can accomplish high-quality results both qualita-

tively and quantitatively, at the same time flexible regarding

scaling factors and numbers of input frames.
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