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Abstract

Recent ground-breaking works have shown that deep

neural networks can be trained end-to-end to regress dense

disparity maps directly from image pairs. Computer gen-

erated imagery is deployed to gather the large data corpus

required to train such networks, an additional fine-tuning

allowing to adapt the model to work well also on real and

possibly diverse environments. Yet, besides a few public

datasets such as Kitti, the ground-truth needed to adapt the

network to a new scenario is hardly available in practice.

In this paper we propose a novel unsupervised adaptation

approach that enables to fine-tune a deep learning stereo

model without any ground-truth information. We rely on

off-the-shelf stereo algorithms together with state-of-the-art

confidence measures, the latter able to ascertain upon cor-

rectness of the measurements yielded by former. Thus, we

train the network based on a novel loss-function that penal-

izes predictions disagreeing with the highly confident dis-

parities provided by the algorithm and enforces a smooth-

ness constraint. Experiments on popular datasets (KITTI

2012, KITTI 2015 and Middlebury 2014) and other chal-

lenging test images demonstrate the effectiveness of our

proposal.

1. Introduction

Availability of accurate 3D data is key to a large variety

of high-level computer vision tasks, such as autonomous

driving, 3D reconstruction and many others. Thus, sev-

eral depth estimation techniques exhibiting different de-

grees of effectiveness and deployability have been proposed

throughout the years. Among them, stereo vision proved to

be one of the most promising methodologies to infer ac-

curate depth information in both indoor and outdoor set-

tings. However, recent datasets, such as KITTI [4, 12] and

Middlebury 2014 [19], emphasized major shortcomings of

stereo in the challenging environmental conditions found in

most practical applications [11].

(a) (b)

(c) (d)
Figure 1. Effectiveness of unsupervised adaptation. (a),(b): Left

and right images belonging to a challenging stereo pair of the

dataset without ground-truth proposed in [11]. (c): Output pro-

vided by Dispnet-Corr1D [10]. (d): Output achieved after unsu-

pervised adaptation of Dispnet-Corr1D.

The widespread diffusion of deep learning in computer

vision has also affected stereo vision. In particular, Con-

volutional Neural Networks (CNNs) proved very effective

to compute matching costs between the patches of a stereo

pair [25, 2, 9], although these novel approaches still re-

quires to be plugged into well established disparity opti-

mization and refinement pipelines (e.g., [25]) to achieve

state-of-the-art accuracy. A ground-breaking forward step

is DispNet , [10], a deep architecture trained from scratch

to regress dense disparity measurements end-to-end from

image pairs, thereby dismissing all the machinery tradition-

ally deployed to optimize/refine disparities and speeding up

the computation considerably. However, due to the high

capacity of the model as well as the input consisting in im-

age pairs rather than patch pairs, this approach mandates
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a huge amount of supervised training data not available in

existing datasets (i.e. tens of thousands of stereo pairs with

ground-truth). Therefore, the network is trained leveraging

on large synthetic datasets generated by computer graphics

[10] and then fine-tuned on fewer available real data with

ground truth [4, 12] in order to improve effectiveness in the

addressed scenario [10]. Yet, the performance of a deep

stereo model may deteriorate substantially when the super-

vised data needed to perform adaptation to a new environ-

ment are not available. For example, Figure 1 (c) shows

how DispNet [10] yields gross errors on a stereo pair of a

dataset [11] lacking the ground-truth information to fine-

tune the network. Unfortunately, besides a few research

datasets, stereo pairs with ground-truth disparities are quite

rarely available as well as cumbersome and expensive to

create in any practical settings. This state of affairs may

limit deployability of deep stereo architectures significantly.

To tackle the above mentioned issue, in this paper we

propose a novel unsupervised adaptation approach that

enables to fine-tune a deep stereo network without any

ground-truth information. The first key observation to our

approach is that computer vision researchers have pursued

for decades the development of general-purpose stereo cor-

respondence algorithms that do not require any adapta-

tion to be deployed in different scenarios. The second is

that, although traditional stereo algorithms exhibit well-

known shortcomings in specific conditions (e.g., occlu-

sions, texture-less areas, photometric distortions ..), recent

state-of-the-art confidence measures, more often than not

relying on machine learning [17, 21, 22, 14, 16], can ef-

fectively highlight uncertain disparity assignments. Thus,

we propose to leverage on traditional stereo algorithms and

state-of-the-art confidence measures in order to fine-tune a

deep stereo model based on disparities provided by stan-

dard stereo algorithms that are deemed as highly reliable by

the confidence measure. Figure 1 (d) shows that our unsu-

pervised adaptation approach can improve dramatically the

output provided by DispNet [10] on a dataset lacking the

ground-truth to fine-tune the network with supervision. Our

approach deploys a loss function that, taking as target vari-

ables the disparity measurements provided by the stereo al-

gorithm, weighs the error contribution associated with each

prediction according to the estimated confidence in the cor-

responding target value. Moreover, we introduce a smooth-

ing term in the loss that penalize dissimilar predictions at

nearby spatial locations, based on the conjecture that as high

confidence target disparities may turn out sparse, enforc-

ing smoothness helps propagating the predictions from high

confidence locations towards low confidence ones. The ef-

fectiveness of our unsupervised technique is demonstrated

by experimental evaluation on KITTI datasets [4, 12] and

Middlebury 2014 [19], assessing both adaptation ability and

generalization to new data. We also report qualitative re-

sults on challenging images [11], so to highlight the need

for an effective unsupervised adaptation methodology.

2. Related Work

In the past decades several algorithms have been pro-

posed to tackle the stereo correspondence problem and, ac-

cording to [20], they can be categorized into two broad

classes: local and global methods. Both perform a subset

of the following four steps: 1) matching cost computation

2) cost aggregation 3) disparity computation/optimization

4) disparity refinement. Although local methods can be

very fast, global approaches are in general more effec-

tive. Among the latter, a good trade-off between accu-

racy and execution time is represented by the Semi Global

Matching (SGM) algorithm [6]. This method, also im-

plemented on different embedded architectures [1, 3], is

a very popular solution to disparity optimization adopted

by most top-performing algorithms on challenging datasets

[4, 12, 19], such as e.g. [25, 21]. A further boost to stereo

accuracy in challenging environments has been achieved

deploying deep learning techniques within a conventional

stereo pipeline based on SGM. In this field [25, 2, 9] in-

ferred matching costs by training a CNN to compare image

patches. In particular, Zbontar and LeCun [25] established

a common baseline for any other attempt to push forward

the state-of-the-art. A different strategy proposed in [15]

deploys deep learning to merge disparity maps of multiple

algorithms so as to obtain a more accurate estimation. Nev-

ertheless, such deep learning approaches also showed that

well-established optimization methodologies such as SGM

are still required to achieve very accurate results (e.g., [25]).

A major departure from this line of research has been

proposed by Mayer et al. [10], who tackle the disparity es-

timation problem without leveraging on any conventional

stereo technique. They achieved very accurate results on

the KITTI datasets [4, 12] by training end-to-end a deep

architecture, DispNet, so to infer dense disparity maps di-

rectly from a pair of input images. As there exist no dataset

with ground-truth large enough to train such a network, they

deployed a synthetic, yet somehow realistic, dataset specif-

ically created for this purpose. A subsequent fine-tuning on

real datasets, however, is key to substantially improve accu-

racy.

Recent trends concerning confidence measures for

stereo, reviewed and evaluated by Hu and Mordohai [7]

and more recently by Poggi et al. [18], are also rele-

vant to our work, in particular state-of-the-art approaches

leveraging on machine-learning to pursue confidence pre-

diction. Hausler et al. [5] proposed to combine multiple

confidence measures and features, as orthogonal as possi-

ble, within a random forest framework. The same strategy

was adopted by [22, 14, 16], though deploying more ef-

fective confidence measures and features. Confidence pre-
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diction has also been tackled recently by deep learning ap-

proaches. Poggi and Mattoccia [17] and Seki and Pollefeys

[21] propose two different strategies to train a CNN to pre-

dict confidence measures directly from disparity maps. Re-

gardless of the adopted strategy, confidence measures have

been deployed to improve the overall accuracy of conven-

tional stereo vision pipelines as shown in [22, 14, 16, 21].

Finally, Mostegel et al. [13], propose unsupervised train-

ing of confidence measures leveraging on contradictions be-

tween multiple depth maps from different viewpoints.

Thus, though both machine/deep learning and confi-

dence measures are becoming more and more relevant to

the stereo literature, we are not aware of any previous work

concerned with deploying confidence measure to help train-

ing unsupervisedly a machine learning algorithm pursuing

disparity estimation.

3. Unsupervised Adaptation

As vouched by the experimental findings reported in

Sec. 4.2, 4.3, the main issue with large networks aimed

at dense disparity estimation from image pairs is robustness

to different deployment scenarios. In fact, when dealing

with environments quite different from those employed to

train the network, the accuracy may quickly drop and the

model would need to be adapted to the new settings in or-

der to achieve comparable performance. This step requires

a dataset with ground truth that is seldom available in prac-

tical applications.

Our proposal tackles this issue by enabling adaptation

of the network in an unsupervised fashion by leveraging on

a conventional stereo algorithm and a reliable confidence

measure. Starting from a pre-trained model, we fine tune

it to minimize a novel loss function (L) made out of two

terms: a Confidence Guided Loss (CL) and a Smoothing

Term (S), with hyper-parameter λ weighing the contribu-

tion of the latter:

L = CL + λ ∗ S (1)

Such a loss function enables to adapt the pre-trained

model to deal with any new environment by simply process-

ing a pool of stereo pairs and without requiring any ground-

truth information.

3.1. Confidence Guided Loss

Once trained on very large datasets with ground truth,

end-to-end stereo networks like DispNet can predict a dis-

parity map directly from the input stereo pair. As reported

in [10], the authors firstly trained the network on a huge

synthetic generated dataset of 25000 image pairs with valid

disparity label for each pixel, then adapted it to a differ-

ent environment through a much smaller amount of image

pairs endowed with even sparse ground truth labels (i.e. the

nearly 200 training images of KITTI2012 [4] where only

a subset of pixels have meaningful disparity values). To

account for the missing values within the images used to

fine-tune the network they simply set the loss function to 0

at such locations, given that, even if only a small portion

of output receives meaningful gradients, the system is still

able to adapt fairly well to the new scenario and hence to

ameliorate its overall accuracy.

However, despite the elegance and effectiveness of such

methodology, for most real world scenarios the adaptation

would be impossible because we can not expect availability

of enough ground truth data, even at sparse locations. On

the other hand, what we could reasonably expect is avail-

ability of stereo pairs acquired in the field. Hence, the

first contribution of our work is to fill this gap by provid-

ing a methodology to obtain disparity labels for the adapta-

tion phase using conventional stereo algorithms (e.g., AD-

CENSUS [24] or SGM [6]). Unfortunately a network like

DispNet trained on the raw output of AD-CENSUS or SGM

would, at best, learn to imitate the overall behavior of the

chosen stereo algorithm, including its intrinsic shortcom-

ings, thus leading to unsatisfactory results. However, by

taking advantage of effective confidence measures recently

proposed, like [17], we can discriminate between reliable

and unreliable disparity measurements, to select the former

and fine tune the model using such smaller and sparse set of

points as if they were ground truth labels.

Given an input stereo pair IL and IR, we denote as D̃

the disparity map predicted by the stereo network, D the

disparity map computed by a conventional stereo algorithm

and C a confidence map measuring the reliability of each

element in D, with C(p) ∈ [0, 1]∀p ∈ P , with P the set of

all spatial locations. We define the Confidence Guided Loss

(CL) as:

CL =
1

|P |

∑

p∈P

E (p) (2)

E (p) =

{

C (p) · |D̃ (p)−D (p) | if C (p) ≥ τ

0 if C (p) < τ
(3)

τ ∈ [0, 1] being a hyper-parameter of our method that

controls the sparseness and reliability of the disparity mea-

surements provided by the stereo algorithm that act as tar-

get variables in our learning process. Higher values of τ let

fewer measurements contribute to the loss but with a lower

probability of injecting wrong disparities into the process.

It is worth pointing out that should the confidence measure

behave perfectly, minimizing such loss function with an ap-

propriate τ might be taught of as to fine-tuning on sparse

ground truth data with the same amount of samples.

1607



3.2. Smoothness Term

Although fine-tuning on sparse ground truth data, as pro-

posed in [10], does improve the disparities predicted in un-

seen scenarios, it may still be regarded as an approxima-

tion of the ideal optimization process that would leverage

on dense labels. Therefore, to compensate for the sparsity

of target measurements, we introduce in the loss function an

additional smoothness term S that tends to penalize diverse

predictions at nearby spatial locations.

Given a distance function D (p, q) between two spatial

locations p, q, we denote as Np the set of neighbours of

spatial location p: Np = {q|D (p, q) < δ}. We compute

the average absolute difference between the disparity pre-

dicted at p and those predicted at each q ∈ Np:

E (p) =
1

|Np|

∑

q∈Np

|D̃(q)− D̃(p)| (4)

The smoothing term is obtained by averaging E (p)
across all spatial locations:

S =
1

|P |

∑

p∈P

E (p) (5)

The distance function, D, as well as the radius of the

neighborhood, δ, are hyper-parameters of the proposed

smoothing term. It is worth observing that, optimized alone,

such term would produce a uniform disparity map as output.

However, when carefully weighted in conjunction with CL,

it helps spreading the information associated with sparse

target measurements towards the other spatial locations.

4. Experimental Results

To validate our proposal we choose DispNet-Corr1D

[10], from now on referred to as DispNet, as network archi-

tecture for end-to-end disparity regression, AD-CENSUS

[24] and SGM [6] as off-the-shelf stereo algorithms and

CCCN [17] as confidence estimator. The choice of the con-

fidence estimator has been driven by its top performance

and broad applicability, the latter due to the method requir-

ing only the disparity map to estimate the confidence. As for

Dispnet, we modified the original authors code to incorpo-

rate our novel loss formulation and fine tuned the network

starting from the publicly available weights obtained after

training on synthetic data only. For CCCN we used the orig-

inal implementation as well as the provided weights without

any retraining or fine tuning. Lastly, we used a custom im-

plementation of SGM and AD-CENSUS based on the orig-

inal papers. We will firstly introduce the procedure used to

properly tune the hyper-parameters of our learning process,

then we will show that our method not only allows to ef-

fectively fine-tune the chosen disparity regression network

without any labeled data but also does improve the general-

ization capability of the model across similar domains.
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Figure 2. Percentage of points with confidence> τ on KITTI 2012

images using AD-CENSUS as stereo algorithm and CCCN as con-

fidence measure. The blue curve shows that the higher is τ the

lower is the number of points used in our learning process. The or-

ange curve reports the percentage of correct points between those

selected by the confidence measure that belong also to the avail-

able sparse ground truth (less than 30% of the total points, black

horizontal line), which is obtained by comparing the disparities

estimated at the selected points to the ground truth disparities.

4.1. Learning Process

To find optimal values for the hyper-parameters of our

learning machinery, we choose to rely on the commonly

used KITTI datasets [4, 12]. In particular, to get insights on

the training and generalization performance of our method,

we have used the images from KITTI 2012 as training set

and those from KITTI 2015 as test set. For all our exper-

iments we initialize DispNet according to the weights ob-

tained after 1200000 training steps on synthetic data and

publicly released by the authors. In the experiments dealing

with hyper-parameters tuning, we have used AD-CENSUS

[24] as stereo algorithm to compute the disparity maps that

are then validated by the chosen confidence measure [17] in

order to sift-out the actual target variables.

For these experiments, to obtain useful insights in an ac-

ceptable training time, we carried out just 10000 fine tuning

steps for each test configuration with batch size equal to 4

on the 194 KITTI 2012 images(∼200 epochs) and feeding

the network with random crops of the original images of

size 768 × 384. To increase the variety of the training set,

we perform random data augmentation (color, brightness

and contrast transformations) as done by the authors of [10].

We use ADAM [8] as optimizer with an initial learning rate

equal to 0.0001 and an exponential decay every 2000 step

with γ = 0.5.

The first parameter that needs to be carefully tuned is

τ , which allows for filtering out wrong disparity assign-

ments according to the scores provided by confidence mea-

sure. Figure 2 shows that even for high values of τ we can

get disparity maps denser than the available ground truth

data for KITTI 2012. Moreover, cross comparing such

points with the available sparse ground truth, we can ob-
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Figure 3. Spatial distribution of training samples on stereo pair 000073 from KITTI 2015. Top row: reference image, disparity map yielded

by the AD-CENSUS algorithm and corresponding confidence map obtained by CCNN [17]. Bottom row, from left to right: three colormaps

obtained by thresholding the confidence map with τ equal to 0, 0.5 and 0.99, respectively. The colormaps depict in green the points above

threshold and in blue their intersection with the available ground-truth points.

serve that, for quite high τ values (i.e. > 0.9), nearly 100%
of the points selected by our method that appear at avail-

able ground truth locations carry correct disparities. Al-

though we cannot assess upon the correctness of the points

selected by our method that do not coincide with available

ground truth locations, there seems to be no reason to be-

lieve that the confidence measure would behave much dif-

ferently therein. Therefore, Figure 2 seems to support the

intuition that high confidence disparities are very likely cor-

rect and hence may effectively act as ”surrogate” ground

truth data within our unsupervised learning process. More-

over, compared to the sparse ground truth data available in

the KITTI datasets, a favourable property of our selected

disparities is the larger spread across the whole image. This

enables our method to look at portions of the scene seldom

included in ground truth data. From Figure 3 we can notice

that for high values of τ , even though the density of our dis-

parity map is similar (or slightly lower) with respect to the

ground truth data, we gather samples more spread across all

the image. For example, even with τ = 0.99, the top of the

trees on the left and one of the farthest car in the scene are

always visible in our unsupervised disparity map but not in-

cluded in the available ground truth data. We will show in

section 4.3 that this property leads to better generalization

performance.

Given this preliminary observations, we tried different

values for τ and report the training and generalization er-

ror in Figure 4. We observe a perfectly smooth descend-

ing behavior of the Training and Generalization error (per-

centage of wrongly predicted pixel) with increasing value

of τ . Given this outcome we can conclude that the higher

the value of τ the better the performance of the network.

Thus, we set τ = 0.99. Such value selects, on this train-

ing set, 22.07% of available pixels (slightly less than the

available ground truth points) with an accuracy of the pix-

els for which we have a ground truth disparity annotation

equal to 99.65%. Once set τ , we evaluate how a proper

tuning of the smoothing term of our loss function enables

to improve the overall performance. For these experiments

we choose as distance function D (p, q) the L1 distance and
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Figure 4. Performance of the network after 10000 steps of fine-

tuning for different values of τ . We report as Training Error the

percentage of pixel with disparity mismatch > 3 on the training set

(KITTI 2012) and as Generalization Error the same metric com-

puted on unseen data from KITTI 2015.

δ = 1. Keeping the same set-up as used to tune τ (Fig-

ure 4), we perform experiments on the KITTI 2012 dataset

with different values of λ ∈ [0, 1], the results reported in

Figure 5. Looking at the training error it is clear how our

regularization term can improve the performance of the net-

work. However the value of λ must be kept < 0.6 in or-

der to not over-smooth predictions. More importantly, even

the generalization performance of the network is influenced

by the magnitude of λ, with the lowest generalization error

obtained using λ = 0.1. WE believe that the explanation

for this behavior is that the network compensates for the

missing target measurements by creating a useful training

signal thanks to the smoothing factor that propagates infor-

mation from existing target measurements to nearby loca-

tions. However, the value of λ must be kept low so to not

overcome the contribution of the confidence guided loss.

From the careful tuning outlined so far, we found that

the best configuration for our unsupervised framework is

τ = 0.99 and λ = 0.1 using D (p, q) and δ = 1.

4.2. Adaptation

Given the best configuration of hyper-parameters, we

evaluate the effectiveness of our unsupervised adaptation
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Figure 5. Performance of the network after 10000 steps of fine-

tuning for different values of λ and with τ = 0.99.

Stereo KITTI 2015 Middlebury 2014

algorithm bad 3(%) avg bad 1(%) avg

AD-CENSUS [24] 35.41 20.11 30.66 10.29

SGM [6] 13.68 6.14 20.71 5.73

DispNet 7.46 1.27 32.82 2.74

DispNet K12-GT 4.58 1.15 40.21 2.94

DispNet CENSUS 4.02 0.76 25.38 2.47

DispNet SGM 4.21 0.85 22.91 2.66

Table 1. Adaptation results on the KITTI 2015 training dataset.

DispNet: no fine-tuning; DispNet K12-GT: supervised fine-tuning

on an annotated and quite similar dataset (KITTI 2012); DispNet

CENSUS: unsupervised adaptation using the AD-CENSUS stereo

algorithm; DispNet SGM: unsupervised adaptation using the SGM

stereo algorithm.

methodology when dealing with environments never seen

before. To assess performance, on one hand we assume the

KITTI 2012 training dataset as a known scenario on which

ground-truth data to fine-tune DispNet are available . On the

other hand, we assume KITTI 2015 and Middlebury 2014

as novel environments with no ground-truth available for

fine-tuning. Thus, we perform unsupervised adaptation on

KITTI 2015 and Middlebury 2014 and compare accuracy

with respect to both the original DispNet architecture (i.e.,

trained on synthetic data only) as well as to DispNet fine-

tuned on KITTI 2012 by the available ground truth. Fol-

lowing this protocol, we can prove that our unsupervised

adaptation improves significantly the accuracy of the orig-

inal network. i.e. that unsupervised fine-tuning is feasible

and works well, and that, in absence of ground-truth data,

unsupervised fine-tuning on the addressed scenario is more

effective than transferring a supervised fine-tuning from an-

other annotated (and quite similar) environment1. To assess

the performance of our proposal with different stereo al-

gorithms, in these experiments we use AD-CENSUS and

Semi-Global Matching (SGM), the latter leveraging as data

term the final cost computed by AD-CENSUS and with

1This protocol is also compliant to the KITTI submission rules, which

forbid to process the test data in any manner before submitting results.

smoothing penalties P1 = 0.2 and P2 = 0.5, being the

matching costs between 0 and 1.

Table 1 reports the error rate (i.e., the percentage of pix-

els having an error larger than θ) and the average disparity

error on the entire KITTI 2015 (θ = 3) and Middlebury 2014

(θ = 1) training sets. For both datasets we use the standard

evaluation protocol; for Middlebury we resized the stereo

pairs to quarter resolution to have a disparity range simi-

lar to the KITTI datasets. We highlight how, regardless of

the chosen off-the-shelf stereo algorithm being either AD-

CENSUS or SGM, our unsupervised adaptation approach

achieves higher accuracy with respect to the original Disp-

Net architecture as well as to DispNet fine-tuned supervis-

edly on KITTI 2012 on both datasets and according to both

metrics. Table 1 reports also on the first two rows the accu-

racy of the two stereo algorithms deployed for adaptation:

their very high error rates demonstrate how the proposed

confidence guided loss and smoothness term can handle ef-

fectively the high number of wrong assignments within the

disparity maps yielded by the stereo algorithms that provide

the ”raw” target variables to the learning process.

As for the results on KITTI 2015, it is worth highlighting

that our approach is able to outperform DispNet fine-tuned

through the ground-truth data of a very similar dataset (i.e.,

KITTI 2012). Thus, despite the high similarity between the

two datasets in terms of image content, which renders fine-

tuning on KITTI 2012 beneficial to DispNet, as vouched by

the nearly 3% decrease of the error rate and the reduced av-

erage disparity error, our proposed unsupervised adaptation

turns out more effective obtaining an even higher accuracy.

Moreover, we point out how our unsupervised adaptation

method is effective with both the considered off-the-shelf

stereo algorithms, which are characterized by quite differ-

ent error rates and behaviors. This is particularly relevant to

AD-CENSUS, whose average error rate is quite high (i.e.,

on average, more than 35% of wrong pixels in each map).

This experiment shows that our methodology can be de-

ployed to effectively fine-tune a deep stereo network with-

out the need of ground truth disparities. Moreover our con-

fidence guided loss proves to be able to drastically improve

the performance of a deep stereo system even if the raw tar-

get values used for the unsupervised tuning are very noisy,

such as it the case of the disparity map computed by AD-

CENSUS. Interestingly, DispNet adapted from such noisy

data yields more accurate disparity maps with respect to un-

dergoing a fine tuned based on ground truth data from a dif-

ferent though similar scenario. In a further experiment we

included in our usupervised fine-tuning of DispNet based

on AD-CENSUS only the stereo pairs of the KITTI 2015

training dataset with available ground-truth, i.e. given the

scene labeled as ”000000”, we process unspervisedly only

the ”000000 10” stereo pairs rather than also those labeled

as ”000000 11”, so to deploy a similar number of images

1610



GT AD-CENSUS (24.89) SGM (18.08) DispNet K12-GT (29.55) DispNet SGM (15.12)
Figure 6. Qualitative result on the PianoL image from the Middlebury 14 dataset with average error reported between bracket. From left to

right, ground truth disparity map (white points are undefined) and disparity maps obtained with different stereo algorithms.

Stereo KITTI 2012 KITTI 2015

algorithm bad 3(%) avg bad 3(%) avg

DispNet 6.60 1.1399 7.46 1.27

DispNet K12-GT 2.89 0.93 4.58 1.15

DispNet CENSUS 4.29 0.79 4.34 0.87

DispNet SGM 4.12 0.80 4.35 0.88

Table 2. Results on the KITTI 2012 and KITTI 2015 training

datasets. DispNet: no fine-tuning; DispNet K12-GT: supervised

fine-tuning on the ground-truth from KITTI 2012; DispNet CEN-

SUS: unsupervised adaptation on KITTI 2012 using the AD-

CENSUS stereo algorithm; DispNet SGM: unsupervised adapta-

tion on KITTI 2012 using the SGM stereo algorithm .

as DispNet fine-tuned on Kitti 2012. In these settings we

observe only a modest increase of the error rate and average

disparity error of about 0.09% and 0.04% respectively.

As for the evaluation on Middlebury 2014, we first high-

light how fine-tuning DispNet on Kitti 2012 yields a large

increase of the error rate with respect to the model trained

on synthetic data only and does not significantly amelio-

rates the average disparity error (somehow similarly to Kitti

2015). This shows that, when fine-tuned on samples de-

picting very different environments (such as KITTI 2012 in

this case), the network can reduce the magnitude of mis-

matching disparities but cannot increase the overall num-

ber of correct pixels (indeed, on Middlebury such amount

is vastly decreased). Conversely, adapting unsupervisedly

DispNet with our technique yields a substantial reduction

of both the average disparity error as well as of the error

rate, in particular by more than 11% when deploying SGM

as the stereo algorithm. Overall, these results support the

effectiveness of the proposed unsupervised adaptation ap-

proach even on a challenging and very varied environment

such as the Middlebury dataset. In Figure 6 we show quali-

tative results on this dataset.

4.3. Generalization

Once assessed the superiority of unsupervised adapta-

tion with respect to fine-tuning by ground-truth data from

different datasets, we also inquire about the generalization

capability of our technique when dealing with the same

data as deployed by traditional fine-tuning based on ground-

truth. In particular, we perform both traditional fine-tuning

and unsupervised adaptation on the KITTI 2012 training

AD-CENSUS SGM

τ gt ∩ τ (%) bad 3 (%) gt ∩ τ (%) bad 3 (%)

0.00 100.00 38.64 100.00 16.53

0.50 61.89 7.83 87.87 6.58

0.80 53.16 2.90 83.64 4.37

0.90 48.71 1.70 80.58 3.40

0.95 44.49 1.06 77.48 2.67

0.99 32.15 0.35 68.01 1.40
Table 3. Intersection between confident points and ground-truth

data as function of the threshold value τ and its error rate, for both

AD-Census [24] and SGM [6] algorithms.

dataset, then we evaluate the performance of the networks

also on the KITTI 2015 training dataset in order to assess

generalization performance 2. We perform unsupervised

adaptation on the frames with available ground-truth only

(i.e., given 000000 scene and its stereo pairs labeled as

” 10” and ” 11”, we obtain disparity and confidence only

for the first pair), in order to make use of the same number

of stereo pairs in the different tuning procedures for a fair

comparison. Table 2 reports error rates (i.e., the percentage

of pixels having a disparity error larger than 3) and average

disparity error on both KITTI 2012 and KITTI 2015 train-

ing datasets. As we could expect, the network fine-tuned on

ground-truth data (DispNet K12-GT) achieves a lower error

rate with respect to the networks adapted unspervisedly. On

the other hand, the unsupervised technique yields a lower

average disparity error. To test the generalization property,

we focus on results obtained on the KITTI 2015 dataset.

Our unsupervised adaptation enables the network to outper-

form that fine-tuned supervisedly regarding both the error

rate and the average disparity error, whatever stereo algo-

rithm is deployed during the training phase.

These results can be explained by recalling the consider-

ation already discussed in Section 4. As shown in Figure 3,

the pixels with a confidence higher than τ are more widely

spread throughout the image than the available ground-truth

pixels. Table 3 reports the intersection between confident

(i.e., having a confidence value higher than the threshold τ )

and ground-truth pixels as percentage of the total amount of

available ground-truth samples; as expected, increasing τ

2We follow this protocol to avoid multiple submission to the KITTI

benchmark.
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(a) (b) (c) (d) (e)
Figure 7. Unsupervised adaptation on action. (a) reference image, (b) disparity map according to census algorithm [24], (c) disparity map

filtered by CCNN [17], (d) outcome of DispNet before adaptation, (e) final disparity map, by adapted DispNet.

such intersection gets smaller. In particular, with a thresh-

old value of 0.99 and the AD-Census algorithm the subset

of pixels processed during adaptation contains only 32%

of the ground-truth data used by the common fine-tuning

technique, while with the same threshold and the SGM al-

gorithm this percentage rises to 68%. This means that all

the remaining samples contributing to adaptation (i.e. 68

and 32% for, respectively, AD-CENSUS and SGM) encode

patterns unseen using a traditional fine-tuning procedure.

Thus, the network can learn from more varied and generic

samples with respect to ground-truth which is, among other

things, all contained in the lower part of the images. More-

over, the Table also reports the average error rate (bad 3)

on the intersection, about 1% for both algorithms, stressing

how the disparities computed on this subset of pixel are al-

most equivalent to ground-truth data. Assuming this prop-

erty to be true for the rest of the pixels having confidence

higher than τ , the unsupervised adaptation can learn many

behaviors not encoded by the pixels providing the ground-

truth, which is conducive to better generalization.

4.4. Qualitative Results on Challenging Sequences

To further test the effectiveness of the proposed ap-

proach, we adapt unsupervisedly DispNet on a set of chal-

lenging stereo sequences acquired in bad weather condi-

tions [11]. Peculiar to these sequences is the unavailability

of ground-truth data, making them a well-fitting case study

for our proposal. Figure 7 reports some notable examples,

on which the adaptation technique prove to solve most of

the issues related to illumination and weather conditions.

Additional examples are provided in the supplementary ma-

terial.

5. Conclusion and Future Work

We have demonstrated that it is possible to adapt a deep

learning stereo network to a brand new environment with-

out using ground-truth disparity labels. The implementa-

tion code will be made available3. The experimental eval-

uation proved that our proposal can better generalize when

moving to similar contexts with respect to fine-tuning tech-

niques based on sparse ground-truth data. Based on these

findings, we plan to investigate on whether and how our

approach may be deployed to train from scratch in a com-

pletely unsupervised manner a deep stereo network. Pur-

posely, we may leverage jointly on different and somehow

complementary stereo algorithms [23, 15] as raw target dis-

parities to be validated by the confidence estimator. Another

line of further research concerns the development of a real-

time self-adaptive stereo system, which would be able to

adapt autonomously and on-line to an unseen environment.
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